FFmpeg
h264_metadata_bsf.c
Go to the documentation of this file.
1 /*
2  * This file is part of FFmpeg.
3  *
4  * FFmpeg is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Lesser General Public
6  * License as published by the Free Software Foundation; either
7  * version 2.1 of the License, or (at your option) any later version.
8  *
9  * FFmpeg is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * Lesser General Public License for more details.
13  *
14  * You should have received a copy of the GNU Lesser General Public
15  * License along with FFmpeg; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 
19 #include "libavutil/avstring.h"
20 #include "libavutil/display.h"
21 #include "libavutil/common.h"
22 #include "libavutil/opt.h"
23 
24 #include "bsf.h"
25 #include "bsf_internal.h"
26 #include "cbs.h"
27 #include "cbs_bsf.h"
28 #include "cbs_h264.h"
29 #include "cbs_sei.h"
30 #include "h264.h"
31 #include "h264_levels.h"
32 #include "h2645data.h"
33 #include "sei.h"
34 
35 enum {
38 };
39 
40 enum {
42  LEVEL_AUTO = -1,
43 };
44 
45 typedef struct H264MetadataContext {
47 
49 
50  int aud;
52 
54 
56 
62 
64 
68 
69  int crop_left;
71  int crop_top;
73 
74  const char *sei_user_data;
76 
78 
80  double rotate;
81  int flip;
83 
84  int level;
86 
87 
90 {
92  int primary_pic_type_mask = 0xff;
93  int err, i, j;
94 
95  static const int primary_pic_type_table[] = {
96  0x084, // 2, 7
97  0x0a5, // 0, 2, 5, 7
98  0x0e7, // 0, 1, 2, 5, 6, 7
99  0x210, // 4, 9
100  0x318, // 3, 4, 8, 9
101  0x294, // 2, 4, 7, 9
102  0x3bd, // 0, 2, 3, 4, 5, 7, 8, 9
103  0x3ff, // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
104  };
105 
106  for (i = 0; i < au->nb_units; i++) {
107  if (au->units[i].type == H264_NAL_SLICE ||
108  au->units[i].type == H264_NAL_IDR_SLICE) {
109  H264RawSlice *slice = au->units[i].content;
110  for (j = 0; j < FF_ARRAY_ELEMS(primary_pic_type_table); j++) {
111  if (!(primary_pic_type_table[j] &
112  (1 << slice->header.slice_type)))
113  primary_pic_type_mask &= ~(1 << j);
114  }
115  }
116  }
117  for (j = 0; j < FF_ARRAY_ELEMS(primary_pic_type_table); j++)
118  if (primary_pic_type_mask & (1 << j))
119  break;
120  if (j >= FF_ARRAY_ELEMS(primary_pic_type_table)) {
121  av_log(bsf, AV_LOG_ERROR, "No usable primary_pic_type: "
122  "invalid slice types?\n");
123  return AVERROR_INVALIDDATA;
124  }
125 
126  ctx->aud_nal = (H264RawAUD) {
127  .nal_unit_header.nal_unit_type = H264_NAL_AUD,
128  .primary_pic_type = j,
129  };
130 
132  &ctx->aud_nal, NULL);
133  if (err < 0) {
134  av_log(bsf, AV_LOG_ERROR, "Failed to insert AUD.\n");
135  return err;
136  }
137 
138  return 0;
139 }
140 
142  H264RawSPS *sps)
143 {
145  int need_vui = 0;
146  int crop_unit_x, crop_unit_y;
147 
148  if (ctx->sample_aspect_ratio.num && ctx->sample_aspect_ratio.den) {
149  int num, den, i;
150 
151  av_reduce(&num, &den, ctx->sample_aspect_ratio.num,
152  ctx->sample_aspect_ratio.den, 65535);
153 
154  for (i = 1; i < FF_ARRAY_ELEMS(ff_h2645_pixel_aspect); i++) {
155  if (num == ff_h2645_pixel_aspect[i].num &&
156  den == ff_h2645_pixel_aspect[i].den)
157  break;
158  }
160  sps->vui.aspect_ratio_idc = 255;
161  sps->vui.sar_width = num;
162  sps->vui.sar_height = den;
163  } else {
164  sps->vui.aspect_ratio_idc = i;
165  }
166  sps->vui.aspect_ratio_info_present_flag = 1;
167  need_vui = 1;
168  }
169 
170 #define SET_VUI_FIELD(field) do { \
171  if (ctx->field >= 0) { \
172  sps->vui.field = ctx->field; \
173  need_vui = 1; \
174  } \
175  } while (0)
176 
177  if (ctx->overscan_appropriate_flag >= 0) {
178  SET_VUI_FIELD(overscan_appropriate_flag);
179  sps->vui.overscan_info_present_flag = 1;
180  }
181 
182  if (ctx->video_format >= 0 ||
183  ctx->video_full_range_flag >= 0 ||
184  ctx->colour_primaries >= 0 ||
185  ctx->transfer_characteristics >= 0 ||
186  ctx->matrix_coefficients >= 0) {
187 
188  SET_VUI_FIELD(video_format);
189 
190  SET_VUI_FIELD(video_full_range_flag);
191 
192  if (ctx->colour_primaries >= 0 ||
193  ctx->transfer_characteristics >= 0 ||
194  ctx->matrix_coefficients >= 0) {
195 
196  SET_VUI_FIELD(colour_primaries);
198  SET_VUI_FIELD(matrix_coefficients);
199 
200  sps->vui.colour_description_present_flag = 1;
201  }
202  sps->vui.video_signal_type_present_flag = 1;
203  }
204 
205  if (ctx->chroma_sample_loc_type >= 0) {
206  sps->vui.chroma_sample_loc_type_top_field =
207  ctx->chroma_sample_loc_type;
208  sps->vui.chroma_sample_loc_type_bottom_field =
209  ctx->chroma_sample_loc_type;
210  sps->vui.chroma_loc_info_present_flag = 1;
211  need_vui = 1;
212  }
213 
214  if (ctx->tick_rate.num && ctx->tick_rate.den) {
215  int num, den;
216 
217  av_reduce(&num, &den, ctx->tick_rate.num, ctx->tick_rate.den,
218  UINT32_MAX > INT_MAX ? UINT32_MAX : INT_MAX);
219 
220  sps->vui.time_scale = num;
221  sps->vui.num_units_in_tick = den;
222 
223  sps->vui.timing_info_present_flag = 1;
224  need_vui = 1;
225  }
226  SET_VUI_FIELD(fixed_frame_rate_flag);
227  if (ctx->zero_new_constraint_set_flags) {
228  sps->constraint_set4_flag = 0;
229  sps->constraint_set5_flag = 0;
230  }
231 
232  if (sps->separate_colour_plane_flag || sps->chroma_format_idc == 0) {
233  crop_unit_x = 1;
234  crop_unit_y = 2 - sps->frame_mbs_only_flag;
235  } else {
236  crop_unit_x = 1 + (sps->chroma_format_idc < 3);
237  crop_unit_y = (1 + (sps->chroma_format_idc < 2)) *
238  (2 - sps->frame_mbs_only_flag);
239  }
240 #define CROP(border, unit) do { \
241  if (ctx->crop_ ## border >= 0) { \
242  if (ctx->crop_ ## border % unit != 0) { \
243  av_log(bsf, AV_LOG_ERROR, "Invalid value for crop_%s: " \
244  "must be a multiple of %d.\n", #border, unit); \
245  return AVERROR(EINVAL); \
246  } \
247  sps->frame_crop_ ## border ## _offset = \
248  ctx->crop_ ## border / unit; \
249  sps->frame_cropping_flag = 1; \
250  } \
251  } while (0)
252  CROP(left, crop_unit_x);
253  CROP(right, crop_unit_x);
254  CROP(top, crop_unit_y);
255  CROP(bottom, crop_unit_y);
256 #undef CROP
257 
258  if (ctx->level != LEVEL_UNSET) {
259  int level_idc;
260 
261  if (ctx->level == LEVEL_AUTO) {
262  const H264LevelDescriptor *desc;
263  int64_t bit_rate;
264  int width, height, dpb_frames;
265  int framerate;
266 
267  if (sps->vui.nal_hrd_parameters_present_flag) {
268  bit_rate = (sps->vui.nal_hrd_parameters.bit_rate_value_minus1[0] + 1) *
269  (INT64_C(1) << (sps->vui.nal_hrd_parameters.bit_rate_scale + 6));
270  } else if (sps->vui.vcl_hrd_parameters_present_flag) {
271  bit_rate = (sps->vui.vcl_hrd_parameters.bit_rate_value_minus1[0] + 1) *
272  (INT64_C(1) << (sps->vui.vcl_hrd_parameters.bit_rate_scale + 6));
273  // Adjust for VCL vs. NAL limits.
274  bit_rate = bit_rate * 6 / 5;
275  } else {
276  bit_rate = 0;
277  }
278 
279  // Don't use max_dec_frame_buffering if it is only inferred.
280  dpb_frames = sps->vui.bitstream_restriction_flag ?
281  sps->vui.max_dec_frame_buffering : H264_MAX_DPB_FRAMES;
282 
283  width = 16 * (sps->pic_width_in_mbs_minus1 + 1);
284  height = 16 * (sps->pic_height_in_map_units_minus1 + 1) *
285  (2 - sps->frame_mbs_only_flag);
286 
287  if (sps->vui.timing_info_present_flag)
288  framerate = sps->vui.time_scale / sps->vui.num_units_in_tick / 2;
289  else
290  framerate = 0;
291 
292  desc = ff_h264_guess_level(sps->profile_idc, bit_rate, framerate,
294  if (desc) {
295  level_idc = desc->level_idc;
296  } else {
297  av_log(bsf, AV_LOG_WARNING, "Stream does not appear to "
298  "conform to any level: using level 6.2.\n");
299  level_idc = 62;
300  }
301  } else {
302  level_idc = ctx->level;
303  }
304 
305  if (level_idc == 9) {
306  if (sps->profile_idc == 66 ||
307  sps->profile_idc == 77 ||
308  sps->profile_idc == 88) {
309  sps->level_idc = 11;
310  sps->constraint_set3_flag = 1;
311  } else {
312  sps->level_idc = 9;
313  }
314  } else {
315  sps->level_idc = level_idc;
316  }
317  }
318 
319  if (need_vui)
320  sps->vui_parameters_present_flag = 1;
321 
322  return 0;
323 }
324 
326  AVPacket *pkt,
328  int seek_point)
329 {
332  int err;
333 
334  message = NULL;
335  while (ff_cbs_sei_find_message(ctx->common.output, au,
337  &message) == 0) {
338  H264RawSEIDisplayOrientation *disp = message->payload;
339  double angle = disp->anticlockwise_rotation * 180.0 / 65536.0;
340  int32_t *matrix;
341 
342  matrix = av_malloc(9 * sizeof(int32_t));
343  if (!matrix)
344  return AVERROR(ENOMEM);
345 
346  /* av_display_rotation_set() expects the angle in the clockwise
347  * direction, hence the first minus.
348  * The below code applies the flips after the rotation, yet
349  * the H.2645 specs require flipping to be applied first.
350  * Because of R O(phi) = O(-phi) R (where R is flipping around
351  * an arbitatry axis and O(phi) is the proper rotation by phi)
352  * we can create display matrices as desired by negating
353  * the degree once for every flip applied. */
354  angle = -angle * (1 - 2 * !!disp->hor_flip) * (1 - 2 * !!disp->ver_flip);
355 
358 
359  // If there are multiple display orientation messages in an
360  // access unit, then the last one added to the packet (i.e.
361  // the first one in the access unit) will prevail.
363  (uint8_t*)matrix,
364  9 * sizeof(int32_t));
365  if (err < 0) {
366  av_log(bsf, AV_LOG_ERROR, "Failed to attach extracted "
367  "displaymatrix side data to packet.\n");
368  av_free(matrix);
369  return AVERROR(ENOMEM);
370  }
371  }
372 
373  if (ctx->display_orientation == BSF_ELEMENT_REMOVE ||
374  ctx->display_orientation == BSF_ELEMENT_INSERT) {
375  ff_cbs_sei_delete_message_type(ctx->common.output, au,
377  }
378 
379  if (ctx->display_orientation == BSF_ELEMENT_INSERT) {
381  &ctx->display_orientation_payload;
382  uint8_t *data;
383  size_t size;
384  int write = 0;
385 
387  if (data && size >= 9 * sizeof(int32_t)) {
388  int32_t matrix[9];
389  double dmatrix[9];
390  int hflip, vflip, i;
391  double scale_x, scale_y, angle;
392 
393  memcpy(matrix, data, sizeof(matrix));
394 
395  for (i = 0; i < 9; i++)
396  dmatrix[i] = matrix[i] / 65536.0;
397 
398  // Extract scale factors.
399  scale_x = hypot(dmatrix[0], dmatrix[3]);
400  scale_y = hypot(dmatrix[1], dmatrix[4]);
401 
402  // Select flips to make the main diagonal positive.
403  hflip = dmatrix[0] < 0.0;
404  vflip = dmatrix[4] < 0.0;
405  if (hflip)
406  scale_x = -scale_x;
407  if (vflip)
408  scale_y = -scale_y;
409 
410  // Rescale.
411  for (i = 0; i < 9; i += 3) {
412  dmatrix[i] /= scale_x;
413  dmatrix[i + 1] /= scale_y;
414  }
415 
416  // Extract rotation.
417  angle = atan2(dmatrix[3], dmatrix[0]);
418 
419  if (!(angle >= -M_PI && angle <= M_PI) ||
420  matrix[2] != 0.0 || matrix[5] != 0.0 ||
421  matrix[6] != 0.0 || matrix[7] != 0.0) {
422  av_log(bsf, AV_LOG_WARNING, "Input display matrix is not "
423  "representable in H.264 parameters.\n");
424  } else {
425  disp->hor_flip = hflip;
426  disp->ver_flip = vflip;
427  disp->anticlockwise_rotation =
428  (uint16_t)rint((angle >= 0.0 ? angle
429  : angle + 2 * M_PI) *
430  32768.0 / M_PI);
431  write = 1;
432  }
433  }
434 
435  if (seek_point) {
436  if (!isnan(ctx->rotate)) {
437  disp->anticlockwise_rotation =
438  (uint16_t)rint((ctx->rotate >= 0.0 ? ctx->rotate
439  : ctx->rotate + 360.0) *
440  65536.0 / 360.0);
441  write = 1;
442  }
443  if (ctx->flip) {
444  disp->hor_flip = !!(ctx->flip & FLIP_HORIZONTAL);
445  disp->ver_flip = !!(ctx->flip & FLIP_VERTICAL);
446  write = 1;
447  }
448  }
449 
450  if (write) {
452 
453  err = ff_cbs_sei_add_message(ctx->common.output, au, 1,
455  disp, NULL);
456  if (err < 0) {
457  av_log(bsf, AV_LOG_ERROR, "Failed to add display orientation "
458  "SEI message to access unit.\n");
459  return err;
460  }
461  }
462  }
463 
464  return 0;
465 }
466 
469 {
471  int err, i, has_sps, seek_point;
472 
473  if (ctx->aud == BSF_ELEMENT_REMOVE) {
474  for (i = au->nb_units - 1; i >= 0; i--) {
475  if (au->units[i].type == H264_NAL_AUD)
476  ff_cbs_delete_unit(au, i);
477  }
478  } else if (ctx->aud == BSF_ELEMENT_INSERT) {
479  if (pkt) {
480  err = h264_metadata_insert_aud(bsf, au);
481  if (err < 0)
482  return err;
483  }
484  }
485 
486  has_sps = 0;
487  for (i = 0; i < au->nb_units; i++) {
488  if (au->units[i].type == H264_NAL_SPS) {
489  err = h264_metadata_update_sps(bsf, au->units[i].content);
490  if (err < 0)
491  return err;
492  has_sps = 1;
493  }
494  }
495 
496  if (pkt) {
497  // The current packet should be treated as a seek point for metadata
498  // insertion if any of:
499  // - It is the first packet in the stream.
500  // - It contains an SPS, indicating that a sequence might start here.
501  // - It is marked as containing a key frame.
502  seek_point = !ctx->done_first_au || has_sps ||
504  } else {
505  seek_point = 0;
506  }
507 
508  if (ctx->sei_user_data && seek_point) {
509  err = ff_cbs_sei_add_message(ctx->common.output, au, 1,
511  &ctx->sei_user_data_payload, NULL);
512  if (err < 0) {
513  av_log(bsf, AV_LOG_ERROR, "Failed to add user data SEI "
514  "message to access unit.\n");
515  return err;
516  }
517  }
518 
519  if (ctx->delete_filler) {
520  for (i = au->nb_units - 1; i >= 0; i--) {
521  if (au->units[i].type == H264_NAL_FILLER_DATA) {
522  ff_cbs_delete_unit(au, i);
523  continue;
524  }
525  }
526 
527  ff_cbs_sei_delete_message_type(ctx->common.output, au,
529  }
530 
531  if (pkt && ctx->display_orientation != BSF_ELEMENT_PASS) {
533  seek_point);
534  if (err < 0)
535  return err;
536  }
537 
538  if (pkt)
539  ctx->done_first_au = 1;
540 
541  return 0;
542 }
543 
546  .fragment_name = "access unit",
547  .unit_name = "NAL unit",
548  .update_fragment = &h264_metadata_update_fragment,
549 };
550 
552 {
554 
555  if (ctx->sei_user_data) {
556  SEIRawUserDataUnregistered *udu = &ctx->sei_user_data_payload;
557  int i, j;
558 
559  // Parse UUID. It must be a hex string of length 32, possibly
560  // containing '-'s between hex digits (which we ignore).
561  for (i = j = 0; j < 32 && i < 64 && ctx->sei_user_data[i]; i++) {
562  int c, v;
563  c = ctx->sei_user_data[i];
564  if (c == '-') {
565  continue;
566  } else if (av_isxdigit(c)) {
567  c = av_tolower(c);
568  v = (c <= '9' ? c - '0' : c - 'a' + 10);
569  } else {
570  break;
571  }
572  if (j & 1)
573  udu->uuid_iso_iec_11578[j / 2] |= v;
574  else
575  udu->uuid_iso_iec_11578[j / 2] = v << 4;
576  ++j;
577  }
578  if (j == 32 && ctx->sei_user_data[i] == '+') {
579  udu->data = (uint8_t*)ctx->sei_user_data + i + 1;
580  udu->data_length = strlen(udu->data) + 1;
581  } else {
582  av_log(bsf, AV_LOG_ERROR, "Invalid user data: "
583  "must be \"UUID+string\".\n");
584  return AVERROR(EINVAL);
585  }
586  }
587 
589 }
590 
591 #define OFFSET(x) offsetof(H264MetadataContext, x)
592 #define FLAGS (AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_BSF_PARAM)
593 static const AVOption h264_metadata_options[] = {
594  BSF_ELEMENT_OPTIONS_PIR("aud", "Access Unit Delimiter NAL units",
595  aud, FLAGS),
596 
597  { "sample_aspect_ratio", "Set sample aspect ratio (table E-1)",
598  OFFSET(sample_aspect_ratio), AV_OPT_TYPE_RATIONAL,
599  { .dbl = 0.0 }, 0, 65535, FLAGS },
600 
601  { "overscan_appropriate_flag", "Set VUI overscan appropriate flag",
602  OFFSET(overscan_appropriate_flag), AV_OPT_TYPE_INT,
603  { .i64 = -1 }, -1, 1, FLAGS },
604 
605  { "video_format", "Set video format (table E-2)",
606  OFFSET(video_format), AV_OPT_TYPE_INT,
607  { .i64 = -1 }, -1, 7, FLAGS},
608  { "video_full_range_flag", "Set video full range flag",
609  OFFSET(video_full_range_flag), AV_OPT_TYPE_INT,
610  { .i64 = -1 }, -1, 1, FLAGS },
611  { "colour_primaries", "Set colour primaries (table E-3)",
612  OFFSET(colour_primaries), AV_OPT_TYPE_INT,
613  { .i64 = -1 }, -1, 255, FLAGS },
614  { "transfer_characteristics", "Set transfer characteristics (table E-4)",
616  { .i64 = -1 }, -1, 255, FLAGS },
617  { "matrix_coefficients", "Set matrix coefficients (table E-5)",
618  OFFSET(matrix_coefficients), AV_OPT_TYPE_INT,
619  { .i64 = -1 }, -1, 255, FLAGS },
620 
621  { "chroma_sample_loc_type", "Set chroma sample location type (figure E-1)",
622  OFFSET(chroma_sample_loc_type), AV_OPT_TYPE_INT,
623  { .i64 = -1 }, -1, 5, FLAGS },
624 
625  { "tick_rate", "Set VUI tick rate (time_scale / num_units_in_tick)",
626  OFFSET(tick_rate), AV_OPT_TYPE_RATIONAL,
627  { .dbl = 0.0 }, 0, UINT_MAX, FLAGS },
628  { "fixed_frame_rate_flag", "Set VUI fixed frame rate flag",
629  OFFSET(fixed_frame_rate_flag), AV_OPT_TYPE_INT,
630  { .i64 = -1 }, -1, 1, FLAGS },
631  { "zero_new_constraint_set_flags", "Set constraint_set4_flag / constraint_set5_flag to zero",
632  OFFSET(zero_new_constraint_set_flags), AV_OPT_TYPE_BOOL,
633  { .i64 = 0 }, 0, 1, FLAGS },
634 
635  { "crop_left", "Set left border crop offset",
636  OFFSET(crop_left), AV_OPT_TYPE_INT,
637  { .i64 = -1 }, -1, H264_MAX_WIDTH, FLAGS },
638  { "crop_right", "Set right border crop offset",
639  OFFSET(crop_right), AV_OPT_TYPE_INT,
640  { .i64 = -1 }, -1, H264_MAX_WIDTH, FLAGS },
641  { "crop_top", "Set top border crop offset",
642  OFFSET(crop_top), AV_OPT_TYPE_INT,
643  { .i64 = -1 }, -1, H264_MAX_HEIGHT, FLAGS },
644  { "crop_bottom", "Set bottom border crop offset",
645  OFFSET(crop_bottom), AV_OPT_TYPE_INT,
646  { .i64 = -1 }, -1, H264_MAX_HEIGHT, FLAGS },
647 
648  { "sei_user_data", "Insert SEI user data (UUID+string)",
649  OFFSET(sei_user_data), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = FLAGS },
650 
651  { "delete_filler", "Delete all filler (both NAL and SEI)",
652  OFFSET(delete_filler), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS},
653 
654  BSF_ELEMENT_OPTIONS_PIRE("display_orientation",
655  "Display orientation SEI",
656  display_orientation, FLAGS),
657 
658  { "rotate", "Set rotation in display orientation SEI (anticlockwise angle in degrees)",
660  { .dbl = NAN }, -360.0, +360.0, FLAGS },
661  { "flip", "Set flip in display orientation SEI",
663  { .i64 = 0 }, 0, FLIP_HORIZONTAL | FLIP_VERTICAL, FLAGS, "flip" },
664  { "horizontal", "Set hor_flip",
666  { .i64 = FLIP_HORIZONTAL }, .flags = FLAGS, .unit = "flip" },
667  { "vertical", "Set ver_flip",
669  { .i64 = FLIP_VERTICAL }, .flags = FLAGS, .unit = "flip" },
670 
671  { "level", "Set level (table A-1)",
673  { .i64 = LEVEL_UNSET }, LEVEL_UNSET, 0xff, FLAGS, "level" },
674  { "auto", "Attempt to guess level from stream properties",
676  { .i64 = LEVEL_AUTO }, .flags = FLAGS, .unit = "level" },
677 #define LEVEL(name, value) name, NULL, 0, AV_OPT_TYPE_CONST, \
678  { .i64 = value }, .flags = FLAGS, .unit = "level"
679  { LEVEL("1", 10) },
680  { LEVEL("1b", 9) },
681  { LEVEL("1.1", 11) },
682  { LEVEL("1.2", 12) },
683  { LEVEL("1.3", 13) },
684  { LEVEL("2", 20) },
685  { LEVEL("2.1", 21) },
686  { LEVEL("2.2", 22) },
687  { LEVEL("3", 30) },
688  { LEVEL("3.1", 31) },
689  { LEVEL("3.2", 32) },
690  { LEVEL("4", 40) },
691  { LEVEL("4.1", 41) },
692  { LEVEL("4.2", 42) },
693  { LEVEL("5", 50) },
694  { LEVEL("5.1", 51) },
695  { LEVEL("5.2", 52) },
696  { LEVEL("6", 60) },
697  { LEVEL("6.1", 61) },
698  { LEVEL("6.2", 62) },
699 #undef LEVEL
700 
701  { NULL }
702 };
703 
704 static const AVClass h264_metadata_class = {
705  .class_name = "h264_metadata_bsf",
706  .item_name = av_default_item_name,
707  .option = h264_metadata_options,
708  .version = LIBAVUTIL_VERSION_INT,
709 };
710 
711 static const enum AVCodecID h264_metadata_codec_ids[] = {
713 };
714 
716  .p.name = "h264_metadata",
717  .p.codec_ids = h264_metadata_codec_ids,
718  .p.priv_class = &h264_metadata_class,
719  .priv_data_size = sizeof(H264MetadataContext),
721  .close = &ff_cbs_bsf_generic_close,
723 };
AV_PKT_DATA_DISPLAYMATRIX
@ AV_PKT_DATA_DISPLAYMATRIX
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
Definition: packet.h:109
av_isxdigit
static av_const int av_isxdigit(int c)
Locale-independent conversion of ASCII isxdigit.
Definition: avstring.h:247
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:186
level
uint8_t level
Definition: svq3.c:204
FLAGS
#define FLAGS
Definition: h264_metadata_bsf.c:592
ff_cbs_bsf_generic_init
int ff_cbs_bsf_generic_init(AVBSFContext *bsf, const CBSBSFType *type)
Initialise generic CBS BSF setup.
Definition: cbs_bsf.c:110
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
bsf_internal.h
opt.h
H264MetadataContext::video_full_range_flag
int video_full_range_flag
Definition: h264_metadata_bsf.c:58
H264MetadataContext::sei_user_data
const char * sei_user_data
Definition: h264_metadata_bsf.c:74
CBSBSFType::codec_id
enum AVCodecID codec_id
Definition: cbs_bsf.h:32
message
Definition: api-threadmessage-test.c:46
LEVEL
#define LEVEL(name, value)
h264_levels.h
ff_cbs_sei_add_message
int ff_cbs_sei_add_message(CodedBitstreamContext *ctx, CodedBitstreamFragment *au, int prefix, uint32_t payload_type, void *payload_data, void *payload_ref)
Add an SEI message to an access unit.
Definition: cbs_sei.c:268
H264MetadataContext::sei_user_data_payload
SEIRawUserDataUnregistered sei_user_data_payload
Definition: h264_metadata_bsf.c:75
matrix
Definition: vc1dsp.c:42
cbs_h264.h
dpb_frames
int dpb_frames
Definition: h264_levels.c:163
CodedBitstreamUnit::content
void * content
Pointer to the decomposed form of this unit.
Definition: cbs.h:107
AVBitStreamFilter::name
const char * name
Definition: bsf.h:112
ff_cbs_insert_unit_content
int ff_cbs_insert_unit_content(CodedBitstreamFragment *frag, int position, CodedBitstreamUnitType type, void *content, void *content_ref)
Insert a new unit into a fragment with the given content.
Definition: cbs.c:776
SEIRawMessage
Definition: cbs_sei.h:70
FLIP_VERTICAL
@ FLIP_VERTICAL
Definition: h264_metadata_bsf.c:37
h264_metadata_options
static const AVOption h264_metadata_options[]
Definition: h264_metadata_bsf.c:593
ff_cbs_sei_delete_message_type
void ff_cbs_sei_delete_message_type(CodedBitstreamContext *ctx, CodedBitstreamFragment *au, uint32_t payload_type)
Delete all messages with the given payload type from an access unit.
Definition: cbs_sei.c:368
av_display_matrix_flip
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
Definition: display.c:66
ff_h264_metadata_bsf
const FFBitStreamFilter ff_h264_metadata_bsf
Definition: h264_metadata_bsf.c:715
level_idc
int level_idc
Definition: h264_levels.c:29
AVOption
AVOption.
Definition: opt.h:251
H264MetadataContext::aud_nal
H264RawAUD aud_nal
Definition: h264_metadata_bsf.c:51
data
const char data[16]
Definition: mxf.c:148
BSF_ELEMENT_INSERT
@ BSF_ELEMENT_INSERT
Definition: cbs_bsf.h:104
CBSBSFContext
Definition: cbs_bsf.h:53
CodedBitstreamUnit::type
CodedBitstreamUnitType type
Codec-specific type of this unit.
Definition: cbs.h:74
h264_metadata_update_sps
static int h264_metadata_update_sps(AVBSFContext *bsf, H264RawSPS *sps)
Definition: h264_metadata_bsf.c:141
cbs.h
av_display_rotation_set
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure clockwise rotation by the specified angle (in de...
Definition: display.c:51
H264MetadataContext::chroma_sample_loc_type
int chroma_sample_loc_type
Definition: h264_metadata_bsf.c:63
filter
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
Definition: filter_design.txt:228
H264MetadataContext::crop_top
int crop_top
Definition: h264_metadata_bsf.c:71
H264MetadataContext::crop_right
int crop_right
Definition: h264_metadata_bsf.c:70
H264LevelDescriptor
Definition: h264_levels.h:25
AV_OPT_TYPE_RATIONAL
@ AV_OPT_TYPE_RATIONAL
Definition: opt.h:230
LEVEL_AUTO
@ LEVEL_AUTO
Definition: h264_metadata_bsf.c:42
AV_PKT_FLAG_KEY
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: packet.h:546
AVBSFContext
The bitstream filter state.
Definition: bsf.h:68
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:30
bsf.h
av_packet_add_side_data
int av_packet_add_side_data(AVPacket *pkt, enum AVPacketSideDataType type, uint8_t *data, size_t size)
Wrap an existing array as a packet side data.
Definition: avpacket.c:197
cbs_bsf.h
ff_h264_guess_level
const H264LevelDescriptor * ff_h264_guess_level(int profile_idc, int64_t bitrate, int framerate, int width, int height, int max_dec_frame_buffering)
Guess the level of a stream from some parameters.
Definition: h264_levels.c:79
SEIRawUserDataUnregistered::data
uint8_t * data
RefStruct reference.
Definition: cbs_sei.h:42
FLIP_HORIZONTAL
@ FLIP_HORIZONTAL
Definition: h264_metadata_bsf.c:36
H264MetadataContext::overscan_appropriate_flag
int overscan_appropriate_flag
Definition: h264_metadata_bsf.c:55
SEIRawUserDataUnregistered
Definition: cbs_sei.h:40
H264_NAL_SLICE
@ H264_NAL_SLICE
Definition: h264.h:35
av_reduce
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
SEI_TYPE_FILLER_PAYLOAD
@ SEI_TYPE_FILLER_PAYLOAD
Definition: sei.h:33
rotate
static void rotate(const float rot_quaternion[2][4], float *vec)
Rotate vector with given rotation quaternion.
Definition: vf_v360.c:4064
H264MetadataContext::rotate
double rotate
Definition: h264_metadata_bsf.c:80
H264MetadataContext::display_orientation
int display_orientation
Definition: h264_metadata_bsf.c:79
CodedBitstreamFragment::units
CodedBitstreamUnit * units
Pointer to an array of units of length nb_units_allocated.
Definition: cbs.h:168
pkt
AVPacket * pkt
Definition: movenc.c:59
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a)
Definition: sinewin_tablegen.c:29
H264MetadataContext::fixed_frame_rate_flag
int fixed_frame_rate_flag
Definition: h264_metadata_bsf.c:66
BSF_ELEMENT_OPTIONS_PIRE
#define BSF_ELEMENT_OPTIONS_PIRE(name, help, field, opt_flags)
Definition: cbs_bsf.h:123
CodedBitstreamFragment
Coded bitstream fragment structure, combining one or more units.
Definition: cbs.h:122
width
#define width
AV_OPT_TYPE_DOUBLE
@ AV_OPT_TYPE_DOUBLE
Definition: opt.h:227
H264MetadataContext::common
CBSBSFContext common
Definition: h264_metadata_bsf.c:46
H264MetadataContext::transfer_characteristics
int transfer_characteristics
Definition: h264_metadata_bsf.c:60
init
int(* init)(AVBSFContext *ctx)
Definition: dts2pts_bsf.c:365
SEIRawUserDataUnregistered::data_length
size_t data_length
Definition: cbs_sei.h:43
ctx
AVFormatContext * ctx
Definition: movenc.c:48
CROP
#define CROP(border, unit)
H264RawSEIDisplayOrientation::display_orientation_repetition_period
uint16_t display_orientation_repetition_period
Definition: cbs_h264.h:301
h2645data.h
NAN
#define NAN
Definition: mathematics.h:115
AV_CODEC_ID_H264
@ AV_CODEC_ID_H264
Definition: codec_id.h:79
h264_metadata_update_fragment
static int h264_metadata_update_fragment(AVBSFContext *bsf, AVPacket *pkt, CodedBitstreamFragment *au)
Definition: h264_metadata_bsf.c:467
framerate
float framerate
Definition: av1_levels.c:29
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:66
rint
#define rint
Definition: tablegen.h:41
NULL
#define NULL
Definition: coverity.c:32
FFBitStreamFilter
Definition: bsf_internal.h:27
cbs_sei.h
AVRational
Rational number (pair of numerator and denominator).
Definition: rational.h:58
H264RawSEIDisplayOrientation::anticlockwise_rotation
uint16_t anticlockwise_rotation
Definition: cbs_h264.h:300
isnan
#define isnan(x)
Definition: libm.h:340
sei.h
H264MetadataContext::delete_filler
int delete_filler
Definition: h264_metadata_bsf.c:77
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:237
H264MetadataContext::crop_bottom
int crop_bottom
Definition: h264_metadata_bsf.c:72
h264_metadata_handle_display_orientation
static int h264_metadata_handle_display_orientation(AVBSFContext *bsf, AVPacket *pkt, CodedBitstreamFragment *au, int seek_point)
Definition: h264_metadata_bsf.c:325
BSF_ELEMENT_REMOVE
@ BSF_ELEMENT_REMOVE
Definition: cbs_bsf.h:106
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
H264_NAL_AUD
@ H264_NAL_AUD
Definition: h264.h:43
AVCodecID
AVCodecID
Identify the syntax and semantics of the bitstream.
Definition: codec_id.h:49
h264_metadata_type
static const CBSBSFType h264_metadata_type
Definition: h264_metadata_bsf.c:544
FFBitStreamFilter::p
AVBitStreamFilter p
The public AVBitStreamFilter.
Definition: bsf_internal.h:31
aud
static int FUNC() aud(CodedBitstreamContext *ctx, RWContext *rw, H264RawAUD *current)
Definition: cbs_h264_syntax_template.c:841
H264MetadataContext::flip
int flip
Definition: h264_metadata_bsf.c:81
H264RawSEIDisplayOrientation::hor_flip
uint8_t hor_flip
Definition: cbs_h264.h:298
flip
static void flip(AVCodecContext *avctx, AVFrame *frame)
Definition: rawdec.c:132
H264RawSliceHeader::slice_type
uint8_t slice_type
Definition: cbs_h264.h:314
CBSBSFType
Definition: cbs_bsf.h:31
H264_MAX_WIDTH
@ H264_MAX_WIDTH
Definition: h264.h:108
hypot
static av_const double hypot(double x, double y)
Definition: libm.h:366
size
int size
Definition: twinvq_data.h:10344
ff_cbs_bsf_generic_close
void ff_cbs_bsf_generic_close(AVBSFContext *bsf)
Close a generic CBS BSF instance.
Definition: cbs_bsf.c:155
transfer_characteristics
static const struct TransferCharacteristics transfer_characteristics[AVCOL_TRC_NB]
Definition: vf_colorspace.c:165
H264RawSEIDisplayOrientation
Definition: cbs_h264.h:296
height
#define height
H264MetadataContext::aud
int aud
Definition: h264_metadata_bsf.c:50
SET_VUI_FIELD
#define SET_VUI_FIELD(field)
AVPacket::flags
int flags
A combination of AV_PKT_FLAG values.
Definition: packet.h:497
h264_metadata_init
static int h264_metadata_init(AVBSFContext *bsf)
Definition: h264_metadata_bsf.c:551
H264MetadataContext::colour_primaries
int colour_primaries
Definition: h264_metadata_bsf.c:59
M_PI
#define M_PI
Definition: mathematics.h:67
H264MetadataContext
Definition: h264_metadata_bsf.c:45
OFFSET
#define OFFSET(x)
Definition: h264_metadata_bsf.c:591
H264RawSlice::header
H264RawSliceHeader header
Definition: cbs_h264.h:389
h264_metadata_class
static const AVClass h264_metadata_class
Definition: h264_metadata_bsf.c:704
AV_CODEC_ID_NONE
@ AV_CODEC_ID_NONE
Definition: codec_id.h:50
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:255
av_packet_get_side_data
uint8_t * av_packet_get_side_data(const AVPacket *pkt, enum AVPacketSideDataType type, size_t *size)
Get side information from packet.
Definition: avpacket.c:252
ff_cbs_sei_find_message
int ff_cbs_sei_find_message(CodedBitstreamContext *ctx, CodedBitstreamFragment *au, uint32_t payload_type, SEIRawMessage **iter)
Iterate over messages with the given payload type in an access unit.
Definition: cbs_sei.c:315
display.h
common.h
h264_metadata_codec_ids
static enum AVCodecID h264_metadata_codec_ids[]
Definition: h264_metadata_bsf.c:711
SEI_TYPE_DISPLAY_ORIENTATION
@ SEI_TYPE_DISPLAY_ORIENTATION
Definition: sei.h:77
ff_h2645_pixel_aspect
const AVRational ff_h2645_pixel_aspect[]
Definition: h2645data.c:21
AVBSFContext::priv_data
void * priv_data
Opaque filter-specific private data.
Definition: bsf.h:83
BSF_ELEMENT_PASS
@ BSF_ELEMENT_PASS
Definition: cbs_bsf.h:99
ff_cbs_bsf_generic_filter
int ff_cbs_bsf_generic_filter(AVBSFContext *bsf, AVPacket *pkt)
Filter operation for CBS BSF.
Definition: cbs_bsf.c:61
H264RawSEIDisplayOrientation::ver_flip
uint8_t ver_flip
Definition: cbs_h264.h:299
H264_NAL_FILLER_DATA
@ H264_NAL_FILLER_DATA
Definition: h264.h:46
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:71
sps
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
Definition: cbs_h264_syntax_template.c:260
BSF_ELEMENT_OPTIONS_PIR
#define BSF_ELEMENT_OPTIONS_PIR(name, help, field, opt_flags)
Definition: cbs_bsf.h:112
left
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:386
H264MetadataContext::video_format
int video_format
Definition: h264_metadata_bsf.c:57
H264MetadataContext::display_orientation_payload
H264RawSEIDisplayOrientation display_orientation_payload
Definition: h264_metadata_bsf.c:82
H264RawAUD
Definition: cbs_h264.h:218
SEI_TYPE_USER_DATA_UNREGISTERED
@ SEI_TYPE_USER_DATA_UNREGISTERED
Definition: sei.h:35
LEVEL_UNSET
@ LEVEL_UNSET
Definition: h264_metadata_bsf.c:41
H264MetadataContext::matrix_coefficients
int matrix_coefficients
Definition: h264_metadata_bsf.c:61
H264MetadataContext::done_first_au
int done_first_au
Definition: h264_metadata_bsf.c:48
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:225
H264MetadataContext::tick_rate
AVRational tick_rate
Definition: h264_metadata_bsf.c:65
desc
const char * desc
Definition: libsvtav1.c:83
H264_NAL_IDR_SLICE
@ H264_NAL_IDR_SLICE
Definition: h264.h:39
H264_NAL_SPS
@ H264_NAL_SPS
Definition: h264.h:41
H264MetadataContext::zero_new_constraint_set_flags
int zero_new_constraint_set_flags
Definition: h264_metadata_bsf.c:67
message
static int FUNC() message(CodedBitstreamContext *ctx, RWContext *rw, SEIRawMessage *current)
Definition: cbs_sei_syntax_template.c:165
av_free
#define av_free(p)
Definition: tableprint_vlc.h:33
AVPacket
This structure stores compressed data.
Definition: packet.h:468
AV_OPT_TYPE_BOOL
@ AV_OPT_TYPE_BOOL
Definition: opt.h:244
H264MetadataContext::level
int level
Definition: h264_metadata_bsf.c:84
H264_MAX_DPB_FRAMES
@ H264_MAX_DPB_FRAMES
Definition: h264.h:76
AV_OPT_TYPE_FLAGS
@ AV_OPT_TYPE_FLAGS
Definition: opt.h:224
int32_t
int32_t
Definition: audioconvert.c:56
h264.h
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
H264MetadataContext::sample_aspect_ratio
AVRational sample_aspect_ratio
Definition: h264_metadata_bsf.c:53
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:61
SEIRawUserDataUnregistered::uuid_iso_iec_11578
uint8_t uuid_iso_iec_11578[16]
Definition: cbs_sei.h:41
avstring.h
AV_OPT_TYPE_STRING
@ AV_OPT_TYPE_STRING
Definition: opt.h:229
H264MetadataContext::crop_left
int crop_left
Definition: h264_metadata_bsf.c:69
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Definition: opt.h:234
h264_metadata_insert_aud
static int h264_metadata_insert_aud(AVBSFContext *bsf, CodedBitstreamFragment *au)
Definition: h264_metadata_bsf.c:88
av_tolower
static av_const int av_tolower(int c)
Locale-independent conversion of ASCII characters to lowercase.
Definition: avstring.h:237
CodedBitstreamFragment::nb_units
int nb_units
Number of units in this fragment.
Definition: cbs.h:153
ff_cbs_delete_unit
void ff_cbs_delete_unit(CodedBitstreamFragment *frag, int position)
Delete a unit from a fragment and free all memory it uses.
Definition: cbs.c:853
H264RawSlice
Definition: cbs_h264.h:388
H264_MAX_HEIGHT
@ H264_MAX_HEIGHT
Definition: h264.h:109
H264RawSPS
Definition: cbs_h264.h:102