FFmpeg
sw_gbrp.c
Go to the documentation of this file.
1 /*
2  *
3  * This file is part of FFmpeg.
4  *
5  * FFmpeg is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * FFmpeg is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 
20 #include <string.h>
21 
22 #include "libavutil/common.h"
23 #include "libavutil/intreadwrite.h"
24 #include "libavutil/mem_internal.h"
25 #include "libavutil/pixdesc.h"
26 
27 #include "libswscale/swscale.h"
29 
30 #include "checkasm.h"
31 
32 #define randomize_buffers(buf, size) \
33  do { \
34  int j; \
35  for (j = 0; j < size; j+=4) \
36  AV_WN32(buf + j, rnd()); \
37  } while (0)
38 
39 static const int planar_fmts[] = {
62 };
63 
64 static void check_output_yuv2gbrp(void)
65 {
66  struct SwsContext *ctx;
67  const AVPixFmtDescriptor *desc;
68  int fmi, fsi, isi, i;
69  int dstW, byte_size, luma_filter_size, chr_filter_size;
70 #define LARGEST_FILTER 16
71 #define FILTER_SIZES 4
72  static const int filter_sizes[] = {1, 4, 8, 16};
73 #define LARGEST_INPUT_SIZE 512
74 #define INPUT_SIZES 6
75  static const int input_sizes[] = {8, 24, 128, 144, 256, 512};
76  uint8_t *dst0[4];
77  uint8_t *dst1[4];
78 
79  declare_func(void, void *c, const int16_t *lumFilter,
80  const int16_t **lumSrcx, int lumFilterSize,
81  const int16_t *chrFilter, const int16_t **chrUSrcx,
82  const int16_t **chrVSrcx, int chrFilterSize,
83  const int16_t **alpSrcx, uint8_t **dest,
84  int dstW, int y);
85 
86  const int16_t *luma[LARGEST_FILTER];
87  const int16_t *chru[LARGEST_FILTER];
88  const int16_t *chrv[LARGEST_FILTER];
89  const int16_t *alpha[LARGEST_FILTER];
90 
91  LOCAL_ALIGNED_8(int16_t, luma_filter, [LARGEST_FILTER]);
92  LOCAL_ALIGNED_8(int16_t, chr_filter, [LARGEST_FILTER]);
93 
98 
99  LOCAL_ALIGNED_8(uint8_t, dst0_r, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
100  LOCAL_ALIGNED_8(uint8_t, dst0_g, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
101  LOCAL_ALIGNED_8(uint8_t, dst0_b, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
102  LOCAL_ALIGNED_8(uint8_t, dst0_a, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
103 
104  LOCAL_ALIGNED_8(uint8_t, dst1_r, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
105  LOCAL_ALIGNED_8(uint8_t, dst1_g, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
106  LOCAL_ALIGNED_8(uint8_t, dst1_b, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
107  LOCAL_ALIGNED_8(uint8_t, dst1_a, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
108 
109  randomize_buffers((uint8_t*)src_y, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int32_t));
110  randomize_buffers((uint8_t*)src_u, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int32_t));
111  randomize_buffers((uint8_t*)src_v, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int32_t));
112  randomize_buffers((uint8_t*)src_a, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int32_t));
113  randomize_buffers((uint8_t*)luma_filter, LARGEST_FILTER * sizeof(int16_t));
114  randomize_buffers((uint8_t*)chr_filter, LARGEST_FILTER * sizeof(int16_t));
115 
116  dst0[0] = (uint8_t*)dst0_g;
117  dst0[1] = (uint8_t*)dst0_b;
118  dst0[2] = (uint8_t*)dst0_r;
119  dst0[3] = (uint8_t*)dst0_a;
120 
121  dst1[0] = (uint8_t*)dst1_g;
122  dst1[1] = (uint8_t*)dst1_b;
123  dst1[2] = (uint8_t*)dst1_r;
124  dst1[3] = (uint8_t*)dst1_a;
125 
126  for (i = 0; i < LARGEST_FILTER; i++) {
127  luma[i] = (int16_t *)(src_y + i*LARGEST_INPUT_SIZE);
128  chru[i] = (int16_t *)(src_u + i*LARGEST_INPUT_SIZE);
129  chrv[i] = (int16_t *)(src_v + i*LARGEST_INPUT_SIZE);
130  alpha[i] = (int16_t *)(src_a + i*LARGEST_INPUT_SIZE);
131  }
132 
134  if (sws_init_context(ctx, NULL, NULL) < 0)
135  fail();
136 
138  ctx->yuv2rgb_y_offset = rnd();
139  ctx->yuv2rgb_y_coeff = rnd();
140  ctx->yuv2rgb_v2r_coeff = rnd();
141  ctx->yuv2rgb_v2g_coeff = rnd();
142  ctx->yuv2rgb_u2g_coeff = rnd();
143  ctx->yuv2rgb_u2b_coeff = rnd();
144 
145  for (fmi = 0; fmi < FF_ARRAY_ELEMS(planar_fmts); fmi++) {
146  for (fsi = 0; fsi < FILTER_SIZES; fsi++) {
147  for (isi = 0; isi < INPUT_SIZES; isi++ ) {
149  ctx->dstFormat = planar_fmts[fmi];
150 
151  dstW = input_sizes[isi];
152  luma_filter_size = filter_sizes[fsi];
153  chr_filter_size = filter_sizes[fsi];
154 
155  if (desc->comp[0].depth > 16) {
156  byte_size = 4;
157  } else if (desc->comp[0].depth > 8) {
158  byte_size = 2;
159  } else {
160  byte_size = 1;
161  }
162 
164  if (check_func(ctx->yuv2anyX, "yuv2%s_full_X_%d_%d", desc->name, luma_filter_size, dstW)) {
165  for (i = 0; i < 4; i ++) {
166  memset(dst0[i], 0xFF, LARGEST_INPUT_SIZE * sizeof(int32_t));
167  memset(dst1[i], 0xFF, LARGEST_INPUT_SIZE * sizeof(int32_t));
168  }
169 
170  call_ref(ctx, luma_filter, luma, luma_filter_size,
171  chr_filter, chru, chrv, chr_filter_size,
172  alpha, dst0, dstW, 0);
173  call_new(ctx, luma_filter, luma, luma_filter_size,
174  chr_filter, chru, chrv, chr_filter_size,
175  alpha, dst1, dstW, 0);
176 
177  if (memcmp(dst0[0], dst1[0], dstW * byte_size) ||
178  memcmp(dst0[1], dst1[1], dstW * byte_size) ||
179  memcmp(dst0[2], dst1[2], dstW * byte_size) ||
180  memcmp(dst0[3], dst1[3], dstW * byte_size) )
181  fail();
182 
183  bench_new(ctx, luma_filter, luma, luma_filter_size,
184  chr_filter, chru, chrv, chr_filter_size,
185  alpha, dst1, dstW, 0);
186  }
187  }
188  }
189  }
191 }
192 
193 #undef LARGEST_INPUT_SIZE
194 #undef INPUT_SIZES
195 
197 {
198  struct SwsContext *ctx;
199  const AVPixFmtDescriptor *desc;
200  int fmi, isi;
201  int dstW, byte_size;
202 #define LARGEST_INPUT_SIZE 512
203 #define INPUT_SIZES 6
204  static const int input_sizes[] = {8, 24, 128, 144, 256, 512};
205  uint8_t *src[4];
206  int32_t rgb2yuv[9] = {0};
207 
208  declare_func(void, uint8_t *dst, uint8_t *src[4], int w, int32_t *rgb2yuv);
209 
214 
215  LOCAL_ALIGNED_8(uint8_t, dst0_y, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
216  LOCAL_ALIGNED_8(uint8_t, dst1_y, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
217 
218  randomize_buffers((uint8_t*)src_r, LARGEST_INPUT_SIZE * sizeof(int32_t));
219  randomize_buffers((uint8_t*)src_g, LARGEST_INPUT_SIZE * sizeof(int32_t));
220  randomize_buffers((uint8_t*)src_b, LARGEST_INPUT_SIZE * sizeof(int32_t));
221  randomize_buffers((uint8_t*)src_a, LARGEST_INPUT_SIZE * sizeof(int32_t));
222  randomize_buffers((uint8_t*)rgb2yuv, 9 * sizeof(int32_t));
223 
224  src[0] = (uint8_t*)src_g;
225  src[1] = (uint8_t*)src_b;
226  src[2] = (uint8_t*)src_r;
227  src[3] = (uint8_t*)src_a;
228 
230  if (sws_init_context(ctx, NULL, NULL) < 0)
231  fail();
232 
233  for (fmi = 0; fmi < FF_ARRAY_ELEMS(planar_fmts); fmi++) {
234  for (isi = 0; isi < INPUT_SIZES; isi++ ) {
236  ctx->srcFormat = planar_fmts[fmi];
237  ctx->dstFormat = AV_PIX_FMT_YUVA444P16;
238  byte_size = 2;
239  dstW = input_sizes[isi];
240 
242  if(check_func(ctx->readLumPlanar, "planar_%s_to_y_%d", desc->name, dstW)) {
243  memset(dst0_y, 0xFF, LARGEST_INPUT_SIZE * sizeof(int32_t));
244  memset(dst1_y, 0xFF, LARGEST_INPUT_SIZE * sizeof(int32_t));
245 
246  call_ref(dst0_y, src, dstW, rgb2yuv);
247  call_new(dst1_y, src, dstW, rgb2yuv);
248 
249  if (memcmp(dst0_y, dst1_y, dstW * byte_size))
250  fail();
251 
252  bench_new(dst1_y, src, dstW, rgb2yuv);
253 
254  }
255  }
256  }
258 }
259 
260 #undef LARGEST_INPUT_SIZE
261 #undef INPUT_SIZES
262 
264 {
265  struct SwsContext *ctx;
266  const AVPixFmtDescriptor *desc;
267  int fmi, isi;
268  int dstW, byte_size;
269 #define LARGEST_INPUT_SIZE 512
270 #define INPUT_SIZES 6
271  static const int input_sizes[] = {8, 24, 128, 144, 256, 512};
272  uint8_t *src[4];
273  int32_t rgb2yuv[9] = {0};
274 
275  declare_func(void, uint8_t *dstU, uint8_t *dstV,
276  uint8_t *src[4], int w, int32_t *rgb2yuv);
277 
282 
283  LOCAL_ALIGNED_8(uint8_t, dst0_u, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
284  LOCAL_ALIGNED_8(uint8_t, dst0_v, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
285 
286  LOCAL_ALIGNED_8(uint8_t, dst1_u, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
287  LOCAL_ALIGNED_8(uint8_t, dst1_v, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
288 
289  randomize_buffers((uint8_t*)src_r, LARGEST_INPUT_SIZE * sizeof(int32_t));
290  randomize_buffers((uint8_t*)src_g, LARGEST_INPUT_SIZE * sizeof(int32_t));
291  randomize_buffers((uint8_t*)src_b, LARGEST_INPUT_SIZE * sizeof(int32_t));
292  randomize_buffers((uint8_t*)src_a, LARGEST_INPUT_SIZE * sizeof(int32_t));
293  randomize_buffers((uint8_t*)rgb2yuv, 9 * sizeof(int32_t));
294 
295  src[0] = (uint8_t*)src_g;
296  src[1] = (uint8_t*)src_b;
297  src[2] = (uint8_t*)src_r;
298  src[3] = (uint8_t*)src_a;
299 
301  if (sws_init_context(ctx, NULL, NULL) < 0)
302  fail();
303 
304  for (fmi = 0; fmi < FF_ARRAY_ELEMS(planar_fmts); fmi++) {
305  for (isi = 0; isi < INPUT_SIZES; isi++ ) {
307  ctx->srcFormat = planar_fmts[fmi];
308  ctx->dstFormat = AV_PIX_FMT_YUVA444P16;
309  byte_size = 2;
310  dstW = input_sizes[isi];
311 
313  if(check_func(ctx->readChrPlanar, "planar_%s_to_uv_%d", desc->name, dstW)) {
314  memset(dst0_u, 0xFF, LARGEST_INPUT_SIZE * sizeof(int32_t));
315  memset(dst0_v, 0xFF, LARGEST_INPUT_SIZE * sizeof(int32_t));
316  memset(dst1_u, 0xFF, LARGEST_INPUT_SIZE * sizeof(int32_t));
317  memset(dst1_v, 0xFF, LARGEST_INPUT_SIZE * sizeof(int32_t));
318 
319  call_ref(dst0_u, dst0_v, src, dstW, rgb2yuv);
320  call_new(dst1_u, dst1_v, src, dstW, rgb2yuv);
321 
322  if (memcmp(dst0_u, dst1_u, dstW * byte_size) ||
323  memcmp(dst0_v, dst1_v, dstW * byte_size))
324  fail();
325 
326  bench_new(dst1_u, dst1_v, src, dstW, rgb2yuv);
327  }
328  }
329  }
331 }
332 
333 #undef LARGEST_INPUT_SIZE
334 #undef INPUT_SIZES
335 
337 {
338  struct SwsContext *ctx;
339  const AVPixFmtDescriptor *desc;
340  int fmi, isi;
341  int dstW, byte_size;
342 #define LARGEST_INPUT_SIZE 512
343 #define INPUT_SIZES 6
344  static const int input_sizes[] = {8, 24, 128, 144, 256, 512};
345  uint8_t *src[4];
346  int32_t rgb2yuv[9] = {0};
347 
348  declare_func(void, uint8_t *dst, uint8_t *src[4], int w, int32_t *rgb2yuv);
349 
354 
355  LOCAL_ALIGNED_8(uint8_t, dst0_a, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
356  LOCAL_ALIGNED_8(uint8_t, dst1_a, [LARGEST_INPUT_SIZE * sizeof(int32_t)]);
357 
358  randomize_buffers((uint8_t*)src_r, LARGEST_INPUT_SIZE * sizeof(int32_t));
359  randomize_buffers((uint8_t*)src_g, LARGEST_INPUT_SIZE * sizeof(int32_t));
360  randomize_buffers((uint8_t*)src_b, LARGEST_INPUT_SIZE * sizeof(int32_t));
361  randomize_buffers((uint8_t*)src_a, LARGEST_INPUT_SIZE * sizeof(int32_t));
362  randomize_buffers((uint8_t*)rgb2yuv, 9 * sizeof(int32_t));
363 
364  src[0] = (uint8_t*)src_g;
365  src[1] = (uint8_t*)src_b;
366  src[2] = (uint8_t*)src_r;
367  src[3] = (uint8_t*)src_a;
368 
370  if (sws_init_context(ctx, NULL, NULL) < 0)
371  fail();
372 
373  for (fmi = 0; fmi < FF_ARRAY_ELEMS(planar_fmts); fmi++) {
374  for (isi = 0; isi < INPUT_SIZES; isi++ ) {
376  if (!(desc->flags & AV_PIX_FMT_FLAG_ALPHA))
377  continue;
378 
379  ctx->srcFormat = planar_fmts[fmi];
380  ctx->dstFormat = AV_PIX_FMT_YUVA444P16;
381  byte_size = 2;
382  dstW = input_sizes[isi];
383 
385  if(check_func(ctx->readAlpPlanar, "planar_%s_to_a_%d", desc->name, dstW)) {
386  memset(dst0_a, 0x00, LARGEST_INPUT_SIZE * sizeof(int32_t));
387  memset(dst1_a, 0x00, LARGEST_INPUT_SIZE * sizeof(int32_t));
388 
389  call_ref(dst0_a, src, dstW, rgb2yuv);
390  call_new(dst1_a, src, dstW, rgb2yuv);
391 
392  if (memcmp(dst0_a, dst1_a, dstW * byte_size))
393  fail();
394  bench_new(dst1_a, src, dstW, rgb2yuv);
395  }
396  }
397  }
399 }
400 
402 {
404  report("output_yuv2gbrp");
405 
407  report("input_planar_rgb_y");
408 
410  report("input_planar_rgb_uv");
411 
413  report("input_planar_rgb_a");
414 }
SwsContext::dstW
int dstW
Width of destination luma/alpha planes.
Definition: swscale_internal.h:514
mem_internal.h
AV_PIX_FMT_GBRP16BE
@ AV_PIX_FMT_GBRP16BE
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:164
AV_PIX_FMT_GBRP10BE
@ AV_PIX_FMT_GBRP10BE
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:162
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2964
pixdesc.h
AV_PIX_FMT_GBRAPF32LE
@ AV_PIX_FMT_GBRAPF32LE
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, little-endian.
Definition: pixfmt.h:341
w
uint8_t w
Definition: llviddspenc.c:38
AV_PIX_FMT_GBRPF32BE
@ AV_PIX_FMT_GBRPF32BE
IEEE-754 single precision planar GBR 4:4:4, 96bpp, big-endian.
Definition: pixfmt.h:338
check_func
#define check_func(func,...)
Definition: checkasm.h:129
rgb2yuv
static const char rgb2yuv[]
Definition: vf_scale_vulkan.c:70
AV_PIX_FMT_GBRP14BE
@ AV_PIX_FMT_GBRP14BE
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:274
LARGEST_FILTER
#define LARGEST_FILTER
call_ref
#define call_ref(...)
Definition: checkasm.h:144
AV_PIX_FMT_GBRAP12LE
@ AV_PIX_FMT_GBRAP12LE
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:308
planar_fmts
static const int planar_fmts[]
Definition: sw_gbrp.c:39
AV_PIX_FMT_GBRAP
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:205
fail
#define fail()
Definition: checkasm.h:138
AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUVA444P16
Definition: pixfmt.h:513
checkasm.h
check_output_yuv2gbrp
static void check_output_yuv2gbrp(void)
Definition: sw_gbrp.c:64
checkasm_check_sw_gbrp
void checkasm_check_sw_gbrp(void)
Definition: sw_gbrp.c:401
FILTER_SIZES
#define FILTER_SIZES
rnd
#define rnd()
Definition: checkasm.h:122
FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a)
Definition: sinewin_tablegen.c:29
randomize_buffers
#define randomize_buffers(buf, size)
Definition: sw_gbrp.c:32
AV_PIX_FMT_GBRAP16BE
@ AV_PIX_FMT_GBRAP16BE
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:206
intreadwrite.h
AV_PIX_FMT_GBRP16LE
@ AV_PIX_FMT_GBRP16LE
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:165
AVFormatContext::flags
int flags
Flags modifying the (de)muxer behaviour.
Definition: avformat.h:1233
AV_PIX_FMT_GBRP12LE
@ AV_PIX_FMT_GBRP12LE
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:273
AV_PIX_FMT_FLAG_ALPHA
#define AV_PIX_FMT_FLAG_ALPHA
The pixel format has an alpha channel.
Definition: pixdesc.h:147
ctx
AVFormatContext * ctx
Definition: movenc.c:48
AV_PIX_FMT_GBRP10LE
@ AV_PIX_FMT_GBRP10LE
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:163
check_input_planar_rgb_to_y
static void check_input_planar_rgb_to_y(void)
Definition: sw_gbrp.c:196
LOCAL_ALIGNED_8
#define LOCAL_ALIGNED_8(t, v,...)
Definition: mem_internal.h:123
call_new
#define call_new(...)
Definition: checkasm.h:226
AV_PIX_FMT_GBRAPF32BE
@ AV_PIX_FMT_GBRAPF32BE
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, big-endian.
Definition: pixfmt.h:340
AV_PIX_FMT_GBRAP12BE
@ AV_PIX_FMT_GBRAP12BE
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:307
NULL
#define NULL
Definition: coverity.c:32
sws_alloc_context
struct SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1182
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
check_input_planar_rgb_to_uv
static void check_input_planar_rgb_to_uv(void)
Definition: sw_gbrp.c:263
ff_sws_init_scale
void ff_sws_init_scale(SwsContext *c)
Definition: swscale.c:590
SWS_FULL_CHR_H_INT
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:86
INPUT_SIZES
#define INPUT_SIZES
AV_PIX_FMT_GBRP9BE
@ AV_PIX_FMT_GBRP9BE
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:160
AV_PIX_FMT_GBRP9LE
@ AV_PIX_FMT_GBRP9LE
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:161
LARGEST_INPUT_SIZE
#define LARGEST_INPUT_SIZE
AV_PIX_FMT_GBRAP10LE
@ AV_PIX_FMT_GBRAP10LE
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:311
report
#define report
Definition: checkasm.h:141
bench_new
#define bench_new(...)
Definition: checkasm.h:291
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:255
common.h
swscale_internal.h
AV_PIX_FMT_GBRPF32LE
@ AV_PIX_FMT_GBRPF32LE
IEEE-754 single precision planar GBR 4:4:4, 96bpp, little-endian.
Definition: pixfmt.h:339
AV_PIX_FMT_GBRAP16LE
@ AV_PIX_FMT_GBRAP16LE
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:207
sws_init_context
av_warn_unused_result int sws_init_context(struct SwsContext *sws_context, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:2038
AV_PIX_FMT_GBRP12BE
@ AV_PIX_FMT_GBRP12BE
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:272
check_input_planar_rgb_to_a
static void check_input_planar_rgb_to_a(void)
Definition: sw_gbrp.c:336
sws_freeContext
void sws_freeContext(struct SwsContext *swsContext)
Free the swscaler context swsContext.
Definition: utils.c:2427
AV_PIX_FMT_GBRP
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:158
desc
const char * desc
Definition: libsvtav1.c:83
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
declare_func
#define declare_func(ret,...)
Definition: checkasm.h:133
alpha
static const int16_t alpha[]
Definition: ilbcdata.h:55
src
INIT_CLIP pixel * src
Definition: h264pred_template.c:418
AV_PIX_FMT_GBRP14LE
@ AV_PIX_FMT_GBRP14LE
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:275
int32_t
int32_t
Definition: audioconvert.c:56
AV_PIX_FMT_GBRAP10BE
@ AV_PIX_FMT_GBRAP10BE
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:310
SwsContext
Definition: swscale_internal.h:299
swscale.h