Go to the documentation of this file.
  121     memset(am->
prob[0], 0, (buf_size + 5) * 
sizeof(*am->
prob[0]));
 
  122     memset(am->
prob[1], 0, (buf_size + 5) * 
sizeof(*am->
prob[1]));
 
  155     if (
s->channels < 1 || 
s->channels > 2)
 
  160     s->frame_samples = 131072 / 
s->align;
 
  161     s->last_nb_samples = 
s->total_nb_samples % 
s->frame_samples;
 
  168     s->ch[0].qfactor = 
s->ch[1].qfactor = qfactor < 0 ? 2 : qfactor;
 
  169     s->ch[0].vrq = qfactor < 0 ? -qfactor : 0;
 
  170     s->ch[1].vrq = qfactor < 0 ? -qfactor : 0;
 
  172         s->ch[0].vrq = 
av_clip(
s->ch[0].vrq, 1, 8);
 
  173         s->ch[1].vrq = 
av_clip(
s->ch[1].vrq, 1, 8);
 
  188     x = (1 << (
bits >> 1)) + 3;
 
  202                       int sample_rate, 
int bps)
 
  206     memset(
c->buf0, 0, 
sizeof(
c->buf0));
 
  207     memset(
c->buf1, 0, 
sizeof(
c->buf1));
 
  209     c->filt_size = &
s->filt_size;
 
  210     c->filt_bits = &
s->filt_bits;
 
  212     c->bprob[0] = 
s->bprob[0];
 
  213     c->bprob[1] = 
s->bprob[1];
 
  215     c->srate_pad = ((
int64_t)sample_rate << 13) / 44100 & 0xFFFFFFFC
U;
 
  219         c->bprob[0][
i] = 
c->bprob[1][
i] = 1;
 
  221     for (
int i = 0; 
i < 11; 
i++) {
 
  250     ac->
high = 0xffffffff;
 
  251     ac->
value = bytestream2_get_be32(&ac->
gb);
 
  260     help = ac->
high / (unsigned)(freq2 + freq1);
 
  265     if (
value - low >= add) {
 
  266         ac->
low = low = add + low;
 
  269             if ((low ^ (
high + low)) > 0xFFFFFF) {
 
  272                 ac->
high = (uint16_t)-(int16_t)low;
 
  277             ac->
value = bytestream2_get_byteu(&ac->
gb) | (ac->
value << 8);
 
  279             low = ac->
low = ac->
low << 8;
 
  286         if ((low ^ (add + low)) > 0xFFFFFF) {
 
  289             ac->
high = (uint16_t)-(int16_t)low;
 
  294         ac->
value = bytestream2_get_byteu(&ac->
gb) | (ac->
value << 8);
 
  296         low = ac->
low = ac->
low << 8;
 
  306     x = 
c->bprob[0][idx];
 
  307     if (x + 
c->bprob[1][idx] > 4096) {
 
  308         c->bprob[0][idx] = (x >> 1) + 1;
 
  309         c->bprob[1][idx] = (
c->bprob[1][idx] >> 1) + 1;
 
  328     new_high = ac->
high / freq;
 
  347         if (((
high + low) ^ low) > 0xffffff) {
 
  350             ac->
high = (uint16_t)-(int16_t)low;
 
  356         ac->
value = (ac->
value << 8) | bytestream2_get_byteu(&ac->
gb);
 
  357         low = ac->
low = ac->
low << 8;
 
  373         } 
while (val < am->buf_size);
 
  390                 if ((idx2 & idx) != idx2) {
 
  392                         prob_idx -= 
prob[idx3];
 
  394                     } 
while ((idx2 & idx) != idx3);
 
  398             diff = ((prob_idx > 0) - prob_idx) >> 1;
 
  412     unsigned freq, size2, 
val, mul;
 
  422         if (am->
total <= 1) {
 
  430             freq = am->
prob[0][0];
 
  431             for (
int j = 
size; j > 0; j &= (j - 1) )
 
  432                 freq += am->
prob[0][j];
 
  439             for (j = freq - 
val; size2; size2 >>= 1) {
 
  440                 unsigned v = am->
prob[0][size2 + sum];
 
  455             for (
int k = 
val - 1; (
val & (
val - 1)) != k; k &= k - 1)
 
  456                 mul -= am->
prob[0][k];
 
  510         if (((idx == 8) || (idx == 20)) && (0 < 
bits))
 
  525             dst->coeffs[idx++] = 0;
 
  534             dst->coeffs[idx] = freq + 1 + ((
val - 1
U) << 
bits);
 
  539                 dst->coeffs[idx] = -
dst->coeffs[idx];
 
  542     } 
while (idx < dst->
size);
 
  555             if (((
high + low) ^ low) > 0xffffff) {
 
  558                 ac->
high = (uint16_t)-(int16_t)low;
 
  564             ac->
value = (ac->
value << 8) | bytestream2_get_byteu(&ac->
gb);
 
  566             ac->
low = low = ac->
low << 8;
 
  573         if (((
high + low) ^ low) > 0xffffff) {
 
  576             ac->
high = (uint16_t)-(int16_t)low;
 
  582         ac->
value = (ac->
value << 8) | bytestream2_get_byteu(&ac->
gb);
 
  584         ac->
low = low = ac->
low << 8;
 
  595     if (
ctx->zero[0] + 
ctx->zero[1] > 4000
U) {
 
  596         ctx->zero[0] = (
ctx->zero[0] >> 1) + 1;
 
  597         ctx->zero[1] = (
ctx->zero[1] >> 1) + 1;
 
  599     if (
ctx->sign[0] + 
ctx->sign[1] > 4000
U) {
 
  600         ctx->sign[0] = (
ctx->sign[0] >> 1) + 1;
 
  601         ctx->sign[1] = (
ctx->sign[1] >> 1) + 1;
 
  608     } 
else if (sign < 0) {
 
  623             int hbits = 
bits / 2;
 
  635             uint16_t *val4 = 
ctx->val4;
 
  638             if (val4[idx] + 
ctx->val1[idx] > 2000
U) {
 
  639                 val4[idx] = (val4[idx] >> 1) + 1;
 
  640                 ctx->val1[idx] = (
ctx->val1[idx] >> 1) + 1;
 
  651         } 
while (idx <= ctx->
size);
 
  680     unsigned rsize, idx = 3, 
bits = 0, m = 0;
 
  682     if (
ctx->qfactor == 0) {
 
  700     for (
int x = 0; x < 
size;) {
 
  705         idx = (
ctx->pos_idx + idx) % 11;
 
  709         for (
int y = 0; y < rsize; y++, off++) {
 
  710             int midx, 
shift = idx, *
src, sum = 16;
 
  717                 mdl64 = &
ctx->mdl64[3][idx];
 
  718             } 
else if (midx >= 7) {
 
  719                 mdl64 = &
ctx->mdl64[2][idx];
 
  720             } 
else if (midx >= 4) {
 
  721                 mdl64 = &
ctx->mdl64[1][idx];
 
  723                 mdl64 = &
ctx->mdl64[0][idx];
 
  729             src = &
ctx->buf1[off + -1];
 
  730             for (
int i = 0; 
i < 
filt.size && 
i < 15; 
i++)
 
  731                 sum += 
filt.coeffs[
i] * (
unsigned)
src[-
i];
 
  733             for (
int i = 15; 
i < 
filt.size; 
i++)
 
  734                 sum += 
filt.coeffs[
i] * (
unsigned)
src[-
i];
 
  736             if (
ctx->qfactor == 0) {
 
  738                     ctx->buf1[off] = sum + 
val;
 
  741                         (((1
U << 
bits) - 1
U) & 
ctx->buf1[off + -1]);
 
  743                 ctx->buf0[off] = 
ctx->buf1[off] + (unsigned)
ctx->buf0[off + -1];
 
  746                 sum += 
ctx->buf0[off + -1] + (unsigned)
val;
 
  751                 ctx->buf1[off] = sum - 
ctx->buf0[off + -1];
 
  752                 ctx->buf0[off] = sum;
 
  753                 m += (unsigned)
FFABS(
ctx->buf1[off]);
 
  758             for (
unsigned i = (m << 6) / rsize; 
i > 0; 
i = 
i >> 1)
 
  760             sum -= (
ctx->vrq + 7);
 
  773     int segment_size, offset2, 
mode, 
ret;
 
  789         segment_size = 
ctx->srate_pad;
 
  796                 offset2 = segment_size / 4 + 
offset;
 
  800                 offset2 = segment_size / 4 + offset2;
 
  805                 offset2 = segment_size / 2 + 
offset;
 
  838     memmove(
c->buf0, &
c->buf0[
c->last_nb_decoded], 2560 * 
sizeof(*
c->buf0));
 
  839     memmove(
c->buf1, &
c->buf1[
c->last_nb_decoded], 2560 * 
sizeof(*
c->buf1));
 
  844     c->last_nb_decoded = nb_decoded;
 
  850                             int *got_frame_ptr, 
AVPacket *avpkt)
 
  859     for (
int ch = 0; ch < 
s->channels; ch++) {
 
  866     frame->nb_samples = 
s->frame_samples;
 
  870     if (
s->channels == 2 && 
s->correlated) {
 
  871         int16_t *l16 = (int16_t *)
frame->extended_data[0];
 
  872         int16_t *r16 = (int16_t *)
frame->extended_data[1];
 
  873         uint8_t *l8 = 
frame->extended_data[0];
 
  874         uint8_t *r8 = 
frame->extended_data[1];
 
  876         for (
int n = 0; n < 
frame->nb_samples;) {
 
  879                 frame->nb_samples = n;
 
  882             if (ret < 0 || n + ret > 
frame->nb_samples)
 
  887                 frame->nb_samples = n;
 
  890             if (ret < 0 || n + ret > 
frame->nb_samples)
 
  895                 for (
int i = 0; 
i < 
ret; 
i++) {
 
  896                     int l = 
s->ch[0].buf0[2560 + 
i];
 
  897                     int r = 
s->ch[1].buf0[2560 + 
i];
 
  899                     l16[n + 
i] = (l * 2 + 
r + 1) >> 1;
 
  900                     r16[n + 
i] = (l * 2 - 
r + 1) >> 1;
 
  904                 for (
int i = 0; 
i < 
ret; 
i++) {
 
  905                     int l = 
s->ch[0].buf0[2560 + 
i];
 
  906                     int r = 
s->ch[1].buf0[2560 + 
i];
 
  908                     l8[n + 
i] = ((l * 2 + 
r + 1) >> 1) + 0x7f;
 
  909                     r8[n + 
i] = ((l * 2 - 
r + 1) >> 1) + 0x7f;
 
  919         for (
int n = 0; n < 
frame->nb_samples;) {
 
  920             for (
int ch = 0; ch < 
s->channels; ch++) {
 
  921                 int16_t *m16 = (int16_t *)
frame->data[ch];
 
  922                 uint8_t *m8 = 
frame->data[ch];
 
  926                     frame->nb_samples = n;
 
  930                 if (ret < 0 || n + ret > 
frame->nb_samples)
 
  935                     for (
int i = 0; 
i < 
ret; 
i++) {
 
  936                         int m = 
s->ch[ch].buf0[2560 + 
i];
 
  942                     for (
int i = 0; 
i < 
ret; 
i++) {
 
  943                         int m = 
s->ch[ch].buf0[2560 + 
i];
 
  945                         m8[n + 
i] = m + 0x7f;
 
  957     if (
frame->nb_samples < 
s->frame_samples &&
 
  958         frame->nb_samples > 
s->last_nb_samples)
 
  959         frame->nb_samples = 
s->last_nb_samples;
 
  970     for (
int ch = 0; ch < 2; ch++) {
 
  973         for (
int i = 0; 
i < 11; 
i++)
 
  
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
static av_always_inline int bytestream2_get_bytes_left(const GetByteContext *g)
 
int32_t buf1[131072+2560]
 
int sample_rate
samples per second
 
static int ac_update(ACoder *ac, int freq, int mul)
 
This structure describes decoded (raw) audio or video data.
 
static void adaptive_model_free(AdaptiveModel *am)
 
int nb_channels
Number of channels in this layout.
 
static av_cold void close(AVCodecParserContext *s)
 
AVCodec p
The public AVCodec.
 
AVChannelLayout ch_layout
Audio channel layout.
 
static int decode_filt_coeffs(RKAContext *s, ChContext *ctx, ACoder *ac, FiltCoeffs *dst)
 
uint32_t total_nb_samples
 
static double val(void *priv, double ch)
 
#define FF_ARRAY_ELEMS(a)
 
static int decode_filter(RKAContext *s, ChContext *ctx, ACoder *ac, int off, unsigned size)
 
#define FF_CODEC_DECODE_CB(func)
 
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
 
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
 
#define CODEC_LONG_NAME(str)
 
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
 
static int ac_dec_bit(ACoder *ac)
 
Describe the class of an AVClass context structure.
 
and forward the result(frame or status change) to the corresponding input. If nothing is possible
 
static void update_ch_subobj(AdaptiveModel *am)
 
static void init_acoder(ACoder *ac)
 
int32_t buf0[131072+2560]
 
static int adaptive_model_init(AdaptiveModel *am, int buf_size)
 
static void amdl_update_prob(AdaptiveModel *am, int val, int diff)
 
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
 
#define AV_CODEC_CAP_CHANNEL_CONF
Codec should fill in channel configuration and samplerate instead of container.
 
static int decode_bool(ACoder *ac, ChContext *c, int idx)
 
AdaptiveModel * filt_size
 
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
 
int(* init)(AVBSFContext *ctx)
 
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
 
const FFCodec ff_rka_decoder
 
@ AV_SAMPLE_FMT_U8P
unsigned 8 bits, planar
 
static int shift(int a, int b)
 
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
 
enum AVSampleFormat sample_fmt
audio sample format
 
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
 
static char * split(char *message, char delim)
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
 
#define xf(width, name, var, range_min, range_max, subs,...)
 
static int ac_decode_bool(ACoder *ac, int freq1, int freq2)
 
AdaptiveModel * filt_bits
 
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
 
static void model64_init(Model64 *m, unsigned bits)
 
#define i(width, name, range_min, range_max)
 
uint8_t * extradata
Out-of-band global headers that may be used by some codecs.
 
static int amdl_decode_int(AdaptiveModel *am, ACoder *ac, unsigned *dst, unsigned size)
 
static int chctx_init(RKAContext *s, ChContext *c, int sample_rate, int bps)
 
#define av_malloc_array(a, b)
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
 
const char * name
Name of the codec implementation.
 
AdaptiveModel nb_segments
 
static const int8_t filt[NUMTAPS *2]
 
AdaptiveModel coeff_bits[11]
 
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
 
#define prob(name, subs,...)
 
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
 
main external API structure.
 
void av_channel_layout_uninit(AVChannelLayout *channel_layout)
Free any allocated data in the channel layout and reset the channel count to 0.
 
static const uint8_t vrq_qfactors[8]
 
static int ac_get_freq(ACoder *ac, unsigned freq, int *result)
 
static int rka_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt)
 
static int mdl64_decode(ACoder *ac, Model64 *ctx, int *dst)
 
static av_cold int rka_decode_init(AVCodecContext *avctx)
 
static av_cold int rka_decode_close(AVCodecContext *avctx)
 
This structure stores compressed data.
 
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
 
static int decode_ch_samples(AVCodecContext *avctx, ChContext *c)
 
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
 
static int decode_samples(AVCodecContext *avctx, ACoder *ac, ChContext *ctx, int offset)