FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dnxhdenc.c
Go to the documentation of this file.
1 /*
2  * VC3/DNxHD encoder
3  * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4  * Copyright (c) 2011 MirriAd Ltd
5  *
6  * VC-3 encoder funded by the British Broadcasting Corporation
7  * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8  *
9  * This file is part of FFmpeg.
10  *
11  * FFmpeg is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * FFmpeg is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with FFmpeg; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25 
26 #include "libavutil/attributes.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/opt.h"
29 #include "libavutil/timer.h"
30 
31 #include "avcodec.h"
32 #include "blockdsp.h"
33 #include "fdctdsp.h"
34 #include "internal.h"
35 #include "mpegvideo.h"
36 #include "pixblockdsp.h"
37 #include "profiles.h"
38 #include "dnxhdenc.h"
39 
40 // The largest value that will not lead to overflow for 10-bit samples.
41 #define DNX10BIT_QMAT_SHIFT 18
42 #define RC_VARIANCE 1 // use variance or ssd for fast rc
43 #define LAMBDA_FRAC_BITS 10
44 
45 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
46 static const AVOption options[] = {
47  { "nitris_compat", "encode with Avid Nitris compatibility",
48  offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
49  { "ibias", "intra quant bias",
50  offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
51  { .i64 = 0 }, INT_MIN, INT_MAX, VE },
52  { "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
53  { .i64 = FF_PROFILE_DNXHD },
55  { "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
56  0, 0, VE, "profile" },
57  { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
58  0, 0, VE, "profile" },
59  { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
60  0, 0, VE, "profile" },
61  { "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
62  0, 0, VE, "profile" },
63  { "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
64  0, 0, VE, "profile" },
65  { "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
66  0, 0, VE, "profile" },
67  { NULL }
68 };
69 
70 static const AVClass dnxhd_class = {
71  .class_name = "dnxhd",
72  .item_name = av_default_item_name,
73  .option = options,
74  .version = LIBAVUTIL_VERSION_INT,
75 };
76 
77 static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
78  const uint8_t *pixels,
79  ptrdiff_t line_size)
80 {
81  int i;
82  for (i = 0; i < 4; i++) {
83  block[0] = pixels[0];
84  block[1] = pixels[1];
85  block[2] = pixels[2];
86  block[3] = pixels[3];
87  block[4] = pixels[4];
88  block[5] = pixels[5];
89  block[6] = pixels[6];
90  block[7] = pixels[7];
91  pixels += line_size;
92  block += 8;
93  }
94  memcpy(block, block - 8, sizeof(*block) * 8);
95  memcpy(block + 8, block - 16, sizeof(*block) * 8);
96  memcpy(block + 16, block - 24, sizeof(*block) * 8);
97  memcpy(block + 24, block - 32, sizeof(*block) * 8);
98 }
99 
100 static av_always_inline
101 void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
102  const uint8_t *pixels,
103  ptrdiff_t line_size)
104 {
105  memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
106  memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
107  memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
108  memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
109  memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
110  memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
111  memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
112  memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
113 }
114 
116  int n, int qscale, int *overflow)
117 {
119  const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
120  int last_non_zero = 0;
121  int i;
122 
123  ctx->fdsp.fdct(block);
124 
125  // Divide by 4 with rounding, to compensate scaling of DCT coefficients
126  block[0] = (block[0] + 2) >> 2;
127 
128  for (i = 1; i < 64; ++i) {
129  int j = scantable[i];
130  int sign = FF_SIGNBIT(block[j]);
131  int level = (block[j] ^ sign) - sign;
132  level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
133  block[j] = (level ^ sign) - sign;
134  if (level)
135  last_non_zero = i;
136  }
137 
138  /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
139  if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
141  scantable, last_non_zero);
142 
143  return last_non_zero;
144 }
145 
147 {
148  int i, j, level, run;
149  int max_level = 1 << (ctx->cid_table->bit_depth + 2);
150 
152  max_level, 4 * sizeof(*ctx->vlc_codes), fail);
154  max_level, 4 * sizeof(*ctx->vlc_bits), fail);
155  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
156  63 * 2, fail);
157  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
158  63, fail);
159 
160  ctx->vlc_codes += max_level * 2;
161  ctx->vlc_bits += max_level * 2;
162  for (level = -max_level; level < max_level; level++) {
163  for (run = 0; run < 2; run++) {
164  int index = (level << 1) | run;
165  int sign, offset = 0, alevel = level;
166 
167  MASK_ABS(sign, alevel);
168  if (alevel > 64) {
169  offset = (alevel - 1) >> 6;
170  alevel -= offset << 6;
171  }
172  for (j = 0; j < 257; j++) {
173  if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
174  (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
175  (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
176  av_assert1(!ctx->vlc_codes[index]);
177  if (alevel) {
178  ctx->vlc_codes[index] =
179  (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
180  ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
181  } else {
182  ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
183  ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
184  }
185  break;
186  }
187  }
188  av_assert0(!alevel || j < 257);
189  if (offset) {
190  ctx->vlc_codes[index] =
191  (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
192  ctx->vlc_bits[index] += ctx->cid_table->index_bits;
193  }
194  }
195  }
196  for (i = 0; i < 62; i++) {
197  int run = ctx->cid_table->run[i];
198  av_assert0(run < 63);
199  ctx->run_codes[run] = ctx->cid_table->run_codes[i];
200  ctx->run_bits[run] = ctx->cid_table->run_bits[i];
201  }
202  return 0;
203 fail:
204  return AVERROR(ENOMEM);
205 }
206 
207 static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
208 {
209  // init first elem to 1 to avoid div by 0 in convert_matrix
210  uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
211  int qscale, i;
212  const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
213  const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
214 
216  (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
218  (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
220  (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
221  fail);
223  (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
224  fail);
225 
226  if (ctx->cid_table->bit_depth == 8) {
227  for (i = 1; i < 64; i++) {
228  int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
229  weight_matrix[j] = ctx->cid_table->luma_weight[i];
230  }
231  ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
232  weight_matrix, ctx->intra_quant_bias, 1,
233  ctx->m.avctx->qmax, 1);
234  for (i = 1; i < 64; i++) {
235  int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
236  weight_matrix[j] = ctx->cid_table->chroma_weight[i];
237  }
238  ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
239  weight_matrix, ctx->intra_quant_bias, 1,
240  ctx->m.avctx->qmax, 1);
241 
242  for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
243  for (i = 0; i < 64; i++) {
244  ctx->qmatrix_l[qscale][i] <<= 2;
245  ctx->qmatrix_c[qscale][i] <<= 2;
246  ctx->qmatrix_l16[qscale][0][i] <<= 2;
247  ctx->qmatrix_l16[qscale][1][i] <<= 2;
248  ctx->qmatrix_c16[qscale][0][i] <<= 2;
249  ctx->qmatrix_c16[qscale][1][i] <<= 2;
250  }
251  }
252  } else {
253  // 10-bit
254  for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
255  for (i = 1; i < 64; i++) {
256  int j = ff_zigzag_direct[i];
257 
258  /* The quantization formula from the VC-3 standard is:
259  * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
260  * (qscale * weight_table[i]))
261  * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
262  * The s factor compensates scaling of DCT coefficients done by
263  * the DCT routines, and therefore is not present in standard.
264  * It's 8 for 8-bit samples and 4 for 10-bit ones.
265  * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
266  * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
267  * (qscale * weight_table[i])
268  * For 10-bit samples, p / s == 2 */
269  ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
270  (qscale * luma_weight_table[i]);
271  ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
272  (qscale * chroma_weight_table[i]);
273  }
274  }
275  }
276 
278  ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
279  ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
280  ctx->m.q_intra_matrix = ctx->qmatrix_l;
281 
282  return 0;
283 fail:
284  return AVERROR(ENOMEM);
285 }
286 
288 {
289  FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_rc, (ctx->m.avctx->qmax + 1),
290  ctx->m.mb_num * sizeof(RCEntry), fail);
291  if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
293  ctx->m.mb_num, sizeof(RCCMPEntry), fail);
294  ctx->frame_bits = (ctx->coding_unit_size -
295  ctx->data_offset - 4 - ctx->min_padding) * 8;
296  ctx->qscale = 1;
297  ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
298  return 0;
299 fail:
300  return AVERROR(ENOMEM);
301 }
302 
303 static int dnxhd_get_hr_frame_size(const CIDEntry* profile, int mb_num)
304 {
305  int result = mb_num * profile->packet_scale.num / profile->packet_scale.den;
306  result = (result + 2048) / 4096 * 4096;
307  return FFMAX(result, 8192);
308 }
310 {
311  DNXHDEncContext *ctx = avctx->priv_data;
312  int i, index, bit_depth, ret;
313 
314  switch (avctx->pix_fmt) {
315  case AV_PIX_FMT_YUV422P:
316  bit_depth = 8;
317  break;
319  bit_depth = 10;
320  break;
321  default:
322  av_log(avctx, AV_LOG_ERROR,
323  "pixel format is incompatible with DNxHD\n");
324  return AVERROR(EINVAL);
325  }
326 
327  if (ctx->profile == FF_PROFILE_DNXHR_444 ||
328  ctx->profile == FF_PROFILE_DNXHR_HQX) {
330  "dnxhr_444 or dnxhr_hqx profile");
331  return AVERROR_PATCHWELCOME;
332  }
333 
334  avctx->profile = ctx->profile;
335  ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
336  if (!ctx->cid) {
337  av_log(avctx, AV_LOG_ERROR,
338  "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
340  return AVERROR(EINVAL);
341  }
342  av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
343 
344  if (ctx->cid >= 1270 && ctx->cid <= 1274)
345  avctx->codec_tag = MKTAG('A','V','d','h');
346 
347  if (avctx->width < 256 || avctx->height < 120) {
348  av_log(avctx, AV_LOG_ERROR,
349  "Input dimensions too small, input must be at least 256x120\n");
350  return AVERROR(EINVAL);
351  }
352 
353  index = ff_dnxhd_get_cid_table(ctx->cid);
354  av_assert0(index >= 0);
355 
357 
358  ctx->m.avctx = avctx;
359  ctx->m.mb_intra = 1;
360  ctx->m.h263_aic = 1;
361 
362  avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
363 
364  ff_blockdsp_init(&ctx->bdsp, avctx);
365  ff_fdctdsp_init(&ctx->m.fdsp, avctx);
366  ff_mpv_idct_init(&ctx->m);
367  ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
368  ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
369  ff_dct_encode_init(&ctx->m);
370 
371  if (ctx->profile != FF_PROFILE_DNXHD)
372  ff_videodsp_init(&ctx->m.vdsp, bit_depth);
373 
374  if (!ctx->m.dct_quantize)
376 
377  if (ctx->cid_table->bit_depth == 10) {
380  ctx->block_width_l2 = 4;
381  } else {
383  ctx->block_width_l2 = 3;
384  }
385 
386  if (ARCH_X86)
388 
389  ctx->m.mb_height = (avctx->height + 15) / 16;
390  ctx->m.mb_width = (avctx->width + 15) / 16;
391 
392  if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
393  ctx->interlaced = 1;
394  ctx->m.mb_height /= 2;
395  }
396 
397  ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
398 
399  if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
401  ctx->m.mb_num);
402  ctx->coding_unit_size = ctx->frame_size;
403  } else {
404  ctx->frame_size = ctx->cid_table->frame_size;
406  }
407 
408  if (ctx->m.mb_height > 68)
409  ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
410  else
411  ctx->data_offset = 0x280;
412 
413 #if FF_API_QUANT_BIAS
416  ctx->intra_quant_bias = avctx->intra_quant_bias;
418 #endif
419  // XXX tune lbias/cbias
420  if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
421  return ret;
422 
423  /* Avid Nitris hardware decoder requires a minimum amount of padding
424  * in the coding unit payload */
425  if (ctx->nitris_compat)
426  ctx->min_padding = 1600;
427 
428  if ((ret = dnxhd_init_vlc(ctx)) < 0)
429  return ret;
430  if ((ret = dnxhd_init_rc(ctx)) < 0)
431  return ret;
432 
433  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
434  ctx->m.mb_height * sizeof(uint32_t), fail);
435  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
436  ctx->m.mb_height * sizeof(uint32_t), fail);
437  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
438  ctx->m.mb_num * sizeof(uint16_t), fail);
439  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
440  ctx->m.mb_num * sizeof(uint8_t), fail);
441 
442 #if FF_API_CODED_FRAME
444  avctx->coded_frame->key_frame = 1;
447 #endif
448 
449  if (avctx->thread_count > MAX_THREADS) {
450  av_log(avctx, AV_LOG_ERROR, "too many threads\n");
451  return AVERROR(EINVAL);
452  }
453 
454  if (avctx->qmax <= 1) {
455  av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
456  return AVERROR(EINVAL);
457  }
458 
459  ctx->thread[0] = ctx;
460  for (i = 1; i < avctx->thread_count; i++) {
461  ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
462  memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
463  }
464 
465  return 0;
466 fail: // for FF_ALLOCZ_OR_GOTO
467  return AVERROR(ENOMEM);
468 }
469 
471 {
472  DNXHDEncContext *ctx = avctx->priv_data;
473 
474  memset(buf, 0, ctx->data_offset);
475 
476  // * write prefix */
477  AV_WB16(buf + 0x02, ctx->data_offset);
478  if (ctx->cid >= 1270 && ctx->cid <= 1274)
479  buf[4] = 0x03;
480  else
481  buf[4] = 0x01;
482 
483  buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
484  buf[6] = 0x80; // crc flag off
485  buf[7] = 0xa0; // reserved
486  AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
487  AV_WB16(buf + 0x1a, avctx->width); // SPL
488  AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
489 
490  buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
491  buf[0x22] = 0x88 + (ctx->interlaced << 2);
492  AV_WB32(buf + 0x28, ctx->cid); // CID
493  buf[0x2c] = ctx->interlaced ? 0 : 0x80;
494 
495  buf[0x5f] = 0x01; // UDL
496 
497  buf[0x167] = 0x02; // reserved
498  AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
499  buf[0x16d] = ctx->m.mb_height; // Ns
500  buf[0x16f] = 0x10; // reserved
501 
502  ctx->msip = buf + 0x170;
503  return 0;
504 }
505 
507 {
508  int nbits;
509  if (diff < 0) {
510  nbits = av_log2_16bit(-2 * diff);
511  diff--;
512  } else {
513  nbits = av_log2_16bit(2 * diff);
514  }
515  put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
516  (ctx->cid_table->dc_codes[nbits] << nbits) +
517  av_mod_uintp2(diff, nbits));
518 }
519 
520 static av_always_inline
522  int last_index, int n)
523 {
524  int last_non_zero = 0;
525  int slevel, i, j;
526 
527  dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
528  ctx->m.last_dc[n] = block[0];
529 
530  for (i = 1; i <= last_index; i++) {
531  j = ctx->m.intra_scantable.permutated[i];
532  slevel = block[j];
533  if (slevel) {
534  int run_level = i - last_non_zero - 1;
535  int rlevel = (slevel << 1) | !!run_level;
536  put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
537  if (run_level)
538  put_bits(&ctx->m.pb, ctx->run_bits[run_level],
539  ctx->run_codes[run_level]);
540  last_non_zero = i;
541  }
542  }
543  put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
544 }
545 
546 static av_always_inline
548  int qscale, int last_index)
549 {
550  const uint8_t *weight_matrix;
551  int level;
552  int i;
553 
554  weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
555  : ctx->cid_table->luma_weight;
556 
557  for (i = 1; i <= last_index; i++) {
558  int j = ctx->m.intra_scantable.permutated[i];
559  level = block[j];
560  if (level) {
561  if (level < 0) {
562  level = (1 - 2 * level) * qscale * weight_matrix[i];
563  if (ctx->cid_table->bit_depth == 10) {
564  if (weight_matrix[i] != 8)
565  level += 8;
566  level >>= 4;
567  } else {
568  if (weight_matrix[i] != 32)
569  level += 32;
570  level >>= 6;
571  }
572  level = -level;
573  } else {
574  level = (2 * level + 1) * qscale * weight_matrix[i];
575  if (ctx->cid_table->bit_depth == 10) {
576  if (weight_matrix[i] != 8)
577  level += 8;
578  level >>= 4;
579  } else {
580  if (weight_matrix[i] != 32)
581  level += 32;
582  level >>= 6;
583  }
584  }
585  block[j] = level;
586  }
587  }
588 }
589 
590 static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
591 {
592  int score = 0;
593  int i;
594  for (i = 0; i < 64; i++)
595  score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
596  return score;
597 }
598 
599 static av_always_inline
600 int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
601 {
602  int last_non_zero = 0;
603  int bits = 0;
604  int i, j, level;
605  for (i = 1; i <= last_index; i++) {
606  j = ctx->m.intra_scantable.permutated[i];
607  level = block[j];
608  if (level) {
609  int run_level = i - last_non_zero - 1;
610  bits += ctx->vlc_bits[(level << 1) |
611  !!run_level] + ctx->run_bits[run_level];
612  last_non_zero = i;
613  }
614  }
615  return bits;
616 }
617 
618 static av_always_inline
619 void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
620 {
621  const int bs = ctx->block_width_l2;
622  const int bw = 1 << bs;
623  int dct_y_offset = ctx->dct_y_offset;
624  int dct_uv_offset = ctx->dct_uv_offset;
625  int linesize = ctx->m.linesize;
626  int uvlinesize = ctx->m.uvlinesize;
627  const uint8_t *ptr_y = ctx->thread[0]->src[0] +
628  ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
629  const uint8_t *ptr_u = ctx->thread[0]->src[1] +
630  ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
631  const uint8_t *ptr_v = ctx->thread[0]->src[2] +
632  ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
633  PixblockDSPContext *pdsp = &ctx->m.pdsp;
634  VideoDSPContext *vdsp = &ctx->m.vdsp;
635 
636  if (vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
637  (mb_y << 4) + 16 > ctx->m.avctx->height)) {
638  int y_w = ctx->m.avctx->width - (mb_x << 4);
639  int y_h = ctx->m.avctx->height - (mb_y << 4);
640  int uv_w = (y_w + 1) / 2;
641  int uv_h = y_h;
642  linesize = 16;
643  uvlinesize = 8;
644 
645  vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
646  linesize, ctx->m.linesize,
647  linesize, 16,
648  0, 0, y_w, y_h);
649  vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
650  uvlinesize, ctx->m.uvlinesize,
651  uvlinesize, 16,
652  0, 0, uv_w, uv_h);
653  vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
654  uvlinesize, ctx->m.uvlinesize,
655  uvlinesize, 16,
656  0, 0, uv_w, uv_h);
657 
658  dct_y_offset = bw * linesize;
659  dct_uv_offset = bw * uvlinesize;
660  ptr_y = &ctx->edge_buf_y[0];
661  ptr_u = &ctx->edge_buf_uv[0][0];
662  ptr_v = &ctx->edge_buf_uv[1][0];
663  }
664 
665  pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
666  pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
667  pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
668  pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize);
669 
670  if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
671  if (ctx->interlaced) {
672  ctx->get_pixels_8x4_sym(ctx->blocks[4],
673  ptr_y + dct_y_offset,
674  linesize);
675  ctx->get_pixels_8x4_sym(ctx->blocks[5],
676  ptr_y + dct_y_offset + bw,
677  linesize);
678  ctx->get_pixels_8x4_sym(ctx->blocks[6],
679  ptr_u + dct_uv_offset,
680  uvlinesize);
681  ctx->get_pixels_8x4_sym(ctx->blocks[7],
682  ptr_v + dct_uv_offset,
683  uvlinesize);
684  } else {
685  ctx->bdsp.clear_block(ctx->blocks[4]);
686  ctx->bdsp.clear_block(ctx->blocks[5]);
687  ctx->bdsp.clear_block(ctx->blocks[6]);
688  ctx->bdsp.clear_block(ctx->blocks[7]);
689  }
690  } else {
691  pdsp->get_pixels(ctx->blocks[4],
692  ptr_y + dct_y_offset, linesize);
693  pdsp->get_pixels(ctx->blocks[5],
694  ptr_y + dct_y_offset + bw, linesize);
695  pdsp->get_pixels(ctx->blocks[6],
696  ptr_u + dct_uv_offset, uvlinesize);
697  pdsp->get_pixels(ctx->blocks[7],
698  ptr_v + dct_uv_offset, uvlinesize);
699  }
700 }
701 
702 static av_always_inline
704 {
705  const static uint8_t component[8]={0,0,1,2,0,0,1,2};
706  return component[i];
707 }
708 
710  int jobnr, int threadnr)
711 {
712  DNXHDEncContext *ctx = avctx->priv_data;
713  int mb_y = jobnr, mb_x;
714  int qscale = ctx->qscale;
715  LOCAL_ALIGNED_16(int16_t, block, [64]);
716  ctx = ctx->thread[threadnr];
717 
718  ctx->m.last_dc[0] =
719  ctx->m.last_dc[1] =
720  ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
721 
722  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
723  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
724  int ssd = 0;
725  int ac_bits = 0;
726  int dc_bits = 0;
727  int i;
728 
729  dnxhd_get_blocks(ctx, mb_x, mb_y);
730 
731  for (i = 0; i < 8; i++) {
732  int16_t *src_block = ctx->blocks[i];
733  int overflow, nbits, diff, last_index;
734  int n = dnxhd_switch_matrix(ctx, i);
735 
736  memcpy(block, src_block, 64 * sizeof(*block));
737  last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
738  qscale, &overflow);
739  ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
740 
741  diff = block[0] - ctx->m.last_dc[n];
742  if (diff < 0)
743  nbits = av_log2_16bit(-2 * diff);
744  else
745  nbits = av_log2_16bit(2 * diff);
746 
747  av_assert1(nbits < ctx->cid_table->bit_depth + 4);
748  dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
749 
750  ctx->m.last_dc[n] = block[0];
751 
752  if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
753  dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
754  ctx->m.idsp.idct(block);
755  ssd += dnxhd_ssd_block(block, src_block);
756  }
757  }
758  ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd = ssd;
759  ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
760  8 * ctx->vlc_bits[0];
761  }
762  return 0;
763 }
764 
766  int jobnr, int threadnr)
767 {
768  DNXHDEncContext *ctx = avctx->priv_data;
769  int mb_y = jobnr, mb_x;
770  ctx = ctx->thread[threadnr];
771  init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
772  ctx->slice_size[jobnr]);
773 
774  ctx->m.last_dc[0] =
775  ctx->m.last_dc[1] =
776  ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
777  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
778  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
779  int qscale = ctx->mb_qscale[mb];
780  int i;
781 
782  put_bits(&ctx->m.pb, 12, qscale << 1);
783 
784  dnxhd_get_blocks(ctx, mb_x, mb_y);
785 
786  for (i = 0; i < 8; i++) {
787  int16_t *block = ctx->blocks[i];
788  int overflow, n = dnxhd_switch_matrix(ctx, i);
789  int last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
790  qscale, &overflow);
791  // START_TIMER;
792  dnxhd_encode_block(ctx, block, last_index, n);
793  // STOP_TIMER("encode_block");
794  }
795  }
796  if (put_bits_count(&ctx->m.pb) & 31)
797  put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
798  flush_put_bits(&ctx->m.pb);
799  return 0;
800 }
801 
803 {
804  int mb_y, mb_x;
805  int offset = 0;
806  for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
807  int thread_size;
808  ctx->slice_offs[mb_y] = offset;
809  ctx->slice_size[mb_y] = 0;
810  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
811  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
812  ctx->slice_size[mb_y] += ctx->mb_bits[mb];
813  }
814  ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
815  ctx->slice_size[mb_y] >>= 3;
816  thread_size = ctx->slice_size[mb_y];
817  offset += thread_size;
818  }
819 }
820 
822  int jobnr, int threadnr)
823 {
824  DNXHDEncContext *ctx = avctx->priv_data;
825  int mb_y = jobnr, mb_x, x, y;
826  int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
827  ((avctx->height >> ctx->interlaced) & 0xF);
828 
829  ctx = ctx->thread[threadnr];
830  if (ctx->cid_table->bit_depth == 8) {
831  uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
832  for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
833  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
834  int sum;
835  int varc;
836 
837  if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
838  sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
839  varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
840  } else {
841  int bw = FFMIN(avctx->width - 16 * mb_x, 16);
842  int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
843  sum = varc = 0;
844  for (y = 0; y < bh; y++) {
845  for (x = 0; x < bw; x++) {
846  uint8_t val = pix[x + y * ctx->m.linesize];
847  sum += val;
848  varc += val * val;
849  }
850  }
851  }
852  varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
853 
854  ctx->mb_cmp[mb].value = varc;
855  ctx->mb_cmp[mb].mb = mb;
856  }
857  } else { // 10-bit
858  const int linesize = ctx->m.linesize >> 1;
859  for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
860  uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
861  ((mb_y << 4) * linesize) + (mb_x << 4);
862  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
863  int sum = 0;
864  int sqsum = 0;
865  int bw = FFMIN(avctx->width - 16 * mb_x, 16);
866  int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
867  int mean, sqmean;
868  int i, j;
869  // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
870  for (i = 0; i < bh; ++i) {
871  for (j = 0; j < bw; ++j) {
872  // Turn 16-bit pixels into 10-bit ones.
873  const int sample = (unsigned) pix[j] >> 6;
874  sum += sample;
875  sqsum += sample * sample;
876  // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
877  }
878  pix += linesize;
879  }
880  mean = sum >> 8; // 16*16 == 2^8
881  sqmean = sqsum >> 8;
882  ctx->mb_cmp[mb].value = sqmean - mean * mean;
883  ctx->mb_cmp[mb].mb = mb;
884  }
885  }
886  return 0;
887 }
888 
890 {
891  int lambda, up_step, down_step;
892  int last_lower = INT_MAX, last_higher = 0;
893  int x, y, q;
894 
895  for (q = 1; q < avctx->qmax; q++) {
896  ctx->qscale = q;
897  avctx->execute2(avctx, dnxhd_calc_bits_thread,
898  NULL, NULL, ctx->m.mb_height);
899  }
900  up_step = down_step = 2 << LAMBDA_FRAC_BITS;
901  lambda = ctx->lambda;
902 
903  for (;;) {
904  int bits = 0;
905  int end = 0;
906  if (lambda == last_higher) {
907  lambda++;
908  end = 1; // need to set final qscales/bits
909  }
910  for (y = 0; y < ctx->m.mb_height; y++) {
911  for (x = 0; x < ctx->m.mb_width; x++) {
912  unsigned min = UINT_MAX;
913  int qscale = 1;
914  int mb = y * ctx->m.mb_width + x;
915  int rc = 0;
916  for (q = 1; q < avctx->qmax; q++) {
917  int i = (q*ctx->m.mb_num) + mb;
918  unsigned score = ctx->mb_rc[i].bits * lambda +
919  ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
920  if (score < min) {
921  min = score;
922  qscale = q;
923  rc = i;
924  }
925  }
926  bits += ctx->mb_rc[rc].bits;
927  ctx->mb_qscale[mb] = qscale;
928  ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
929  }
930  bits = (bits + 31) & ~31; // padding
931  if (bits > ctx->frame_bits)
932  break;
933  }
934  // ff_dlog(ctx->m.avctx,
935  // "lambda %d, up %u, down %u, bits %d, frame %d\n",
936  // lambda, last_higher, last_lower, bits, ctx->frame_bits);
937  if (end) {
938  if (bits > ctx->frame_bits)
939  return AVERROR(EINVAL);
940  break;
941  }
942  if (bits < ctx->frame_bits) {
943  last_lower = FFMIN(lambda, last_lower);
944  if (last_higher != 0)
945  lambda = (lambda+last_higher)>>1;
946  else
947  lambda -= down_step;
948  down_step = FFMIN((int64_t)down_step*5, INT_MAX);
949  up_step = 1<<LAMBDA_FRAC_BITS;
950  lambda = FFMAX(1, lambda);
951  if (lambda == last_lower)
952  break;
953  } else {
954  last_higher = FFMAX(lambda, last_higher);
955  if (last_lower != INT_MAX)
956  lambda = (lambda+last_lower)>>1;
957  else if ((int64_t)lambda + up_step > INT_MAX)
958  return AVERROR(EINVAL);
959  else
960  lambda += up_step;
961  up_step = FFMIN((int64_t)up_step*5, INT_MAX);
962  down_step = 1<<LAMBDA_FRAC_BITS;
963  }
964  }
965  //ff_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
966  ctx->lambda = lambda;
967  return 0;
968 }
969 
971 {
972  int bits = 0;
973  int up_step = 1;
974  int down_step = 1;
975  int last_higher = 0;
976  int last_lower = INT_MAX;
977  int qscale;
978  int x, y;
979 
980  qscale = ctx->qscale;
981  for (;;) {
982  bits = 0;
983  ctx->qscale = qscale;
984  // XXX avoid recalculating bits
986  NULL, NULL, ctx->m.mb_height);
987  for (y = 0; y < ctx->m.mb_height; y++) {
988  for (x = 0; x < ctx->m.mb_width; x++)
989  bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
990  bits = (bits+31)&~31; // padding
991  if (bits > ctx->frame_bits)
992  break;
993  }
994  // ff_dlog(ctx->m.avctx,
995  // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
996  // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
997  // last_higher, last_lower);
998  if (bits < ctx->frame_bits) {
999  if (qscale == 1)
1000  return 1;
1001  if (last_higher == qscale - 1) {
1002  qscale = last_higher;
1003  break;
1004  }
1005  last_lower = FFMIN(qscale, last_lower);
1006  if (last_higher != 0)
1007  qscale = (qscale + last_higher) >> 1;
1008  else
1009  qscale -= down_step++;
1010  if (qscale < 1)
1011  qscale = 1;
1012  up_step = 1;
1013  } else {
1014  if (last_lower == qscale + 1)
1015  break;
1016  last_higher = FFMAX(qscale, last_higher);
1017  if (last_lower != INT_MAX)
1018  qscale = (qscale + last_lower) >> 1;
1019  else
1020  qscale += up_step++;
1021  down_step = 1;
1022  if (qscale >= ctx->m.avctx->qmax)
1023  return AVERROR(EINVAL);
1024  }
1025  }
1026  //ff_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
1027  ctx->qscale = qscale;
1028  return 0;
1029 }
1030 
1031 #define BUCKET_BITS 8
1032 #define RADIX_PASSES 4
1033 #define NBUCKETS (1 << BUCKET_BITS)
1034 
1035 static inline int get_bucket(int value, int shift)
1036 {
1037  value >>= shift;
1038  value &= NBUCKETS - 1;
1039  return NBUCKETS - 1 - value;
1040 }
1041 
1042 static void radix_count(const RCCMPEntry *data, int size,
1043  int buckets[RADIX_PASSES][NBUCKETS])
1044 {
1045  int i, j;
1046  memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
1047  for (i = 0; i < size; i++) {
1048  int v = data[i].value;
1049  for (j = 0; j < RADIX_PASSES; j++) {
1050  buckets[j][get_bucket(v, 0)]++;
1051  v >>= BUCKET_BITS;
1052  }
1053  av_assert1(!v);
1054  }
1055  for (j = 0; j < RADIX_PASSES; j++) {
1056  int offset = size;
1057  for (i = NBUCKETS - 1; i >= 0; i--)
1058  buckets[j][i] = offset -= buckets[j][i];
1059  av_assert1(!buckets[j][0]);
1060  }
1061 }
1062 
1063 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
1064  int size, int buckets[NBUCKETS], int pass)
1065 {
1066  int shift = pass * BUCKET_BITS;
1067  int i;
1068  for (i = 0; i < size; i++) {
1069  int v = get_bucket(data[i].value, shift);
1070  int pos = buckets[v]++;
1071  dst[pos] = data[i];
1072  }
1073 }
1074 
1075 static void radix_sort(RCCMPEntry *data, int size)
1076 {
1077  int buckets[RADIX_PASSES][NBUCKETS];
1078  RCCMPEntry *tmp = av_malloc_array(size, sizeof(*tmp));
1079  radix_count(data, size, buckets);
1080  radix_sort_pass(tmp, data, size, buckets[0], 0);
1081  radix_sort_pass(data, tmp, size, buckets[1], 1);
1082  if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
1083  radix_sort_pass(tmp, data, size, buckets[2], 2);
1084  radix_sort_pass(data, tmp, size, buckets[3], 3);
1085  }
1086  av_free(tmp);
1087 }
1088 
1090 {
1091  int max_bits = 0;
1092  int ret, x, y;
1093  if ((ret = dnxhd_find_qscale(ctx)) < 0)
1094  return ret;
1095  for (y = 0; y < ctx->m.mb_height; y++) {
1096  for (x = 0; x < ctx->m.mb_width; x++) {
1097  int mb = y * ctx->m.mb_width + x;
1098  int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1099  int delta_bits;
1100  ctx->mb_qscale[mb] = ctx->qscale;
1101  ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1102  max_bits += ctx->mb_rc[rc].bits;
1103  if (!RC_VARIANCE) {
1104  delta_bits = ctx->mb_rc[rc].bits -
1105  ctx->mb_rc[rc + ctx->m.mb_num].bits;
1106  ctx->mb_cmp[mb].mb = mb;
1107  ctx->mb_cmp[mb].value =
1108  delta_bits ? ((ctx->mb_rc[rc].ssd -
1109  ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
1110  delta_bits
1111  : INT_MIN; // avoid increasing qscale
1112  }
1113  }
1114  max_bits += 31; // worst padding
1115  }
1116  if (!ret) {
1117  if (RC_VARIANCE)
1118  avctx->execute2(avctx, dnxhd_mb_var_thread,
1119  NULL, NULL, ctx->m.mb_height);
1120  radix_sort(ctx->mb_cmp, ctx->m.mb_num);
1121  for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1122  int mb = ctx->mb_cmp[x].mb;
1123  int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1124  max_bits -= ctx->mb_rc[rc].bits -
1125  ctx->mb_rc[rc + ctx->m.mb_num].bits;
1126  ctx->mb_qscale[mb] = ctx->qscale + 1;
1127  ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.mb_num].bits;
1128  }
1129  }
1130  return 0;
1131 }
1132 
1134 {
1135  int i;
1136 
1137  for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1138  ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
1139  ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
1140  ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
1141  ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1142  }
1143 
1144 #if FF_API_CODED_FRAME
1148 #endif
1149  ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1150 }
1151 
1153  const AVFrame *frame, int *got_packet)
1154 {
1155  DNXHDEncContext *ctx = avctx->priv_data;
1156  int first_field = 1;
1157  int offset, i, ret;
1158  uint8_t *buf;
1159 
1160  if ((ret = ff_alloc_packet2(avctx, pkt, ctx->frame_size, 0)) < 0)
1161  return ret;
1162  buf = pkt->data;
1163 
1164  dnxhd_load_picture(ctx, frame);
1165 
1166 encode_coding_unit:
1167  for (i = 0; i < 3; i++) {
1168  ctx->src[i] = frame->data[i];
1169  if (ctx->interlaced && ctx->cur_field)
1170  ctx->src[i] += frame->linesize[i];
1171  }
1172 
1173  dnxhd_write_header(avctx, buf);
1174 
1175  if (avctx->mb_decision == FF_MB_DECISION_RD)
1176  ret = dnxhd_encode_rdo(avctx, ctx);
1177  else
1178  ret = dnxhd_encode_fast(avctx, ctx);
1179  if (ret < 0) {
1180  av_log(avctx, AV_LOG_ERROR,
1181  "picture could not fit ratecontrol constraints, increase qmax\n");
1182  return ret;
1183  }
1184 
1186 
1187  offset = 0;
1188  for (i = 0; i < ctx->m.mb_height; i++) {
1189  AV_WB32(ctx->msip + i * 4, offset);
1190  offset += ctx->slice_size[i];
1191  av_assert1(!(ctx->slice_size[i] & 3));
1192  }
1193 
1194  avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1195 
1196  av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
1197  memset(buf + ctx->data_offset + offset, 0,
1198  ctx->coding_unit_size - 4 - offset - ctx->data_offset);
1199 
1200  AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
1201 
1202  if (ctx->interlaced && first_field) {
1203  first_field = 0;
1204  ctx->cur_field ^= 1;
1205  buf += ctx->coding_unit_size;
1206  goto encode_coding_unit;
1207  }
1208 
1209 #if FF_API_CODED_FRAME
1211  avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
1213 #endif
1214 
1216 
1217  pkt->flags |= AV_PKT_FLAG_KEY;
1218  *got_packet = 1;
1219  return 0;
1220 }
1221 
1223 {
1224  DNXHDEncContext *ctx = avctx->priv_data;
1225  int max_level = 1 << (ctx->cid_table->bit_depth + 2);
1226  int i;
1227 
1228  av_free(ctx->vlc_codes - max_level * 2);
1229  av_free(ctx->vlc_bits - max_level * 2);
1230  av_freep(&ctx->run_codes);
1231  av_freep(&ctx->run_bits);
1232 
1233  av_freep(&ctx->mb_bits);
1234  av_freep(&ctx->mb_qscale);
1235  av_freep(&ctx->mb_rc);
1236  av_freep(&ctx->mb_cmp);
1237  av_freep(&ctx->slice_size);
1238  av_freep(&ctx->slice_offs);
1239 
1240  av_freep(&ctx->qmatrix_c);
1241  av_freep(&ctx->qmatrix_l);
1242  av_freep(&ctx->qmatrix_c16);
1243  av_freep(&ctx->qmatrix_l16);
1244 
1245  for (i = 1; i < avctx->thread_count; i++)
1246  av_freep(&ctx->thread[i]);
1247 
1248  return 0;
1249 }
1250 
1251 static const AVCodecDefault dnxhd_defaults[] = {
1252  { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1253  { NULL },
1254 };
1255 
1257  .name = "dnxhd",
1258  .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1259  .type = AVMEDIA_TYPE_VIDEO,
1260  .id = AV_CODEC_ID_DNXHD,
1261  .priv_data_size = sizeof(DNXHDEncContext),
1263  .encode2 = dnxhd_encode_picture,
1264  .close = dnxhd_encode_end,
1265  .capabilities = AV_CODEC_CAP_SLICE_THREADS,
1266  .pix_fmts = (const enum AVPixelFormat[]) {
1270  },
1271  .priv_class = &dnxhd_class,
1272  .defaults = dnxhd_defaults,
1274 };
#define FF_PROFILE_DNXHD
Definition: avcodec.h:3195
static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
Definition: dnxhdenc.c:590
#define MASK_ABS(mask, level)
Definition: mathops.h:164
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
IDCTDSPContext idsp
Definition: mpegvideo.h:227
static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
Definition: dnxhdenc.c:1042
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:771
attribute_deprecated int intra_quant_bias
Definition: avcodec.h:2204
static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
Definition: dnxhdenc.c:619
static int shift(int a, int b)
Definition: sonic.c:82
RCEntry * mb_rc
Definition: dnxhdenc.h:99
This structure describes decoded (raw) audio or video data.
Definition: frame.h:184
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:157
const uint8_t * dc_bits
Definition: dnxhddata.h:52
AVOption.
Definition: opt.h:245
int ff_side_data_set_encoder_stats(AVPacket *pkt, int quality, int64_t *error, int error_count, int pict_type)
Definition: avpacket.c:646
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
void(* clear_block)(int16_t *block)
Definition: blockdsp.h:35
#define AV_CODEC_FLAG_INTERLACED_DCT
Use interlaced DCT.
Definition: avcodec.h:873
#define LAMBDA_FRAC_BITS
Definition: dnxhdenc.c:43
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:206
const uint8_t * luma_weight
Definition: dnxhddata.h:51
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
uint16_t(* q_chroma_intra_matrix16)[2][64]
Definition: mpegvideo.h:328
int(* qmatrix_l)[64]
Definition: dnxhdenc.h:78
int num
Numerator.
Definition: rational.h:59
const CIDEntry ff_dnxhd_cid_table[]
Definition: dnxhddata.c:935
const uint16_t * run_codes
Definition: dnxhddata.h:55
static const AVClass dnxhd_class
Definition: dnxhdenc.c:70
void ff_convert_matrix(MpegEncContext *s, int(*qmat)[64], uint16_t(*qmat16)[2][64], const uint16_t *quant_matrix, int bias, int qmin, int qmax, int intra)
Definition: mpegvideo_enc.c:89
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1903
unsigned dct_uv_offset
Definition: dnxhdenc.h:59
static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
Definition: dnxhdenc.c:506
static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:146
mpegvideo header.
uint8_t permutated[64]
Definition: idctdsp.h:31
int ff_dnxhd_find_cid(AVCodecContext *avctx, int bit_depth)
Definition: dnxhddata.c:1139
uint8_t run
Definition: svq3.c:206
static AVPacket pkt
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:3076
int mb_num
number of MBs of a picture
Definition: mpegvideo.h:130
av_cold void ff_fdctdsp_init(FDCTDSPContext *c, AVCodecContext *avctx)
Definition: fdctdsp.c:26
struct DNXHDEncContext * thread[MAX_THREADS]
Definition: dnxhdenc.h:54
int profile
profile
Definition: avcodec.h:3180
#define sample
int av_log2_16bit(unsigned v)
Definition: intmath.c:31
AVCodec.
Definition: avcodec.h:3589
static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
Definition: dnxhdenc.c:600
int h263_aic
Advanced INTRA Coding (AIC)
Definition: mpegvideo.h:84
Macro definitions for various function/variable attributes.
static int16_t block[64]
Definition: dct.c:113
int coding_unit_size
Definition: dnxhdenc.h:63
int intra_quant_bias
Definition: dnxhdenc.h:71
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
int16_t blocks[8][64]
Definition: dnxhdenc.h:73
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
void ff_block_permute(int16_t *block, uint8_t *permutation, const uint8_t *scantable, int last)
Permute an 8x8 block according to permutation.
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
uint8_t bits
Definition: crc.c:296
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
void(* get_pixels_8x4_sym)(int16_t *, const uint8_t *, ptrdiff_t)
Definition: dnxhdenc.h:101
#define mb
void(* get_pixels)(int16_t *block, const uint8_t *pixels, ptrdiff_t line_size)
Definition: pixblockdsp.h:27
AVOptions.
static int get_bucket(int value, int shift)
Definition: dnxhdenc.c:1035
const AVProfile ff_dnxhd_profiles[]
Definition: profiles.c:49
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
Definition: dnxhdenc.c:1089
uint32_t * slice_size
Definition: dnxhdenc.h:51
int(* qmatrix_c)[64]
Definition: dnxhdenc.h:77
#define RADIX_PASSES
Definition: dnxhdenc.c:1032
uint32_t * slice_offs
Definition: dnxhdenc.h:52
int(* q_chroma_intra_matrix)[64]
Definition: mpegvideo.h:324
unsigned qscale
Definition: dnxhdenc.h:92
static AVFrame * frame
static int dnxhd_get_hr_frame_size(const CIDEntry *profile, int mb_num)
Definition: dnxhdenc.c:303
uint8_t * data
Definition: avcodec.h:1600
static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
Definition: dnxhdenc.c:1063
const uint8_t * run_bits
Definition: dnxhddata.h:56
#define BUCKET_BITS
Definition: dnxhdenc.c:1031
const uint8_t * scantable
Definition: idctdsp.h:30
int interlaced_frame
The content of the picture is interlaced.
Definition: frame.h:318
av_cold void ff_mpv_idct_init(MpegEncContext *s)
Definition: mpegvideo.c:330
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:126
static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
Definition: dnxhdenc.c:207
unsigned int coding_unit_size
Definition: dnxhddata.h:46
ptrdiff_t size
Definition: opengl_enc.c:101
high precision timer, useful to profile code
#define AV_WB16(p, v)
Definition: intreadwrite.h:405
BlockDSPContext bdsp
Definition: dnxhdenc.h:44
#define av_log(a,...)
static int first_field(const struct video_data *s)
Definition: v4l2.c:228
static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
Definition: dnxhdenc.c:1222
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: avcodec.h:1632
const uint8_t * ac_bits
Definition: dnxhddata.h:54
const uint8_t * ac_info
Definition: dnxhddata.h:54
int(* q_intra_matrix)[64]
precomputed matrix (combine qscale and DCT renorm)
Definition: mpegvideo.h:323
static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
Definition: dnxhdenc.c:703
const uint16_t * ac_codes
Definition: dnxhddata.h:53
static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:709
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ff_dnxhd_get_cid_table(int cid)
Definition: dnxhddata.c:1090
int last_dc[3]
last DC values for MPEG-1
Definition: mpegvideo.h:182
static int dnxhd_find_qscale(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:970
AVRational packet_scale
Definition: dnxhddata.h:59
#define FF_SIGNBIT(x)
Definition: internal.h:75
av_default_item_name
#define AVERROR(e)
Definition: error.h:43
#define RC_VARIANCE
Definition: dnxhdenc.c:42
int qmax
maximum quantizer
Definition: avcodec.h:2625
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:176
AVCodec ff_dnxhd_encoder
Definition: dnxhdenc.c:1256
static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)
Definition: dnxhdenc.c:547
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
PixblockDSPContext pdsp
Definition: mpegvideo.h:231
const char * arg
Definition: jacosubdec.c:66
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1770
static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
Definition: dnxhdenc.c:470
const uint8_t * dc_codes
Definition: dnxhddata.h:52
MpegvideoEncDSPContext mpvencdsp
Definition: mpegvideo.h:230
const char * name
Name of the codec implementation.
Definition: avcodec.h:3596
#define FF_PROFILE_DNXHR_LB
Definition: avcodec.h:3196
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
av_cold void ff_pixblockdsp_init(PixblockDSPContext *c, AVCodecContext *avctx)
Definition: pixblockdsp.c:81
#define fail()
Definition: checkasm.h:82
int flags
A combination of AV_PKT_FLAG values.
Definition: avcodec.h:1606
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:85
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:66
#define pass
Definition: fft_template.c:532
const uint8_t * chroma_weight
Definition: dnxhddata.h:51
uint16_t * run_codes
Definition: dnxhdenc.h:87
common internal API header
#define MAX_THREADS
static const AVOption options[]
Definition: dnxhdenc.c:46
static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t line_size)
Definition: dnxhdenc.c:77
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:258
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
static const AVCodecDefault dnxhd_defaults[]
Definition: dnxhdenc.c:1251
MpegEncContext m
Used for quantization dsp functions.
Definition: dnxhdenc.h:45
#define FFMIN(a, b)
Definition: common.h:96
static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)
Definition: dnxhdenc.c:521
uint8_t * run_bits
Definition: dnxhdenc.h:88
int width
picture width / height.
Definition: avcodec.h:1862
const uint8_t * run
Definition: dnxhddata.h:56
int(* pix_sum)(uint8_t *pix, int line_size)
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth)
Definition: af_astats.c:150
unsigned frame_bits
Definition: dnxhdenc.h:82
AVFormatContext * ctx
Definition: movenc.c:48
static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t line_size)
Definition: dnxhdenc.c:101
uint16_t(* q_intra_matrix16)[2][64]
identical to the above but for MMX & these are not permutated, second 64 entries are bias ...
Definition: mpegvideo.h:327
uint16_t(* qmatrix_l16)[2][64]
Definition: dnxhdenc.h:79
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
Definition: frame.h:294
ScanTable scantable
Definition: dnxhddec.c:66
uint8_t * msip
Macroblock Scan Indexes Payload.
Definition: dnxhdenc.h:50
int n
Definition: avisynth_c.h:684
uint8_t idct_permutation[64]
IDCT input permutation.
Definition: idctdsp.h:94
int value
Definition: dnxhdenc.h:34
int mb_decision
macroblock decision mode
Definition: avcodec.h:2238
void ff_dnxhd_print_profiles(AVCodecContext *avctx, int loglevel)
Definition: dnxhddata.c:1169
#define FF_PROFILE_DNXHR_HQ
Definition: avcodec.h:3198
uint8_t * vlc_bits
Definition: dnxhdenc.h:86
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:3106
int ff_dct_quantize_c(MpegEncContext *s, int16_t *block, int n, int qscale, int *overflow)
static void radix_sort(RCCMPEntry *data, int size)
Definition: dnxhdenc.c:1075
static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
Definition: dnxhdenc.c:889
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:1025
int bit_depth
Definition: dnxhddata.h:49
int index_bits
Definition: dnxhddata.h:48
Libavcodec external API header.
static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block, int n, int qscale, int *overflow)
Definition: dnxhdenc.c:115
ptrdiff_t linesize
line size, in bytes, may be different from width
Definition: mpegvideo.h:131
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
Definition: blockdsp.c:58
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:215
static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
Definition: dnxhdenc.c:1152
void(* fdct)(int16_t *block)
Definition: fdctdsp.h:27
main external API structure.
Definition: avcodec.h:1675
unsigned block_width_l2
Definition: dnxhdenc.h:60
ScanTable intra_scantable
Definition: mpegvideo.h:88
#define FF_DEFAULT_QUANT_BIAS
Definition: avcodec.h:2205
int ff_dct_encode_init(MpegEncContext *s)
static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:287
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
Definition: avcodec.h:1707
unsigned lambda
Definition: dnxhdenc.h:93
FDCTDSPContext fdsp
Definition: mpegvideo.h:224
uint8_t edge_buf_y[256]
Definition: dnxhdenc.h:74
void * buf
Definition: avisynth_c.h:690
void ff_dnxhdenc_init_x86(DNXHDEncContext *ctx)
Definition: dnxhdenc_init.c:31
Describe the class of an AVClass context structure.
Definition: log.h:67
int(* pix_norm1)(uint8_t *pix, int line_size)
#define AV_WB32(p, v)
Definition: intreadwrite.h:419
int index
Definition: gxfenc.c:89
#define FF_MB_DECISION_RD
rate distortion
Definition: avcodec.h:2241
#define NBUCKETS
Definition: dnxhdenc.c:1033
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
ptrdiff_t uvlinesize
line size, for chroma in bytes, may be different from width
Definition: mpegvideo.h:132
int ssd
Definition: dnxhdenc.h:38
static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:802
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: utils.c:1695
#define FF_PROFILE_DNXHR_SQ
Definition: avcodec.h:3197
const CIDEntry * cid_table
Definition: dnxhdenc.h:49
uint16_t(* qmatrix_c16)[2][64]
Definition: dnxhdenc.h:80
unsigned dct_y_offset
Definition: dnxhdenc.h:58
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:262
unsigned min_padding
Definition: dnxhdenc.h:70
mfxU16 profile
Definition: qsvenc.c:42
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
Definition: dnxhdenc.c:1133
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:344
#define DNX10BIT_QMAT_SHIFT
Definition: dnxhdenc.c:41
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:198
unsigned int frame_size
Definition: dnxhddata.h:45
uint8_t level
Definition: svq3.c:207
uint16_t * mb_bits
Definition: dnxhdenc.h:95
MpegEncContext.
Definition: mpegvideo.h:78
struct AVCodecContext * avctx
Definition: mpegvideo.h:95
PutBitContext pb
bit output
Definition: mpegvideo.h:148
static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:821
#define DNXHD_VARIABLE
Indicate that a CIDEntry value must be read in the bitstream.
Definition: dnxhddata.h:40
#define FF_PROFILE_DNXHR_HQX
Definition: avcodec.h:3199
static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:765
static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
Definition: dnxhdenc.c:309
#define VE
Definition: dnxhdenc.c:45
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:80
common internal api header.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:101
attribute_deprecated AVFrame * coded_frame
the picture in the bitstream
Definition: avcodec.h:3097
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
int den
Denominator.
Definition: rational.h:60
#define FF_PROFILE_DNXHR_444
Definition: avcodec.h:3200
void * priv_data
Definition: avcodec.h:1717
static av_always_inline int diff(const uint32_t a, const uint32_t b)
#define av_free(p)
RCCMPEntry * mb_cmp
Definition: dnxhdenc.h:98
int pixels
Definition: avisynth_c.h:429
VideoDSPContext vdsp
Definition: mpegvideo.h:233
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:81
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: frame.h:323
int nitris_compat
Definition: dnxhdenc.h:69
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:3166
int bits
Definition: dnxhdenc.h:39
static uint8_t tmp[8]
Definition: des.c:38
AVCodecContext * avctx
Definition: dnxhddec.c:52
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:253
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
Definition: avutil.h:221
uint8_t edge_buf_uv[2][128]
Definition: dnxhdenc.h:75
const CIDEntry * cid_table
Definition: dnxhddec.c:67
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:121
#define av_freep(p)
#define av_always_inline
Definition: attributes.h:39
#define av_malloc_array(a, b)
int(* dct_quantize)(struct MpegEncContext *s, int16_t *block, int n, int qscale, int *overflow)
Definition: mpegvideo.h:521
uint16_t mb
Definition: dnxhdenc.h:33
#define MKTAG(a, b, c, d)
Definition: common.h:342
float min
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
This structure stores compressed data.
Definition: avcodec.h:1577
uint32_t * vlc_codes
Definition: dnxhdenc.h:85
for(j=16;j >0;--j)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:139
uint8_t * src[3]
Definition: dnxhdenc.h:83
uint8_t * mb_qscale
Definition: dnxhdenc.h:96
enum idct_permutation_type perm_type
Definition: idctdsp.h:95
void(* idct)(int16_t *block)
Definition: idctdsp.h:63