FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dnxhdenc.c
Go to the documentation of this file.
1 /*
2  * VC3/DNxHD encoder
3  * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4  * Copyright (c) 2011 MirriAd Ltd
5  *
6  * VC-3 encoder funded by the British Broadcasting Corporation
7  * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8  *
9  * This file is part of FFmpeg.
10  *
11  * FFmpeg is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * FFmpeg is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with FFmpeg; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25 
26 #include "libavutil/attributes.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/opt.h"
29 #include "libavutil/timer.h"
30 
31 #include "avcodec.h"
32 #include "blockdsp.h"
33 #include "fdctdsp.h"
34 #include "internal.h"
35 #include "mpegvideo.h"
36 #include "pixblockdsp.h"
37 #include "profiles.h"
38 #include "dnxhdenc.h"
39 
40 // The largest value that will not lead to overflow for 10-bit samples.
41 #define DNX10BIT_QMAT_SHIFT 18
42 #define RC_VARIANCE 1 // use variance or ssd for fast rc
43 #define LAMBDA_FRAC_BITS 10
44 
45 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
46 static const AVOption options[] = {
47  { "nitris_compat", "encode with Avid Nitris compatibility",
48  offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
49  { "ibias", "intra quant bias",
50  offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
51  { .i64 = 0 }, INT_MIN, INT_MAX, VE },
52  { "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
53  { .i64 = FF_PROFILE_DNXHD },
55  { "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
56  0, 0, VE, "profile" },
57  { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
58  0, 0, VE, "profile" },
59  { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
60  0, 0, VE, "profile" },
61  { "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
62  0, 0, VE, "profile" },
63  { "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
64  0, 0, VE, "profile" },
65  { "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
66  0, 0, VE, "profile" },
67  { NULL }
68 };
69 
70 static const AVClass dnxhd_class = {
71  .class_name = "dnxhd",
72  .item_name = av_default_item_name,
73  .option = options,
74  .version = LIBAVUTIL_VERSION_INT,
75 };
76 
77 static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
78  const uint8_t *pixels,
79  ptrdiff_t line_size)
80 {
81  int i;
82  for (i = 0; i < 4; i++) {
83  block[0] = pixels[0];
84  block[1] = pixels[1];
85  block[2] = pixels[2];
86  block[3] = pixels[3];
87  block[4] = pixels[4];
88  block[5] = pixels[5];
89  block[6] = pixels[6];
90  block[7] = pixels[7];
91  pixels += line_size;
92  block += 8;
93  }
94  memcpy(block, block - 8, sizeof(*block) * 8);
95  memcpy(block + 8, block - 16, sizeof(*block) * 8);
96  memcpy(block + 16, block - 24, sizeof(*block) * 8);
97  memcpy(block + 24, block - 32, sizeof(*block) * 8);
98 }
99 
100 static av_always_inline
101 void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
102  const uint8_t *pixels,
103  ptrdiff_t line_size)
104 {
105  memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
106  memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
107  memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
108  memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
109  memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
110  memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
111  memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
112  memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
113 }
114 
116  int n, int qscale, int *overflow)
117 {
119  const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
120  int last_non_zero = 0;
121  int i;
122 
123  ctx->fdsp.fdct(block);
124 
125  // Divide by 4 with rounding, to compensate scaling of DCT coefficients
126  block[0] = (block[0] + 2) >> 2;
127 
128  for (i = 1; i < 64; ++i) {
129  int j = scantable[i];
130  int sign = FF_SIGNBIT(block[j]);
131  int level = (block[j] ^ sign) - sign;
132  level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
133  block[j] = (level ^ sign) - sign;
134  if (level)
135  last_non_zero = i;
136  }
137 
138  /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
139  if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
141  scantable, last_non_zero);
142 
143  return last_non_zero;
144 }
145 
147 {
148  int i, j, level, run;
149  int max_level = 1 << (ctx->cid_table->bit_depth + 2);
150 
152  max_level, 4 * sizeof(*ctx->vlc_codes), fail);
154  max_level, 4 * sizeof(*ctx->vlc_bits), fail);
155  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
156  63 * 2, fail);
157  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
158  63, fail);
159 
160  ctx->vlc_codes += max_level * 2;
161  ctx->vlc_bits += max_level * 2;
162  for (level = -max_level; level < max_level; level++) {
163  for (run = 0; run < 2; run++) {
164  int index = (level << 1) | run;
165  int sign, offset = 0, alevel = level;
166 
167  MASK_ABS(sign, alevel);
168  if (alevel > 64) {
169  offset = (alevel - 1) >> 6;
170  alevel -= offset << 6;
171  }
172  for (j = 0; j < 257; j++) {
173  if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
174  (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
175  (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
176  av_assert1(!ctx->vlc_codes[index]);
177  if (alevel) {
178  ctx->vlc_codes[index] =
179  (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
180  ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
181  } else {
182  ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
183  ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
184  }
185  break;
186  }
187  }
188  av_assert0(!alevel || j < 257);
189  if (offset) {
190  ctx->vlc_codes[index] =
191  (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
192  ctx->vlc_bits[index] += ctx->cid_table->index_bits;
193  }
194  }
195  }
196  for (i = 0; i < 62; i++) {
197  int run = ctx->cid_table->run[i];
198  av_assert0(run < 63);
199  ctx->run_codes[run] = ctx->cid_table->run_codes[i];
200  ctx->run_bits[run] = ctx->cid_table->run_bits[i];
201  }
202  return 0;
203 fail:
204  return AVERROR(ENOMEM);
205 }
206 
207 static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
208 {
209  // init first elem to 1 to avoid div by 0 in convert_matrix
210  uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
211  int qscale, i;
212  const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
213  const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
214 
216  (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
218  (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
220  (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
221  fail);
223  (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
224  fail);
225 
226  if (ctx->cid_table->bit_depth == 8) {
227  for (i = 1; i < 64; i++) {
228  int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
229  weight_matrix[j] = ctx->cid_table->luma_weight[i];
230  }
231  ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
232  weight_matrix, ctx->intra_quant_bias, 1,
233  ctx->m.avctx->qmax, 1);
234  for (i = 1; i < 64; i++) {
235  int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
236  weight_matrix[j] = ctx->cid_table->chroma_weight[i];
237  }
238  ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
239  weight_matrix, ctx->intra_quant_bias, 1,
240  ctx->m.avctx->qmax, 1);
241 
242  for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
243  for (i = 0; i < 64; i++) {
244  ctx->qmatrix_l[qscale][i] <<= 2;
245  ctx->qmatrix_c[qscale][i] <<= 2;
246  ctx->qmatrix_l16[qscale][0][i] <<= 2;
247  ctx->qmatrix_l16[qscale][1][i] <<= 2;
248  ctx->qmatrix_c16[qscale][0][i] <<= 2;
249  ctx->qmatrix_c16[qscale][1][i] <<= 2;
250  }
251  }
252  } else {
253  // 10-bit
254  for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
255  for (i = 1; i < 64; i++) {
256  int j = ff_zigzag_direct[i];
257 
258  /* The quantization formula from the VC-3 standard is:
259  * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
260  * (qscale * weight_table[i]))
261  * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
262  * The s factor compensates scaling of DCT coefficients done by
263  * the DCT routines, and therefore is not present in standard.
264  * It's 8 for 8-bit samples and 4 for 10-bit ones.
265  * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
266  * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
267  * (qscale * weight_table[i])
268  * For 10-bit samples, p / s == 2 */
269  ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
270  (qscale * luma_weight_table[i]);
271  ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
272  (qscale * chroma_weight_table[i]);
273  }
274  }
275  }
276 
278  ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
279  ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
280  ctx->m.q_intra_matrix = ctx->qmatrix_l;
281 
282  return 0;
283 fail:
284  return AVERROR(ENOMEM);
285 }
286 
288 {
289  FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_rc, (ctx->m.avctx->qmax + 1),
290  ctx->m.mb_num * sizeof(RCEntry), fail);
291  if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
293  ctx->m.mb_num, sizeof(RCCMPEntry), fail);
295  ctx->m.mb_num, sizeof(RCCMPEntry), fail);
296  }
297  ctx->frame_bits = (ctx->coding_unit_size -
298  ctx->data_offset - 4 - ctx->min_padding) * 8;
299  ctx->qscale = 1;
300  ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
301  return 0;
302 fail:
303  return AVERROR(ENOMEM);
304 }
305 
306 static int dnxhd_get_hr_frame_size(const CIDEntry* profile, int mb_num)
307 {
308  int result = mb_num * profile->packet_scale.num / profile->packet_scale.den;
309  result = (result + 2048) / 4096 * 4096;
310  return FFMAX(result, 8192);
311 }
313 {
314  DNXHDEncContext *ctx = avctx->priv_data;
315  int i, index, bit_depth, ret;
316 
317  switch (avctx->pix_fmt) {
318  case AV_PIX_FMT_YUV422P:
319  bit_depth = 8;
320  break;
322  bit_depth = 10;
323  break;
324  default:
325  av_log(avctx, AV_LOG_ERROR,
326  "pixel format is incompatible with DNxHD\n");
327  return AVERROR(EINVAL);
328  }
329 
330  if (ctx->profile == FF_PROFILE_DNXHR_444 ||
331  ctx->profile == FF_PROFILE_DNXHR_HQX) {
333  "dnxhr_444 or dnxhr_hqx profile");
334  return AVERROR_PATCHWELCOME;
335  }
336 
337  avctx->profile = ctx->profile;
338  ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
339  if (!ctx->cid) {
340  av_log(avctx, AV_LOG_ERROR,
341  "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
343  return AVERROR(EINVAL);
344  }
345  av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
346 
347  if (ctx->cid >= 1270 && ctx->cid <= 1274)
348  avctx->codec_tag = MKTAG('A','V','d','h');
349 
350  if (avctx->width < 256 || avctx->height < 120) {
351  av_log(avctx, AV_LOG_ERROR,
352  "Input dimensions too small, input must be at least 256x120\n");
353  return AVERROR(EINVAL);
354  }
355 
356  index = ff_dnxhd_get_cid_table(ctx->cid);
357  av_assert0(index >= 0);
358 
360 
361  ctx->m.avctx = avctx;
362  ctx->m.mb_intra = 1;
363  ctx->m.h263_aic = 1;
364 
365  avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
366 
367  ff_blockdsp_init(&ctx->bdsp, avctx);
368  ff_fdctdsp_init(&ctx->m.fdsp, avctx);
369  ff_mpv_idct_init(&ctx->m);
370  ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
371  ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
372  ff_dct_encode_init(&ctx->m);
373 
374  if (ctx->profile != FF_PROFILE_DNXHD)
375  ff_videodsp_init(&ctx->m.vdsp, bit_depth);
376 
377  if (!ctx->m.dct_quantize)
379 
380  if (ctx->cid_table->bit_depth == 10) {
383  ctx->block_width_l2 = 4;
384  } else {
386  ctx->block_width_l2 = 3;
387  }
388 
389  if (ARCH_X86)
391 
392  ctx->m.mb_height = (avctx->height + 15) / 16;
393  ctx->m.mb_width = (avctx->width + 15) / 16;
394 
395  if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
396  ctx->interlaced = 1;
397  ctx->m.mb_height /= 2;
398  }
399 
400  ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
401 
402  if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
404  ctx->m.mb_num);
405  ctx->coding_unit_size = ctx->frame_size;
406  } else {
407  ctx->frame_size = ctx->cid_table->frame_size;
409  }
410 
411  if (ctx->m.mb_height > 68)
412  ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
413  else
414  ctx->data_offset = 0x280;
415 
416 #if FF_API_QUANT_BIAS
419  ctx->intra_quant_bias = avctx->intra_quant_bias;
421 #endif
422  // XXX tune lbias/cbias
423  if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
424  return ret;
425 
426  /* Avid Nitris hardware decoder requires a minimum amount of padding
427  * in the coding unit payload */
428  if (ctx->nitris_compat)
429  ctx->min_padding = 1600;
430 
431  if ((ret = dnxhd_init_vlc(ctx)) < 0)
432  return ret;
433  if ((ret = dnxhd_init_rc(ctx)) < 0)
434  return ret;
435 
436  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
437  ctx->m.mb_height * sizeof(uint32_t), fail);
438  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
439  ctx->m.mb_height * sizeof(uint32_t), fail);
440  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
441  ctx->m.mb_num * sizeof(uint16_t), fail);
442  FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
443  ctx->m.mb_num * sizeof(uint8_t), fail);
444 
445 #if FF_API_CODED_FRAME
447  avctx->coded_frame->key_frame = 1;
450 #endif
451 
452  if (avctx->thread_count > MAX_THREADS) {
453  av_log(avctx, AV_LOG_ERROR, "too many threads\n");
454  return AVERROR(EINVAL);
455  }
456 
457  if (avctx->qmax <= 1) {
458  av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
459  return AVERROR(EINVAL);
460  }
461 
462  ctx->thread[0] = ctx;
463  for (i = 1; i < avctx->thread_count; i++) {
464  ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
465  memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
466  }
467 
468  return 0;
469 fail: // for FF_ALLOCZ_OR_GOTO
470  return AVERROR(ENOMEM);
471 }
472 
474 {
475  DNXHDEncContext *ctx = avctx->priv_data;
476 
477  memset(buf, 0, ctx->data_offset);
478 
479  // * write prefix */
480  AV_WB16(buf + 0x02, ctx->data_offset);
481  if (ctx->cid >= 1270 && ctx->cid <= 1274)
482  buf[4] = 0x03;
483  else
484  buf[4] = 0x01;
485 
486  buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
487  buf[6] = 0x80; // crc flag off
488  buf[7] = 0xa0; // reserved
489  AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
490  AV_WB16(buf + 0x1a, avctx->width); // SPL
491  AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
492 
493  buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
494  buf[0x22] = 0x88 + (ctx->interlaced << 2);
495  AV_WB32(buf + 0x28, ctx->cid); // CID
496  buf[0x2c] = ctx->interlaced ? 0 : 0x80;
497 
498  buf[0x5f] = 0x01; // UDL
499 
500  buf[0x167] = 0x02; // reserved
501  AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
502  buf[0x16d] = ctx->m.mb_height; // Ns
503  buf[0x16f] = 0x10; // reserved
504 
505  ctx->msip = buf + 0x170;
506  return 0;
507 }
508 
510 {
511  int nbits;
512  if (diff < 0) {
513  nbits = av_log2_16bit(-2 * diff);
514  diff--;
515  } else {
516  nbits = av_log2_16bit(2 * diff);
517  }
518  put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
519  (ctx->cid_table->dc_codes[nbits] << nbits) +
520  av_mod_uintp2(diff, nbits));
521 }
522 
523 static av_always_inline
525  int last_index, int n)
526 {
527  int last_non_zero = 0;
528  int slevel, i, j;
529 
530  dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
531  ctx->m.last_dc[n] = block[0];
532 
533  for (i = 1; i <= last_index; i++) {
534  j = ctx->m.intra_scantable.permutated[i];
535  slevel = block[j];
536  if (slevel) {
537  int run_level = i - last_non_zero - 1;
538  int rlevel = (slevel << 1) | !!run_level;
539  put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
540  if (run_level)
541  put_bits(&ctx->m.pb, ctx->run_bits[run_level],
542  ctx->run_codes[run_level]);
543  last_non_zero = i;
544  }
545  }
546  put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
547 }
548 
549 static av_always_inline
551  int qscale, int last_index)
552 {
553  const uint8_t *weight_matrix;
554  int level;
555  int i;
556 
557  weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
558  : ctx->cid_table->luma_weight;
559 
560  for (i = 1; i <= last_index; i++) {
561  int j = ctx->m.intra_scantable.permutated[i];
562  level = block[j];
563  if (level) {
564  if (level < 0) {
565  level = (1 - 2 * level) * qscale * weight_matrix[i];
566  if (ctx->cid_table->bit_depth == 10) {
567  if (weight_matrix[i] != 8)
568  level += 8;
569  level >>= 4;
570  } else {
571  if (weight_matrix[i] != 32)
572  level += 32;
573  level >>= 6;
574  }
575  level = -level;
576  } else {
577  level = (2 * level + 1) * qscale * weight_matrix[i];
578  if (ctx->cid_table->bit_depth == 10) {
579  if (weight_matrix[i] != 8)
580  level += 8;
581  level >>= 4;
582  } else {
583  if (weight_matrix[i] != 32)
584  level += 32;
585  level >>= 6;
586  }
587  }
588  block[j] = level;
589  }
590  }
591 }
592 
593 static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
594 {
595  int score = 0;
596  int i;
597  for (i = 0; i < 64; i++)
598  score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
599  return score;
600 }
601 
602 static av_always_inline
603 int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
604 {
605  int last_non_zero = 0;
606  int bits = 0;
607  int i, j, level;
608  for (i = 1; i <= last_index; i++) {
609  j = ctx->m.intra_scantable.permutated[i];
610  level = block[j];
611  if (level) {
612  int run_level = i - last_non_zero - 1;
613  bits += ctx->vlc_bits[(level << 1) |
614  !!run_level] + ctx->run_bits[run_level];
615  last_non_zero = i;
616  }
617  }
618  return bits;
619 }
620 
621 static av_always_inline
622 void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
623 {
624  const int bs = ctx->block_width_l2;
625  const int bw = 1 << bs;
626  int dct_y_offset = ctx->dct_y_offset;
627  int dct_uv_offset = ctx->dct_uv_offset;
628  int linesize = ctx->m.linesize;
629  int uvlinesize = ctx->m.uvlinesize;
630  const uint8_t *ptr_y = ctx->thread[0]->src[0] +
631  ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
632  const uint8_t *ptr_u = ctx->thread[0]->src[1] +
633  ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
634  const uint8_t *ptr_v = ctx->thread[0]->src[2] +
635  ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
636  PixblockDSPContext *pdsp = &ctx->m.pdsp;
637  VideoDSPContext *vdsp = &ctx->m.vdsp;
638 
639  if (vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
640  (mb_y << 4) + 16 > ctx->m.avctx->height)) {
641  int y_w = ctx->m.avctx->width - (mb_x << 4);
642  int y_h = ctx->m.avctx->height - (mb_y << 4);
643  int uv_w = (y_w + 1) / 2;
644  int uv_h = y_h;
645  linesize = 16;
646  uvlinesize = 8;
647 
648  vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
649  linesize, ctx->m.linesize,
650  linesize, 16,
651  0, 0, y_w, y_h);
652  vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
653  uvlinesize, ctx->m.uvlinesize,
654  uvlinesize, 16,
655  0, 0, uv_w, uv_h);
656  vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
657  uvlinesize, ctx->m.uvlinesize,
658  uvlinesize, 16,
659  0, 0, uv_w, uv_h);
660 
661  dct_y_offset = bw * linesize;
662  dct_uv_offset = bw * uvlinesize;
663  ptr_y = &ctx->edge_buf_y[0];
664  ptr_u = &ctx->edge_buf_uv[0][0];
665  ptr_v = &ctx->edge_buf_uv[1][0];
666  }
667 
668  pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
669  pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
670  pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
671  pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize);
672 
673  if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
674  if (ctx->interlaced) {
675  ctx->get_pixels_8x4_sym(ctx->blocks[4],
676  ptr_y + dct_y_offset,
677  linesize);
678  ctx->get_pixels_8x4_sym(ctx->blocks[5],
679  ptr_y + dct_y_offset + bw,
680  linesize);
681  ctx->get_pixels_8x4_sym(ctx->blocks[6],
682  ptr_u + dct_uv_offset,
683  uvlinesize);
684  ctx->get_pixels_8x4_sym(ctx->blocks[7],
685  ptr_v + dct_uv_offset,
686  uvlinesize);
687  } else {
688  ctx->bdsp.clear_block(ctx->blocks[4]);
689  ctx->bdsp.clear_block(ctx->blocks[5]);
690  ctx->bdsp.clear_block(ctx->blocks[6]);
691  ctx->bdsp.clear_block(ctx->blocks[7]);
692  }
693  } else {
694  pdsp->get_pixels(ctx->blocks[4],
695  ptr_y + dct_y_offset, linesize);
696  pdsp->get_pixels(ctx->blocks[5],
697  ptr_y + dct_y_offset + bw, linesize);
698  pdsp->get_pixels(ctx->blocks[6],
699  ptr_u + dct_uv_offset, uvlinesize);
700  pdsp->get_pixels(ctx->blocks[7],
701  ptr_v + dct_uv_offset, uvlinesize);
702  }
703 }
704 
705 static av_always_inline
707 {
708  const static uint8_t component[8]={0,0,1,2,0,0,1,2};
709  return component[i];
710 }
711 
713  int jobnr, int threadnr)
714 {
715  DNXHDEncContext *ctx = avctx->priv_data;
716  int mb_y = jobnr, mb_x;
717  int qscale = ctx->qscale;
718  LOCAL_ALIGNED_16(int16_t, block, [64]);
719  ctx = ctx->thread[threadnr];
720 
721  ctx->m.last_dc[0] =
722  ctx->m.last_dc[1] =
723  ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
724 
725  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
726  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
727  int ssd = 0;
728  int ac_bits = 0;
729  int dc_bits = 0;
730  int i;
731 
732  dnxhd_get_blocks(ctx, mb_x, mb_y);
733 
734  for (i = 0; i < 8; i++) {
735  int16_t *src_block = ctx->blocks[i];
736  int overflow, nbits, diff, last_index;
737  int n = dnxhd_switch_matrix(ctx, i);
738 
739  memcpy(block, src_block, 64 * sizeof(*block));
740  last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
741  qscale, &overflow);
742  ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
743 
744  diff = block[0] - ctx->m.last_dc[n];
745  if (diff < 0)
746  nbits = av_log2_16bit(-2 * diff);
747  else
748  nbits = av_log2_16bit(2 * diff);
749 
750  av_assert1(nbits < ctx->cid_table->bit_depth + 4);
751  dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
752 
753  ctx->m.last_dc[n] = block[0];
754 
755  if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
756  dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
757  ctx->m.idsp.idct(block);
758  ssd += dnxhd_ssd_block(block, src_block);
759  }
760  }
761  ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd = ssd;
762  ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
763  8 * ctx->vlc_bits[0];
764  }
765  return 0;
766 }
767 
769  int jobnr, int threadnr)
770 {
771  DNXHDEncContext *ctx = avctx->priv_data;
772  int mb_y = jobnr, mb_x;
773  ctx = ctx->thread[threadnr];
774  init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
775  ctx->slice_size[jobnr]);
776 
777  ctx->m.last_dc[0] =
778  ctx->m.last_dc[1] =
779  ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
780  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
781  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
782  int qscale = ctx->mb_qscale[mb];
783  int i;
784 
785  put_bits(&ctx->m.pb, 12, qscale << 1);
786 
787  dnxhd_get_blocks(ctx, mb_x, mb_y);
788 
789  for (i = 0; i < 8; i++) {
790  int16_t *block = ctx->blocks[i];
791  int overflow, n = dnxhd_switch_matrix(ctx, i);
792  int last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
793  qscale, &overflow);
794  // START_TIMER;
795  dnxhd_encode_block(ctx, block, last_index, n);
796  // STOP_TIMER("encode_block");
797  }
798  }
799  if (put_bits_count(&ctx->m.pb) & 31)
800  put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
801  flush_put_bits(&ctx->m.pb);
802  return 0;
803 }
804 
806 {
807  int mb_y, mb_x;
808  int offset = 0;
809  for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
810  int thread_size;
811  ctx->slice_offs[mb_y] = offset;
812  ctx->slice_size[mb_y] = 0;
813  for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
814  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
815  ctx->slice_size[mb_y] += ctx->mb_bits[mb];
816  }
817  ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
818  ctx->slice_size[mb_y] >>= 3;
819  thread_size = ctx->slice_size[mb_y];
820  offset += thread_size;
821  }
822 }
823 
825  int jobnr, int threadnr)
826 {
827  DNXHDEncContext *ctx = avctx->priv_data;
828  int mb_y = jobnr, mb_x, x, y;
829  int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
830  ((avctx->height >> ctx->interlaced) & 0xF);
831 
832  ctx = ctx->thread[threadnr];
833  if (ctx->cid_table->bit_depth == 8) {
834  uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
835  for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
836  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
837  int sum;
838  int varc;
839 
840  if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
841  sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
842  varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
843  } else {
844  int bw = FFMIN(avctx->width - 16 * mb_x, 16);
845  int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
846  sum = varc = 0;
847  for (y = 0; y < bh; y++) {
848  for (x = 0; x < bw; x++) {
849  uint8_t val = pix[x + y * ctx->m.linesize];
850  sum += val;
851  varc += val * val;
852  }
853  }
854  }
855  varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
856 
857  ctx->mb_cmp[mb].value = varc;
858  ctx->mb_cmp[mb].mb = mb;
859  }
860  } else { // 10-bit
861  const int linesize = ctx->m.linesize >> 1;
862  for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
863  uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
864  ((mb_y << 4) * linesize) + (mb_x << 4);
865  unsigned mb = mb_y * ctx->m.mb_width + mb_x;
866  int sum = 0;
867  int sqsum = 0;
868  int bw = FFMIN(avctx->width - 16 * mb_x, 16);
869  int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
870  int mean, sqmean;
871  int i, j;
872  // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
873  for (i = 0; i < bh; ++i) {
874  for (j = 0; j < bw; ++j) {
875  // Turn 16-bit pixels into 10-bit ones.
876  const int sample = (unsigned) pix[j] >> 6;
877  sum += sample;
878  sqsum += sample * sample;
879  // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
880  }
881  pix += linesize;
882  }
883  mean = sum >> 8; // 16*16 == 2^8
884  sqmean = sqsum >> 8;
885  ctx->mb_cmp[mb].value = sqmean - mean * mean;
886  ctx->mb_cmp[mb].mb = mb;
887  }
888  }
889  return 0;
890 }
891 
893 {
894  int lambda, up_step, down_step;
895  int last_lower = INT_MAX, last_higher = 0;
896  int x, y, q;
897 
898  for (q = 1; q < avctx->qmax; q++) {
899  ctx->qscale = q;
900  avctx->execute2(avctx, dnxhd_calc_bits_thread,
901  NULL, NULL, ctx->m.mb_height);
902  }
903  up_step = down_step = 2 << LAMBDA_FRAC_BITS;
904  lambda = ctx->lambda;
905 
906  for (;;) {
907  int bits = 0;
908  int end = 0;
909  if (lambda == last_higher) {
910  lambda++;
911  end = 1; // need to set final qscales/bits
912  }
913  for (y = 0; y < ctx->m.mb_height; y++) {
914  for (x = 0; x < ctx->m.mb_width; x++) {
915  unsigned min = UINT_MAX;
916  int qscale = 1;
917  int mb = y * ctx->m.mb_width + x;
918  int rc = 0;
919  for (q = 1; q < avctx->qmax; q++) {
920  int i = (q*ctx->m.mb_num) + mb;
921  unsigned score = ctx->mb_rc[i].bits * lambda +
922  ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
923  if (score < min) {
924  min = score;
925  qscale = q;
926  rc = i;
927  }
928  }
929  bits += ctx->mb_rc[rc].bits;
930  ctx->mb_qscale[mb] = qscale;
931  ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
932  }
933  bits = (bits + 31) & ~31; // padding
934  if (bits > ctx->frame_bits)
935  break;
936  }
937  // ff_dlog(ctx->m.avctx,
938  // "lambda %d, up %u, down %u, bits %d, frame %d\n",
939  // lambda, last_higher, last_lower, bits, ctx->frame_bits);
940  if (end) {
941  if (bits > ctx->frame_bits)
942  return AVERROR(EINVAL);
943  break;
944  }
945  if (bits < ctx->frame_bits) {
946  last_lower = FFMIN(lambda, last_lower);
947  if (last_higher != 0)
948  lambda = (lambda+last_higher)>>1;
949  else
950  lambda -= down_step;
951  down_step = FFMIN((int64_t)down_step*5, INT_MAX);
952  up_step = 1<<LAMBDA_FRAC_BITS;
953  lambda = FFMAX(1, lambda);
954  if (lambda == last_lower)
955  break;
956  } else {
957  last_higher = FFMAX(lambda, last_higher);
958  if (last_lower != INT_MAX)
959  lambda = (lambda+last_lower)>>1;
960  else if ((int64_t)lambda + up_step > INT_MAX)
961  return AVERROR(EINVAL);
962  else
963  lambda += up_step;
964  up_step = FFMIN((int64_t)up_step*5, INT_MAX);
965  down_step = 1<<LAMBDA_FRAC_BITS;
966  }
967  }
968  //ff_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
969  ctx->lambda = lambda;
970  return 0;
971 }
972 
974 {
975  int bits = 0;
976  int up_step = 1;
977  int down_step = 1;
978  int last_higher = 0;
979  int last_lower = INT_MAX;
980  int qscale;
981  int x, y;
982 
983  qscale = ctx->qscale;
984  for (;;) {
985  bits = 0;
986  ctx->qscale = qscale;
987  // XXX avoid recalculating bits
989  NULL, NULL, ctx->m.mb_height);
990  for (y = 0; y < ctx->m.mb_height; y++) {
991  for (x = 0; x < ctx->m.mb_width; x++)
992  bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
993  bits = (bits+31)&~31; // padding
994  if (bits > ctx->frame_bits)
995  break;
996  }
997  // ff_dlog(ctx->m.avctx,
998  // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
999  // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
1000  // last_higher, last_lower);
1001  if (bits < ctx->frame_bits) {
1002  if (qscale == 1)
1003  return 1;
1004  if (last_higher == qscale - 1) {
1005  qscale = last_higher;
1006  break;
1007  }
1008  last_lower = FFMIN(qscale, last_lower);
1009  if (last_higher != 0)
1010  qscale = (qscale + last_higher) >> 1;
1011  else
1012  qscale -= down_step++;
1013  if (qscale < 1)
1014  qscale = 1;
1015  up_step = 1;
1016  } else {
1017  if (last_lower == qscale + 1)
1018  break;
1019  last_higher = FFMAX(qscale, last_higher);
1020  if (last_lower != INT_MAX)
1021  qscale = (qscale + last_lower) >> 1;
1022  else
1023  qscale += up_step++;
1024  down_step = 1;
1025  if (qscale >= ctx->m.avctx->qmax)
1026  return AVERROR(EINVAL);
1027  }
1028  }
1029  //ff_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
1030  ctx->qscale = qscale;
1031  return 0;
1032 }
1033 
1034 #define BUCKET_BITS 8
1035 #define RADIX_PASSES 4
1036 #define NBUCKETS (1 << BUCKET_BITS)
1037 
1038 static inline int get_bucket(int value, int shift)
1039 {
1040  value >>= shift;
1041  value &= NBUCKETS - 1;
1042  return NBUCKETS - 1 - value;
1043 }
1044 
1045 static void radix_count(const RCCMPEntry *data, int size,
1046  int buckets[RADIX_PASSES][NBUCKETS])
1047 {
1048  int i, j;
1049  memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
1050  for (i = 0; i < size; i++) {
1051  int v = data[i].value;
1052  for (j = 0; j < RADIX_PASSES; j++) {
1053  buckets[j][get_bucket(v, 0)]++;
1054  v >>= BUCKET_BITS;
1055  }
1056  av_assert1(!v);
1057  }
1058  for (j = 0; j < RADIX_PASSES; j++) {
1059  int offset = size;
1060  for (i = NBUCKETS - 1; i >= 0; i--)
1061  buckets[j][i] = offset -= buckets[j][i];
1062  av_assert1(!buckets[j][0]);
1063  }
1064 }
1065 
1066 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
1067  int size, int buckets[NBUCKETS], int pass)
1068 {
1069  int shift = pass * BUCKET_BITS;
1070  int i;
1071  for (i = 0; i < size; i++) {
1072  int v = get_bucket(data[i].value, shift);
1073  int pos = buckets[v]++;
1074  dst[pos] = data[i];
1075  }
1076 }
1077 
1079 {
1080  int buckets[RADIX_PASSES][NBUCKETS];
1081  radix_count(data, size, buckets);
1082  radix_sort_pass(tmp, data, size, buckets[0], 0);
1083  radix_sort_pass(data, tmp, size, buckets[1], 1);
1084  if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
1085  radix_sort_pass(tmp, data, size, buckets[2], 2);
1086  radix_sort_pass(data, tmp, size, buckets[3], 3);
1087  }
1088 }
1089 
1091 {
1092  int max_bits = 0;
1093  int ret, x, y;
1094  if ((ret = dnxhd_find_qscale(ctx)) < 0)
1095  return ret;
1096  for (y = 0; y < ctx->m.mb_height; y++) {
1097  for (x = 0; x < ctx->m.mb_width; x++) {
1098  int mb = y * ctx->m.mb_width + x;
1099  int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1100  int delta_bits;
1101  ctx->mb_qscale[mb] = ctx->qscale;
1102  ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1103  max_bits += ctx->mb_rc[rc].bits;
1104  if (!RC_VARIANCE) {
1105  delta_bits = ctx->mb_rc[rc].bits -
1106  ctx->mb_rc[rc + ctx->m.mb_num].bits;
1107  ctx->mb_cmp[mb].mb = mb;
1108  ctx->mb_cmp[mb].value =
1109  delta_bits ? ((ctx->mb_rc[rc].ssd -
1110  ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
1111  delta_bits
1112  : INT_MIN; // avoid increasing qscale
1113  }
1114  }
1115  max_bits += 31; // worst padding
1116  }
1117  if (!ret) {
1118  if (RC_VARIANCE)
1119  avctx->execute2(avctx, dnxhd_mb_var_thread,
1120  NULL, NULL, ctx->m.mb_height);
1121  radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
1122  for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1123  int mb = ctx->mb_cmp[x].mb;
1124  int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1125  max_bits -= ctx->mb_rc[rc].bits -
1126  ctx->mb_rc[rc + ctx->m.mb_num].bits;
1127  ctx->mb_qscale[mb] = ctx->qscale + 1;
1128  ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.mb_num].bits;
1129  }
1130  }
1131  return 0;
1132 }
1133 
1135 {
1136  int i;
1137 
1138  for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1139  ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
1140  ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
1141  ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
1142  ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1143  }
1144 
1145 #if FF_API_CODED_FRAME
1149 #endif
1150  ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1151 }
1152 
1154  const AVFrame *frame, int *got_packet)
1155 {
1156  DNXHDEncContext *ctx = avctx->priv_data;
1157  int first_field = 1;
1158  int offset, i, ret;
1159  uint8_t *buf;
1160 
1161  if ((ret = ff_alloc_packet2(avctx, pkt, ctx->frame_size, 0)) < 0)
1162  return ret;
1163  buf = pkt->data;
1164 
1165  dnxhd_load_picture(ctx, frame);
1166 
1167 encode_coding_unit:
1168  for (i = 0; i < 3; i++) {
1169  ctx->src[i] = frame->data[i];
1170  if (ctx->interlaced && ctx->cur_field)
1171  ctx->src[i] += frame->linesize[i];
1172  }
1173 
1174  dnxhd_write_header(avctx, buf);
1175 
1176  if (avctx->mb_decision == FF_MB_DECISION_RD)
1177  ret = dnxhd_encode_rdo(avctx, ctx);
1178  else
1179  ret = dnxhd_encode_fast(avctx, ctx);
1180  if (ret < 0) {
1181  av_log(avctx, AV_LOG_ERROR,
1182  "picture could not fit ratecontrol constraints, increase qmax\n");
1183  return ret;
1184  }
1185 
1187 
1188  offset = 0;
1189  for (i = 0; i < ctx->m.mb_height; i++) {
1190  AV_WB32(ctx->msip + i * 4, offset);
1191  offset += ctx->slice_size[i];
1192  av_assert1(!(ctx->slice_size[i] & 3));
1193  }
1194 
1195  avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1196 
1197  av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
1198  memset(buf + ctx->data_offset + offset, 0,
1199  ctx->coding_unit_size - 4 - offset - ctx->data_offset);
1200 
1201  AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
1202 
1203  if (ctx->interlaced && first_field) {
1204  first_field = 0;
1205  ctx->cur_field ^= 1;
1206  buf += ctx->coding_unit_size;
1207  goto encode_coding_unit;
1208  }
1209 
1210 #if FF_API_CODED_FRAME
1212  avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
1214 #endif
1215 
1217 
1218  pkt->flags |= AV_PKT_FLAG_KEY;
1219  *got_packet = 1;
1220  return 0;
1221 }
1222 
1224 {
1225  DNXHDEncContext *ctx = avctx->priv_data;
1226  int max_level = 1 << (ctx->cid_table->bit_depth + 2);
1227  int i;
1228 
1229  av_free(ctx->vlc_codes - max_level * 2);
1230  av_free(ctx->vlc_bits - max_level * 2);
1231  av_freep(&ctx->run_codes);
1232  av_freep(&ctx->run_bits);
1233 
1234  av_freep(&ctx->mb_bits);
1235  av_freep(&ctx->mb_qscale);
1236  av_freep(&ctx->mb_rc);
1237  av_freep(&ctx->mb_cmp);
1238  av_freep(&ctx->mb_cmp_tmp);
1239  av_freep(&ctx->slice_size);
1240  av_freep(&ctx->slice_offs);
1241 
1242  av_freep(&ctx->qmatrix_c);
1243  av_freep(&ctx->qmatrix_l);
1244  av_freep(&ctx->qmatrix_c16);
1245  av_freep(&ctx->qmatrix_l16);
1246 
1247  for (i = 1; i < avctx->thread_count; i++)
1248  av_freep(&ctx->thread[i]);
1249 
1250  return 0;
1251 }
1252 
1253 static const AVCodecDefault dnxhd_defaults[] = {
1254  { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1255  { NULL },
1256 };
1257 
1259  .name = "dnxhd",
1260  .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1261  .type = AVMEDIA_TYPE_VIDEO,
1262  .id = AV_CODEC_ID_DNXHD,
1263  .priv_data_size = sizeof(DNXHDEncContext),
1265  .encode2 = dnxhd_encode_picture,
1266  .close = dnxhd_encode_end,
1267  .capabilities = AV_CODEC_CAP_SLICE_THREADS,
1268  .pix_fmts = (const enum AVPixelFormat[]) {
1272  },
1273  .priv_class = &dnxhd_class,
1274  .defaults = dnxhd_defaults,
1276 };
#define FF_PROFILE_DNXHD
Definition: avcodec.h:3197
static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
Definition: dnxhdenc.c:593
#define MASK_ABS(mask, level)
Definition: mathops.h:164
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
IDCTDSPContext idsp
Definition: mpegvideo.h:227
static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
Definition: dnxhdenc.c:1045
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:771
attribute_deprecated int intra_quant_bias
Definition: avcodec.h:2205
static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
Definition: dnxhdenc.c:622
RCCMPEntry * mb_cmp_tmp
Definition: dnxhdenc.h:99
static int shift(int a, int b)
Definition: sonic.c:82
RCEntry * mb_rc
Definition: dnxhdenc.h:100
This structure describes decoded (raw) audio or video data.
Definition: frame.h:184
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:157
const uint8_t * dc_bits
Definition: dnxhddata.h:52
AVOption.
Definition: opt.h:246
int ff_side_data_set_encoder_stats(AVPacket *pkt, int quality, int64_t *error, int error_count, int pict_type)
Definition: avpacket.c:647
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
void(* clear_block)(int16_t *block)
Definition: blockdsp.h:35
#define AV_CODEC_FLAG_INTERLACED_DCT
Use interlaced DCT.
Definition: avcodec.h:874
#define LAMBDA_FRAC_BITS
Definition: dnxhdenc.c:43
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:206
const uint8_t * luma_weight
Definition: dnxhddata.h:51
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
uint16_t(* q_chroma_intra_matrix16)[2][64]
Definition: mpegvideo.h:328
int(* qmatrix_l)[64]
Definition: dnxhdenc.h:78
int num
Numerator.
Definition: rational.h:59
const CIDEntry ff_dnxhd_cid_table[]
Definition: dnxhddata.c:935
const uint16_t * run_codes
Definition: dnxhddata.h:55
static const AVClass dnxhd_class
Definition: dnxhdenc.c:70
void ff_convert_matrix(MpegEncContext *s, int(*qmat)[64], uint16_t(*qmat16)[2][64], const uint16_t *quant_matrix, int bias, int qmin, int qmax, int intra)
Definition: mpegvideo_enc.c:89
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1904
unsigned dct_uv_offset
Definition: dnxhdenc.h:59
static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
Definition: dnxhdenc.c:509
static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:146
mpegvideo header.
uint8_t permutated[64]
Definition: idctdsp.h:31
int ff_dnxhd_find_cid(AVCodecContext *avctx, int bit_depth)
Definition: dnxhddata.c:1139
uint8_t run
Definition: svq3.c:206
static AVPacket pkt
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:3078
int mb_num
number of MBs of a picture
Definition: mpegvideo.h:130
av_cold void ff_fdctdsp_init(FDCTDSPContext *c, AVCodecContext *avctx)
Definition: fdctdsp.c:26
struct DNXHDEncContext * thread[MAX_THREADS]
Definition: dnxhdenc.h:54
int profile
profile
Definition: avcodec.h:3182
#define sample
int av_log2_16bit(unsigned v)
Definition: intmath.c:31
AVCodec.
Definition: avcodec.h:3601
static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
Definition: dnxhdenc.c:603
int h263_aic
Advanced INTRA Coding (AIC)
Definition: mpegvideo.h:84
Macro definitions for various function/variable attributes.
static int16_t block[64]
Definition: dct.c:113
int coding_unit_size
Definition: dnxhdenc.h:63
int intra_quant_bias
Definition: dnxhdenc.h:71
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
int16_t blocks[8][64]
Definition: dnxhdenc.h:73
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
void ff_block_permute(int16_t *block, uint8_t *permutation, const uint8_t *scantable, int last)
Permute an 8x8 block according to permutation.
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
uint8_t bits
Definition: crc.c:296
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
void(* get_pixels_8x4_sym)(int16_t *, const uint8_t *, ptrdiff_t)
Definition: dnxhdenc.h:102
#define mb
void(* get_pixels)(int16_t *block, const uint8_t *pixels, ptrdiff_t line_size)
Definition: pixblockdsp.h:27
AVOptions.
static int get_bucket(int value, int shift)
Definition: dnxhdenc.c:1038
const AVProfile ff_dnxhd_profiles[]
Definition: profiles.c:49
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
Definition: dnxhdenc.c:1090
uint32_t * slice_size
Definition: dnxhdenc.h:51
int(* qmatrix_c)[64]
Definition: dnxhdenc.h:77
#define RADIX_PASSES
Definition: dnxhdenc.c:1035
uint32_t * slice_offs
Definition: dnxhdenc.h:52
int(* q_chroma_intra_matrix)[64]
Definition: mpegvideo.h:324
unsigned qscale
Definition: dnxhdenc.h:92
static AVFrame * frame
static int dnxhd_get_hr_frame_size(const CIDEntry *profile, int mb_num)
Definition: dnxhdenc.c:306
uint8_t * data
Definition: avcodec.h:1601
static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
Definition: dnxhdenc.c:1066
const uint8_t * run_bits
Definition: dnxhddata.h:56
#define BUCKET_BITS
Definition: dnxhdenc.c:1034
const uint8_t * scantable
Definition: idctdsp.h:30
int interlaced_frame
The content of the picture is interlaced.
Definition: frame.h:322
av_cold void ff_mpv_idct_init(MpegEncContext *s)
Definition: mpegvideo.c:330
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:126
static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
Definition: dnxhdenc.c:207
unsigned int coding_unit_size
Definition: dnxhddata.h:46
ptrdiff_t size
Definition: opengl_enc.c:101
high precision timer, useful to profile code
#define AV_WB16(p, v)
Definition: intreadwrite.h:405
BlockDSPContext bdsp
Definition: dnxhdenc.h:44
#define av_log(a,...)
static int first_field(const struct video_data *s)
Definition: v4l2.c:228
static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
Definition: dnxhdenc.c:1223
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: avcodec.h:1633
const uint8_t * ac_bits
Definition: dnxhddata.h:54
const uint8_t * ac_info
Definition: dnxhddata.h:54
int(* q_intra_matrix)[64]
precomputed matrix (combine qscale and DCT renorm)
Definition: mpegvideo.h:323
static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
Definition: dnxhdenc.c:706
const uint16_t * ac_codes
Definition: dnxhddata.h:53
static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:712
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ff_dnxhd_get_cid_table(int cid)
Definition: dnxhddata.c:1090
int last_dc[3]
last DC values for MPEG-1
Definition: mpegvideo.h:182
static int dnxhd_find_qscale(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:973
AVRational packet_scale
Definition: dnxhddata.h:59
#define FF_SIGNBIT(x)
Definition: internal.h:75
av_default_item_name
#define AVERROR(e)
Definition: error.h:43
#define RC_VARIANCE
Definition: dnxhdenc.c:42
int qmax
maximum quantizer
Definition: avcodec.h:2626
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:176
AVCodec ff_dnxhd_encoder
Definition: dnxhdenc.c:1258
static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)
Definition: dnxhdenc.c:550
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
PixblockDSPContext pdsp
Definition: mpegvideo.h:231
const char * arg
Definition: jacosubdec.c:66
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1771
static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
Definition: dnxhdenc.c:473
const uint8_t * dc_codes
Definition: dnxhddata.h:52
MpegvideoEncDSPContext mpvencdsp
Definition: mpegvideo.h:230
const char * name
Name of the codec implementation.
Definition: avcodec.h:3608
#define FF_PROFILE_DNXHR_LB
Definition: avcodec.h:3198
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
av_cold void ff_pixblockdsp_init(PixblockDSPContext *c, AVCodecContext *avctx)
Definition: pixblockdsp.c:81
#define fail()
Definition: checkasm.h:84
int flags
A combination of AV_PKT_FLAG values.
Definition: avcodec.h:1607
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:85
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:66
#define pass
Definition: fft_template.c:532
const uint8_t * chroma_weight
Definition: dnxhddata.h:51
uint16_t * run_codes
Definition: dnxhdenc.h:87
common internal API header
#define MAX_THREADS
static const AVOption options[]
Definition: dnxhdenc.c:46
static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t line_size)
Definition: dnxhdenc.c:77
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:258
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
static const AVCodecDefault dnxhd_defaults[]
Definition: dnxhdenc.c:1253
MpegEncContext m
Used for quantization dsp functions.
Definition: dnxhdenc.h:45
#define FFMIN(a, b)
Definition: common.h:96
static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)
Definition: dnxhdenc.c:524
uint8_t * run_bits
Definition: dnxhdenc.h:88
int width
picture width / height.
Definition: avcodec.h:1863
const uint8_t * run
Definition: dnxhddata.h:56
int(* pix_sum)(uint8_t *pix, int line_size)
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth)
Definition: af_astats.c:150
unsigned frame_bits
Definition: dnxhdenc.h:82
AVFormatContext * ctx
Definition: movenc.c:48
static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, ptrdiff_t line_size)
Definition: dnxhdenc.c:101
uint16_t(* q_intra_matrix16)[2][64]
identical to the above but for MMX & these are not permutated, second 64 entries are bias ...
Definition: mpegvideo.h:327
uint16_t(* qmatrix_l16)[2][64]
Definition: dnxhdenc.h:79
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
Definition: frame.h:298
ScanTable scantable
Definition: dnxhddec.c:66
uint8_t * msip
Macroblock Scan Indexes Payload.
Definition: dnxhdenc.h:50
int n
Definition: avisynth_c.h:684
uint8_t idct_permutation[64]
IDCT input permutation.
Definition: idctdsp.h:94
int value
Definition: dnxhdenc.h:34
int mb_decision
macroblock decision mode
Definition: avcodec.h:2239
void ff_dnxhd_print_profiles(AVCodecContext *avctx, int loglevel)
Definition: dnxhddata.c:1169
#define FF_PROFILE_DNXHR_HQ
Definition: avcodec.h:3200
uint8_t * vlc_bits
Definition: dnxhdenc.h:86
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:3108
int ff_dct_quantize_c(MpegEncContext *s, int16_t *block, int n, int qscale, int *overflow)
static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
Definition: dnxhdenc.c:892
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:1026
int bit_depth
Definition: dnxhddata.h:49
int index_bits
Definition: dnxhddata.h:48
Libavcodec external API header.
static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block, int n, int qscale, int *overflow)
Definition: dnxhdenc.c:115
ptrdiff_t linesize
line size, in bytes, may be different from width
Definition: mpegvideo.h:131
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
Definition: blockdsp.c:58
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:215
static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
Definition: dnxhdenc.c:1153
void(* fdct)(int16_t *block)
Definition: fdctdsp.h:27
main external API structure.
Definition: avcodec.h:1676
unsigned block_width_l2
Definition: dnxhdenc.h:60
ScanTable intra_scantable
Definition: mpegvideo.h:88
#define FF_DEFAULT_QUANT_BIAS
Definition: avcodec.h:2206
int ff_dct_encode_init(MpegEncContext *s)
static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:287
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
Definition: avcodec.h:1708
unsigned lambda
Definition: dnxhdenc.h:93
FDCTDSPContext fdsp
Definition: mpegvideo.h:224
uint8_t edge_buf_y[256]
Definition: dnxhdenc.h:74
void * buf
Definition: avisynth_c.h:690
void ff_dnxhdenc_init_x86(DNXHDEncContext *ctx)
Definition: dnxhdenc_init.c:31
Describe the class of an AVClass context structure.
Definition: log.h:67
int(* pix_norm1)(uint8_t *pix, int line_size)
#define AV_WB32(p, v)
Definition: intreadwrite.h:419
int index
Definition: gxfenc.c:89
#define FF_MB_DECISION_RD
rate distortion
Definition: avcodec.h:2242
#define NBUCKETS
Definition: dnxhdenc.c:1036
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
ptrdiff_t uvlinesize
line size, for chroma in bytes, may be different from width
Definition: mpegvideo.h:132
int ssd
Definition: dnxhdenc.h:38
static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
Definition: dnxhdenc.c:805
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: utils.c:1722
#define FF_PROFILE_DNXHR_SQ
Definition: avcodec.h:3199
const CIDEntry * cid_table
Definition: dnxhdenc.h:49
uint16_t(* qmatrix_c16)[2][64]
Definition: dnxhdenc.h:80
unsigned dct_y_offset
Definition: dnxhdenc.h:58
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:262
unsigned min_padding
Definition: dnxhdenc.h:70
mfxU16 profile
Definition: qsvenc.c:44
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
Definition: dnxhdenc.c:1134
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:352
#define DNX10BIT_QMAT_SHIFT
Definition: dnxhdenc.c:41
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:198
unsigned int frame_size
Definition: dnxhddata.h:45
uint8_t level
Definition: svq3.c:207
uint16_t * mb_bits
Definition: dnxhdenc.h:95
MpegEncContext.
Definition: mpegvideo.h:78
struct AVCodecContext * avctx
Definition: mpegvideo.h:95
PutBitContext pb
bit output
Definition: mpegvideo.h:148
static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:824
#define DNXHD_VARIABLE
Indicate that a CIDEntry value must be read in the bitstream.
Definition: dnxhddata.h:40
#define FF_PROFILE_DNXHR_HQX
Definition: avcodec.h:3201
static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: dnxhdenc.c:768
static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
Definition: dnxhdenc.c:312
#define VE
Definition: dnxhdenc.c:45
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:80
common internal api header.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:101
attribute_deprecated AVFrame * coded_frame
the picture in the bitstream
Definition: avcodec.h:3099
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
int den
Denominator.
Definition: rational.h:60
#define FF_PROFILE_DNXHR_444
Definition: avcodec.h:3202
void * priv_data
Definition: avcodec.h:1718
static av_always_inline int diff(const uint32_t a, const uint32_t b)
#define av_free(p)
RCCMPEntry * mb_cmp
Definition: dnxhdenc.h:98
int pixels
Definition: avisynth_c.h:429
VideoDSPContext vdsp
Definition: mpegvideo.h:233
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:81
static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
Definition: dnxhdenc.c:1078
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: frame.h:327
int nitris_compat
Definition: dnxhdenc.h:69
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:3168
int bits
Definition: dnxhdenc.h:39
static uint8_t tmp[8]
Definition: des.c:38
AVCodecContext * avctx
Definition: dnxhddec.c:52
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:253
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
Definition: avutil.h:221
uint8_t edge_buf_uv[2][128]
Definition: dnxhdenc.h:75
const CIDEntry * cid_table
Definition: dnxhddec.c:67
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:121
#define av_freep(p)
#define av_always_inline
Definition: attributes.h:39
int(* dct_quantize)(struct MpegEncContext *s, int16_t *block, int n, int qscale, int *overflow)
Definition: mpegvideo.h:521
uint16_t mb
Definition: dnxhdenc.h:33
#define MKTAG(a, b, c, d)
Definition: common.h:342
float min
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
This structure stores compressed data.
Definition: avcodec.h:1578
uint32_t * vlc_codes
Definition: dnxhdenc.h:85
for(j=16;j >0;--j)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:139
uint8_t * src[3]
Definition: dnxhdenc.h:83
uint8_t * mb_qscale
Definition: dnxhdenc.h:96
enum idct_permutation_type perm_type
Definition: idctdsp.h:95
void(* idct)(int16_t *block)
Definition: idctdsp.h:63