FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_MMAP
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
136  [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
137  [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
138  [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
139  [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
140  [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
141  [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
142  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
143  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
144  [AV_PIX_FMT_YUV440P] = { 1, 1 },
145  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
146  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
147  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
148  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
149  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
151  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
152  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
153  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
154  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
155  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
156  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
157  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
158  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
159  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
163  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
164  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
165  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
166  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
167  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
168  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
169  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
170  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
171  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
172  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
173  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
174  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
175  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
176  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
177  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
178  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
179  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
180  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
181  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
182  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
183  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
185  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
186  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
187  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
188  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
189  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
190  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
191  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
192  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
193  [AV_PIX_FMT_YA8] = { 1, 1 },
194  [AV_PIX_FMT_YA16BE] = { 1, 0 },
195  [AV_PIX_FMT_YA16LE] = { 1, 0 },
196  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
197  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
198  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
199  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
200  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
216  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
217  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
218  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
219  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
220  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
221  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
222  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
223  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
224  [AV_PIX_FMT_GBRP] = { 1, 1 },
225  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
228  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
229  [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
231  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
232  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
233  [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
234  [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
235  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
236  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
237  [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
238  [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
239  [AV_PIX_FMT_GBRAP] = { 1, 1 },
240  [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
241  [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
242  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
243  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
244  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
245  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
246  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
247  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
248  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
249  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
250  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
251  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
252  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
253  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
254  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
255  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
256  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
257  [AV_PIX_FMT_P010LE] = { 1, 1 },
258  [AV_PIX_FMT_P010BE] = { 1, 1 },
259  [AV_PIX_FMT_P016LE] = { 1, 1 },
260  [AV_PIX_FMT_P016BE] = { 1, 1 },
261 };
262 
264 {
265  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
266  format_entries[pix_fmt].is_supported_in : 0;
267 }
268 
270 {
271  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
272  format_entries[pix_fmt].is_supported_out : 0;
273 }
274 
276 {
277  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
278  format_entries[pix_fmt].is_supported_endianness : 0;
279 }
280 
281 static double getSplineCoeff(double a, double b, double c, double d,
282  double dist)
283 {
284  if (dist <= 1.0)
285  return ((d * dist + c) * dist + b) * dist + a;
286  else
287  return getSplineCoeff(0.0,
288  b + 2.0 * c + 3.0 * d,
289  c + 3.0 * d,
290  -b - 3.0 * c - 6.0 * d,
291  dist - 1.0);
292 }
293 
294 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
295 {
296  if (pos == -1 || pos <= -513) {
297  pos = (128 << chr_subsample) - 128;
298  }
299  pos += 128; // relative to ideal left edge
300  return pos >> chr_subsample;
301 }
302 
303 typedef struct {
304  int flag; ///< flag associated to the algorithm
305  const char *description; ///< human-readable description
306  int size_factor; ///< size factor used when initing the filters
308 
310  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
311  { SWS_BICUBIC, "bicubic", 4 },
312  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
313  { SWS_BILINEAR, "bilinear", 2 },
314  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
315  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
316  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
317  { SWS_POINT, "nearest neighbor / point", -1 },
318  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
319  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
320  { SWS_X, "experimental", 8 },
321 };
322 
323 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
324  int *outFilterSize, int xInc, int srcW,
325  int dstW, int filterAlign, int one,
326  int flags, int cpu_flags,
327  SwsVector *srcFilter, SwsVector *dstFilter,
328  double param[2], int srcPos, int dstPos)
329 {
330  int i;
331  int filterSize;
332  int filter2Size;
333  int minFilterSize;
334  int64_t *filter = NULL;
335  int64_t *filter2 = NULL;
336  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
337  int ret = -1;
338 
339  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
340 
341  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
342  FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
343 
344  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
345  int i;
346  filterSize = 1;
348  dstW, sizeof(*filter) * filterSize, fail);
349 
350  for (i = 0; i < dstW; i++) {
351  filter[i * filterSize] = fone;
352  (*filterPos)[i] = i;
353  }
354  } else if (flags & SWS_POINT) { // lame looking point sampling mode
355  int i;
356  int64_t xDstInSrc;
357  filterSize = 1;
359  dstW, sizeof(*filter) * filterSize, fail);
360 
361  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
362  for (i = 0; i < dstW; i++) {
363  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
364 
365  (*filterPos)[i] = xx;
366  filter[i] = fone;
367  xDstInSrc += xInc;
368  }
369  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
370  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
371  int i;
372  int64_t xDstInSrc;
373  filterSize = 2;
375  dstW, sizeof(*filter) * filterSize, fail);
376 
377  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
378  for (i = 0; i < dstW; i++) {
379  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
380  int j;
381 
382  (*filterPos)[i] = xx;
383  // bilinear upscale / linear interpolate / area averaging
384  for (j = 0; j < filterSize; j++) {
385  int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
386  if (coeff < 0)
387  coeff = 0;
388  filter[i * filterSize + j] = coeff;
389  xx++;
390  }
391  xDstInSrc += xInc;
392  }
393  } else {
394  int64_t xDstInSrc;
395  int sizeFactor = -1;
396 
397  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
398  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
399  sizeFactor = scale_algorithms[i].size_factor;
400  break;
401  }
402  }
403  if (flags & SWS_LANCZOS)
404  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
405  av_assert0(sizeFactor > 0);
406 
407  if (xInc <= 1 << 16)
408  filterSize = 1 + sizeFactor; // upscale
409  else
410  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
411 
412  filterSize = FFMIN(filterSize, srcW - 2);
413  filterSize = FFMAX(filterSize, 1);
414 
416  dstW, sizeof(*filter) * filterSize, fail);
417 
418  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
419  for (i = 0; i < dstW; i++) {
420  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
421  int j;
422  (*filterPos)[i] = xx;
423  for (j = 0; j < filterSize; j++) {
424  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
425  double floatd;
426  int64_t coeff;
427 
428  if (xInc > 1 << 16)
429  d = d * dstW / srcW;
430  floatd = d * (1.0 / (1 << 30));
431 
432  if (flags & SWS_BICUBIC) {
433  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
434  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
435 
436  if (d >= 1LL << 31) {
437  coeff = 0.0;
438  } else {
439  int64_t dd = (d * d) >> 30;
440  int64_t ddd = (dd * d) >> 30;
441 
442  if (d < 1LL << 30)
443  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
444  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
445  (6 * (1 << 24) - 2 * B) * (1 << 30);
446  else
447  coeff = (-B - 6 * C) * ddd +
448  (6 * B + 30 * C) * dd +
449  (-12 * B - 48 * C) * d +
450  (8 * B + 24 * C) * (1 << 30);
451  }
452  coeff /= (1LL<<54)/fone;
453  } else if (flags & SWS_X) {
454  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
455  double c;
456 
457  if (floatd < 1.0)
458  c = cos(floatd * M_PI);
459  else
460  c = -1.0;
461  if (c < 0.0)
462  c = -pow(-c, A);
463  else
464  c = pow(c, A);
465  coeff = (c * 0.5 + 0.5) * fone;
466  } else if (flags & SWS_AREA) {
467  int64_t d2 = d - (1 << 29);
468  if (d2 * xInc < -(1LL << (29 + 16)))
469  coeff = 1.0 * (1LL << (30 + 16));
470  else if (d2 * xInc < (1LL << (29 + 16)))
471  coeff = -d2 * xInc + (1LL << (29 + 16));
472  else
473  coeff = 0.0;
474  coeff *= fone >> (30 + 16);
475  } else if (flags & SWS_GAUSS) {
476  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
477  coeff = exp2(-p * floatd * floatd) * fone;
478  } else if (flags & SWS_SINC) {
479  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
480  } else if (flags & SWS_LANCZOS) {
481  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
482  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
483  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
484  if (floatd > p)
485  coeff = 0;
486  } else if (flags & SWS_BILINEAR) {
487  coeff = (1 << 30) - d;
488  if (coeff < 0)
489  coeff = 0;
490  coeff *= fone >> 30;
491  } else if (flags & SWS_SPLINE) {
492  double p = -2.196152422706632;
493  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
494  } else {
495  av_assert0(0);
496  }
497 
498  filter[i * filterSize + j] = coeff;
499  xx++;
500  }
501  xDstInSrc += 2 * xInc;
502  }
503  }
504 
505  /* apply src & dst Filter to filter -> filter2
506  * av_free(filter);
507  */
508  av_assert0(filterSize > 0);
509  filter2Size = filterSize;
510  if (srcFilter)
511  filter2Size += srcFilter->length - 1;
512  if (dstFilter)
513  filter2Size += dstFilter->length - 1;
514  av_assert0(filter2Size > 0);
515  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
516 
517  for (i = 0; i < dstW; i++) {
518  int j, k;
519 
520  if (srcFilter) {
521  for (k = 0; k < srcFilter->length; k++) {
522  for (j = 0; j < filterSize; j++)
523  filter2[i * filter2Size + k + j] +=
524  srcFilter->coeff[k] * filter[i * filterSize + j];
525  }
526  } else {
527  for (j = 0; j < filterSize; j++)
528  filter2[i * filter2Size + j] = filter[i * filterSize + j];
529  }
530  // FIXME dstFilter
531 
532  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
533  }
534  av_freep(&filter);
535 
536  /* try to reduce the filter-size (step1 find size and shift left) */
537  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
538  minFilterSize = 0;
539  for (i = dstW - 1; i >= 0; i--) {
540  int min = filter2Size;
541  int j;
542  int64_t cutOff = 0.0;
543 
544  /* get rid of near zero elements on the left by shifting left */
545  for (j = 0; j < filter2Size; j++) {
546  int k;
547  cutOff += FFABS(filter2[i * filter2Size]);
548 
549  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
550  break;
551 
552  /* preserve monotonicity because the core can't handle the
553  * filter otherwise */
554  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
555  break;
556 
557  // move filter coefficients left
558  for (k = 1; k < filter2Size; k++)
559  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
560  filter2[i * filter2Size + k - 1] = 0;
561  (*filterPos)[i]++;
562  }
563 
564  cutOff = 0;
565  /* count near zeros on the right */
566  for (j = filter2Size - 1; j > 0; j--) {
567  cutOff += FFABS(filter2[i * filter2Size + j]);
568 
569  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
570  break;
571  min--;
572  }
573 
574  if (min > minFilterSize)
575  minFilterSize = min;
576  }
577 
578  if (PPC_ALTIVEC(cpu_flags)) {
579  // we can handle the special case 4, so we don't want to go the full 8
580  if (minFilterSize < 5)
581  filterAlign = 4;
582 
583  /* We really don't want to waste our time doing useless computation, so
584  * fall back on the scalar C code for very small filters.
585  * Vectorizing is worth it only if you have a decent-sized vector. */
586  if (minFilterSize < 3)
587  filterAlign = 1;
588  }
589 
590  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
591  // special case for unscaled vertical filtering
592  if (minFilterSize == 1 && filterAlign == 2)
593  filterAlign = 1;
594  }
595 
596  av_assert0(minFilterSize > 0);
597  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
598  av_assert0(filterSize > 0);
599  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
600  if (!filter)
601  goto fail;
602  if (filterSize >= MAX_FILTER_SIZE * 16 /
603  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
604  ret = RETCODE_USE_CASCADE;
605  goto fail;
606  }
607  *outFilterSize = filterSize;
608 
609  if (flags & SWS_PRINT_INFO)
611  "SwScaler: reducing / aligning filtersize %d -> %d\n",
612  filter2Size, filterSize);
613  /* try to reduce the filter-size (step2 reduce it) */
614  for (i = 0; i < dstW; i++) {
615  int j;
616 
617  for (j = 0; j < filterSize; j++) {
618  if (j >= filter2Size)
619  filter[i * filterSize + j] = 0;
620  else
621  filter[i * filterSize + j] = filter2[i * filter2Size + j];
622  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
623  filter[i * filterSize + j] = 0;
624  }
625  }
626 
627  // FIXME try to align filterPos if possible
628 
629  // fix borders
630  for (i = 0; i < dstW; i++) {
631  int j;
632  if ((*filterPos)[i] < 0) {
633  // move filter coefficients left to compensate for filterPos
634  for (j = 1; j < filterSize; j++) {
635  int left = FFMAX(j + (*filterPos)[i], 0);
636  filter[i * filterSize + left] += filter[i * filterSize + j];
637  filter[i * filterSize + j] = 0;
638  }
639  (*filterPos)[i]= 0;
640  }
641 
642  if ((*filterPos)[i] + filterSize > srcW) {
643  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
644  int64_t acc = 0;
645 
646  for (j = filterSize - 1; j >= 0; j--) {
647  if ((*filterPos)[i] + j >= srcW) {
648  acc += filter[i * filterSize + j];
649  filter[i * filterSize + j] = 0;
650  }
651  }
652  for (j = filterSize - 1; j >= 0; j--) {
653  if (j < shift) {
654  filter[i * filterSize + j] = 0;
655  } else {
656  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
657  }
658  }
659 
660  (*filterPos)[i]-= shift;
661  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
662  }
663  av_assert0((*filterPos)[i] >= 0);
664  av_assert0((*filterPos)[i] < srcW);
665  if ((*filterPos)[i] + filterSize > srcW) {
666  for (j = 0; j < filterSize; j++) {
667  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
668  }
669  }
670  }
671 
672  // Note the +1 is for the MMX scaler which reads over the end
673  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
674  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
675  (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
676 
677  /* normalize & store in outFilter */
678  for (i = 0; i < dstW; i++) {
679  int j;
680  int64_t error = 0;
681  int64_t sum = 0;
682 
683  for (j = 0; j < filterSize; j++) {
684  sum += filter[i * filterSize + j];
685  }
686  sum = (sum + one / 2) / one;
687  if (!sum) {
688  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
689  sum = 1;
690  }
691  for (j = 0; j < *outFilterSize; j++) {
692  int64_t v = filter[i * filterSize + j] + error;
693  int intV = ROUNDED_DIV(v, sum);
694  (*outFilter)[i * (*outFilterSize) + j] = intV;
695  error = v - intV * sum;
696  }
697  }
698 
699  (*filterPos)[dstW + 0] =
700  (*filterPos)[dstW + 1] =
701  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
702  * read over the end */
703  for (i = 0; i < *outFilterSize; i++) {
704  int k = (dstW - 1) * (*outFilterSize) + i;
705  (*outFilter)[k + 1 * (*outFilterSize)] =
706  (*outFilter)[k + 2 * (*outFilterSize)] =
707  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
708  }
709 
710  ret = 0;
711 
712 fail:
713  if(ret < 0)
714  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
715  av_free(filter);
716  av_free(filter2);
717  return ret;
718 }
719 
720 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
721 {
722  int64_t W, V, Z, Cy, Cu, Cv;
723  int64_t vr = table[0];
724  int64_t ub = table[1];
725  int64_t ug = -table[2];
726  int64_t vg = -table[3];
727  int64_t ONE = 65536;
728  int64_t cy = ONE;
730  int i;
731  static const int8_t map[] = {
732  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
733  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
734  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
735  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
736  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
737  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
738  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
739  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
740  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
741  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
742  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
743  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
746  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
747  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
750  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
751  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
754  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
755  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
756  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
757  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
758  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
759  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
760  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
761  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
762  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
763  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
764  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
765  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
766  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
767  };
768 
769  dstRange = 0; //FIXME range = 1 is handled elsewhere
770 
771  if (!dstRange) {
772  cy = cy * 255 / 219;
773  } else {
774  vr = vr * 224 / 255;
775  ub = ub * 224 / 255;
776  ug = ug * 224 / 255;
777  vg = vg * 224 / 255;
778  }
779  W = ROUNDED_DIV(ONE*ONE*ug, ub);
780  V = ROUNDED_DIV(ONE*ONE*vg, vr);
781  Z = ONE*ONE-W-V;
782 
783  Cy = ROUNDED_DIV(cy*Z, ONE);
784  Cu = ROUNDED_DIV(ub*Z, ONE);
785  Cv = ROUNDED_DIV(vr*Z, ONE);
786 
787  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
788  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
789  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
790 
791  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
792  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
793  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
794 
795  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
796  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
797  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
798 
799  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
800  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
801  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
802  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
803  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
804  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
805  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
806  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
807  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
808  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
809  }
810  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
811  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
812 }
813 
814 static void fill_xyztables(struct SwsContext *c)
815 {
816  int i;
817  double xyzgamma = XYZ_GAMMA;
818  double rgbgamma = 1.0 / RGB_GAMMA;
819  double xyzgammainv = 1.0 / XYZ_GAMMA;
820  double rgbgammainv = RGB_GAMMA;
821  static const int16_t xyz2rgb_matrix[3][4] = {
822  {13270, -6295, -2041},
823  {-3969, 7682, 170},
824  { 228, -835, 4329} };
825  static const int16_t rgb2xyz_matrix[3][4] = {
826  {1689, 1464, 739},
827  { 871, 2929, 296},
828  { 79, 488, 3891} };
829  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
830 
831  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
832  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
833  c->xyzgamma = xyzgamma_tab;
834  c->rgbgamma = rgbgamma_tab;
835  c->xyzgammainv = xyzgammainv_tab;
836  c->rgbgammainv = rgbgammainv_tab;
837 
838  if (rgbgamma_tab[4095])
839  return;
840 
841  /* set gamma vectors */
842  for (i = 0; i < 4096; i++) {
843  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
844  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
845  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
846  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
847  }
848 }
849 
850 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
851  int srcRange, const int table[4], int dstRange,
852  int brightness, int contrast, int saturation)
853 {
854  const AVPixFmtDescriptor *desc_dst;
855  const AVPixFmtDescriptor *desc_src;
856  int need_reinit = 0;
857 
858  handle_formats(c);
859  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
860  desc_src = av_pix_fmt_desc_get(c->srcFormat);
861 
862  if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
863  dstRange = 0;
864  if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
865  srcRange = 0;
866 
867  if (c->srcRange != srcRange ||
868  c->dstRange != dstRange ||
869  c->brightness != brightness ||
870  c->contrast != contrast ||
871  c->saturation != saturation ||
872  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
873  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
874  )
875  need_reinit = 1;
876 
877  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
878  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
879 
880 
881 
882  c->brightness = brightness;
883  c->contrast = contrast;
884  c->saturation = saturation;
885  c->srcRange = srcRange;
886  c->dstRange = dstRange;
887 
888  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
889  //and what we have in ticket 2939 looks better with this check
890  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
892 
893  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
894  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
895 
897  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
898 
899  if (!need_reinit)
900  return 0;
901 
902  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
903  if (!c->cascaded_context[0] &&
904  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
905  c->srcW && c->srcH && c->dstW && c->dstH) {
906  enum AVPixelFormat tmp_format;
907  int tmp_width, tmp_height;
908  int srcW = c->srcW;
909  int srcH = c->srcH;
910  int dstW = c->dstW;
911  int dstH = c->dstH;
912  int ret;
913  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
914 
915  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
916  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
917  tmp_format = AV_PIX_FMT_BGRA64;
918  } else {
919  tmp_format = AV_PIX_FMT_BGR48;
920  }
921  } else {
922  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
923  tmp_format = AV_PIX_FMT_BGRA;
924  } else {
925  tmp_format = AV_PIX_FMT_BGR24;
926  }
927  }
928 
929  if (srcW*srcH > dstW*dstH) {
930  tmp_width = dstW;
931  tmp_height = dstH;
932  } else {
933  tmp_width = srcW;
934  tmp_height = srcH;
935  }
936 
938  tmp_width, tmp_height, tmp_format, 64);
939  if (ret < 0)
940  return ret;
941 
942  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
943  tmp_width, tmp_height, tmp_format,
944  c->flags, c->param);
945  if (!c->cascaded_context[0])
946  return -1;
947 
949  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
950  if (ret < 0)
951  return ret;
952  //we set both src and dst depending on that the RGB side will be ignored
954  srcRange, table, dstRange,
955  brightness, contrast, saturation);
956 
957  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
958  dstW, dstH, c->dstFormat,
959  c->flags, NULL, NULL, c->param);
960  if (!c->cascaded_context[1])
961  return -1;
963  srcRange, table, dstRange,
964  0, 1 << 16, 1 << 16);
965  return 0;
966  }
967  return -1;
968  }
969 
970  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
971  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
972  contrast, saturation);
973  // FIXME factorize
974 
975  if (ARCH_PPC)
976  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
977  contrast, saturation);
978  }
979 
980  fill_rgb2yuv_table(c, table, dstRange);
981 
982  return 0;
983 }
984 
985 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
986  int *srcRange, int **table, int *dstRange,
987  int *brightness, int *contrast, int *saturation)
988 {
989  if (!c )
990  return -1;
991 
992  *inv_table = c->srcColorspaceTable;
993  *table = c->dstColorspaceTable;
994  *srcRange = c->srcRange;
995  *dstRange = c->dstRange;
996  *brightness = c->brightness;
997  *contrast = c->contrast;
998  *saturation = c->saturation;
999 
1000  return 0;
1001 }
1002 
1004 {
1005  switch (*format) {
1006  case AV_PIX_FMT_YUVJ420P:
1007  *format = AV_PIX_FMT_YUV420P;
1008  return 1;
1009  case AV_PIX_FMT_YUVJ411P:
1010  *format = AV_PIX_FMT_YUV411P;
1011  return 1;
1012  case AV_PIX_FMT_YUVJ422P:
1013  *format = AV_PIX_FMT_YUV422P;
1014  return 1;
1015  case AV_PIX_FMT_YUVJ444P:
1016  *format = AV_PIX_FMT_YUV444P;
1017  return 1;
1018  case AV_PIX_FMT_YUVJ440P:
1019  *format = AV_PIX_FMT_YUV440P;
1020  return 1;
1021  case AV_PIX_FMT_GRAY8:
1022  case AV_PIX_FMT_YA8:
1023  case AV_PIX_FMT_GRAY9LE:
1024  case AV_PIX_FMT_GRAY9BE:
1025  case AV_PIX_FMT_GRAY10LE:
1026  case AV_PIX_FMT_GRAY10BE:
1027  case AV_PIX_FMT_GRAY12LE:
1028  case AV_PIX_FMT_GRAY12BE:
1029  case AV_PIX_FMT_GRAY14LE:
1030  case AV_PIX_FMT_GRAY14BE:
1031  case AV_PIX_FMT_GRAY16LE:
1032  case AV_PIX_FMT_GRAY16BE:
1033  case AV_PIX_FMT_YA16BE:
1034  case AV_PIX_FMT_YA16LE:
1035  return 1;
1036  default:
1037  return 0;
1038  }
1039 }
1040 
1042 {
1043  switch (*format) {
1044  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1045  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1046  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1047  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1048  default: return 0;
1049  }
1050 }
1051 
1053 {
1054  switch (*format) {
1055  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1056  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1057  default: return 0;
1058  }
1059 }
1060 
1062 {
1063  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1064  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1065  c->srcXYZ |= handle_xyz(&c->srcFormat);
1066  c->dstXYZ |= handle_xyz(&c->dstFormat);
1067  if (c->srcXYZ || c->dstXYZ)
1068  fill_xyztables(c);
1069 }
1070 
1072 {
1073  SwsContext *c = av_mallocz(sizeof(SwsContext));
1074 
1075  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1076 
1077  if (c) {
1080  }
1081 
1082  return c;
1083 }
1084 
1085 static uint16_t * alloc_gamma_tbl(double e)
1086 {
1087  int i = 0;
1088  uint16_t * tbl;
1089  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1090  if (!tbl)
1091  return NULL;
1092 
1093  for (i = 0; i < 65536; ++i) {
1094  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1095  }
1096  return tbl;
1097 }
1098 
1100 {
1101  switch(fmt) {
1102  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1103  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1104  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1105  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1106  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1107 
1111 
1112  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1113 
1116 
1119 
1122 
1127 
1128  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1129  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1130 
1149 
1150 // case AV_PIX_FMT_AYUV64LE:
1151 // case AV_PIX_FMT_AYUV64BE:
1152 // case AV_PIX_FMT_PAL8:
1153  default: return AV_PIX_FMT_NONE;
1154  }
1155 }
1156 
1158  SwsFilter *dstFilter)
1159 {
1160  int i;
1161  int usesVFilter, usesHFilter;
1162  int unscaled;
1163  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1164  int srcW = c->srcW;
1165  int srcH = c->srcH;
1166  int dstW = c->dstW;
1167  int dstH = c->dstH;
1168  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1169  int flags, cpu_flags;
1170  enum AVPixelFormat srcFormat = c->srcFormat;
1171  enum AVPixelFormat dstFormat = c->dstFormat;
1172  const AVPixFmtDescriptor *desc_src;
1173  const AVPixFmtDescriptor *desc_dst;
1174  int ret = 0;
1175  enum AVPixelFormat tmpFmt;
1176 
1177  cpu_flags = av_get_cpu_flags();
1178  flags = c->flags;
1179  emms_c();
1180  if (!rgb15to16)
1182 
1183  unscaled = (srcW == dstW && srcH == dstH);
1184 
1185  c->srcRange |= handle_jpeg(&c->srcFormat);
1186  c->dstRange |= handle_jpeg(&c->dstFormat);
1187 
1188  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1189  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1190 
1191  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1192  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1193  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1194  c->dstRange, 0, 1 << 16, 1 << 16);
1195 
1196  handle_formats(c);
1197  srcFormat = c->srcFormat;
1198  dstFormat = c->dstFormat;
1199  desc_src = av_pix_fmt_desc_get(srcFormat);
1200  desc_dst = av_pix_fmt_desc_get(dstFormat);
1201 
1202  // If the source has no alpha then disable alpha blendaway
1203  if (c->src0Alpha)
1205 
1206  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1207  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1208  if (!sws_isSupportedInput(srcFormat)) {
1209  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1210  av_get_pix_fmt_name(srcFormat));
1211  return AVERROR(EINVAL);
1212  }
1213  if (!sws_isSupportedOutput(dstFormat)) {
1214  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1215  av_get_pix_fmt_name(dstFormat));
1216  return AVERROR(EINVAL);
1217  }
1218  }
1219  av_assert2(desc_src && desc_dst);
1220 
1221  i = flags & (SWS_POINT |
1222  SWS_AREA |
1223  SWS_BILINEAR |
1225  SWS_BICUBIC |
1226  SWS_X |
1227  SWS_GAUSS |
1228  SWS_LANCZOS |
1229  SWS_SINC |
1230  SWS_SPLINE |
1231  SWS_BICUBLIN);
1232 
1233  /* provide a default scaler if not set by caller */
1234  if (!i) {
1235  if (dstW < srcW && dstH < srcH)
1236  flags |= SWS_BICUBIC;
1237  else if (dstW > srcW && dstH > srcH)
1238  flags |= SWS_BICUBIC;
1239  else
1240  flags |= SWS_BICUBIC;
1241  c->flags = flags;
1242  } else if (i & (i - 1)) {
1243  av_log(c, AV_LOG_ERROR,
1244  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1245  return AVERROR(EINVAL);
1246  }
1247  /* sanity check */
1248  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1249  /* FIXME check if these are enough and try to lower them after
1250  * fixing the relevant parts of the code */
1251  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1252  srcW, srcH, dstW, dstH);
1253  return AVERROR(EINVAL);
1254  }
1255  if (flags & SWS_FAST_BILINEAR) {
1256  if (srcW < 8 || dstW < 8) {
1257  flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1258  c->flags = flags;
1259  }
1260  }
1261 
1262  if (!dstFilter)
1263  dstFilter = &dummyFilter;
1264  if (!srcFilter)
1265  srcFilter = &dummyFilter;
1266 
1267  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1268  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1269  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1270  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1271  c->vRounder = 4 * 0x0001000100010001ULL;
1272 
1273  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1274  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1275  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1276  (dstFilter->chrV && dstFilter->chrV->length > 1);
1277  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1278  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1279  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1280  (dstFilter->chrH && dstFilter->chrH->length > 1);
1281 
1284 
1285  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1286  if (dstW&1) {
1287  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1288  flags |= SWS_FULL_CHR_H_INT;
1289  c->flags = flags;
1290  }
1291 
1292  if ( c->chrSrcHSubSample == 0
1293  && c->chrSrcVSubSample == 0
1294  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1295  && !(c->flags & SWS_FAST_BILINEAR)
1296  ) {
1297  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1298  flags |= SWS_FULL_CHR_H_INT;
1299  c->flags = flags;
1300  }
1301  }
1302 
1303  if (c->dither == SWS_DITHER_AUTO) {
1304  if (flags & SWS_ERROR_DIFFUSION)
1305  c->dither = SWS_DITHER_ED;
1306  }
1307 
1308  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1309  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1310  dstFormat == AV_PIX_FMT_BGR8 ||
1311  dstFormat == AV_PIX_FMT_RGB8) {
1312  if (c->dither == SWS_DITHER_AUTO)
1314  if (!(flags & SWS_FULL_CHR_H_INT)) {
1316  av_log(c, AV_LOG_DEBUG,
1317  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1318  av_get_pix_fmt_name(dstFormat));
1319  flags |= SWS_FULL_CHR_H_INT;
1320  c->flags = flags;
1321  }
1322  }
1323  if (flags & SWS_FULL_CHR_H_INT) {
1324  if (c->dither == SWS_DITHER_BAYER) {
1325  av_log(c, AV_LOG_DEBUG,
1326  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1327  av_get_pix_fmt_name(dstFormat));
1328  c->dither = SWS_DITHER_ED;
1329  }
1330  }
1331  }
1332  if (isPlanarRGB(dstFormat)) {
1333  if (!(flags & SWS_FULL_CHR_H_INT)) {
1334  av_log(c, AV_LOG_DEBUG,
1335  "%s output is not supported with half chroma resolution, switching to full\n",
1336  av_get_pix_fmt_name(dstFormat));
1337  flags |= SWS_FULL_CHR_H_INT;
1338  c->flags = flags;
1339  }
1340  }
1341 
1342  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1343  * chroma interpolation */
1344  if (flags & SWS_FULL_CHR_H_INT &&
1345  isAnyRGB(dstFormat) &&
1346  !isPlanarRGB(dstFormat) &&
1347  dstFormat != AV_PIX_FMT_RGBA64LE &&
1348  dstFormat != AV_PIX_FMT_RGBA64BE &&
1349  dstFormat != AV_PIX_FMT_BGRA64LE &&
1350  dstFormat != AV_PIX_FMT_BGRA64BE &&
1351  dstFormat != AV_PIX_FMT_RGB48LE &&
1352  dstFormat != AV_PIX_FMT_RGB48BE &&
1353  dstFormat != AV_PIX_FMT_BGR48LE &&
1354  dstFormat != AV_PIX_FMT_BGR48BE &&
1355  dstFormat != AV_PIX_FMT_RGBA &&
1356  dstFormat != AV_PIX_FMT_ARGB &&
1357  dstFormat != AV_PIX_FMT_BGRA &&
1358  dstFormat != AV_PIX_FMT_ABGR &&
1359  dstFormat != AV_PIX_FMT_RGB24 &&
1360  dstFormat != AV_PIX_FMT_BGR24 &&
1361  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1362  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1363  dstFormat != AV_PIX_FMT_BGR8 &&
1364  dstFormat != AV_PIX_FMT_RGB8
1365  ) {
1367  "full chroma interpolation for destination format '%s' not yet implemented\n",
1368  av_get_pix_fmt_name(dstFormat));
1369  flags &= ~SWS_FULL_CHR_H_INT;
1370  c->flags = flags;
1371  }
1372  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1373  c->chrDstHSubSample = 1;
1374 
1375  // drop some chroma lines if the user wants it
1376  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1378  c->chrSrcVSubSample += c->vChrDrop;
1379 
1380  /* drop every other pixel for chroma calculation unless user
1381  * wants full chroma */
1382  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1383  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1384  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1385  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1386  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1387  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1388  srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
1389  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1390  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1391  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1392  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1393  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1394  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1395  (flags & SWS_FAST_BILINEAR)))
1396  c->chrSrcHSubSample = 1;
1397 
1398  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1399  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1400  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1401  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1402  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1403 
1404  FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1405 
1406  c->srcBpc = desc_src->comp[0].depth;
1407  if (c->srcBpc < 8)
1408  c->srcBpc = 8;
1409  c->dstBpc = desc_dst->comp[0].depth;
1410  if (c->dstBpc < 8)
1411  c->dstBpc = 8;
1412  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1413  c->srcBpc = 16;
1414  if (c->dstBpc == 16)
1415  dst_stride <<= 1;
1416 
1417  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1418  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1419  c->chrDstW >= c->chrSrcW &&
1420  (srcW & 15) == 0;
1421  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1422 
1423  && (flags & SWS_FAST_BILINEAR)) {
1424  if (flags & SWS_PRINT_INFO)
1425  av_log(c, AV_LOG_INFO,
1426  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1427  }
1428  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1429  c->canMMXEXTBeUsed = 0;
1430  } else
1431  c->canMMXEXTBeUsed = 0;
1432 
1433  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1434  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1435 
1436  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1437  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1438  * correct scaling.
1439  * n-2 is the last chrominance sample available.
1440  * This is not perfect, but no one should notice the difference, the more
1441  * correct variant would be like the vertical one, but that would require
1442  * some special code for the first and last pixel */
1443  if (flags & SWS_FAST_BILINEAR) {
1444  if (c->canMMXEXTBeUsed) {
1445  c->lumXInc += 20;
1446  c->chrXInc += 20;
1447  }
1448  // we don't use the x86 asm scaler if MMX is available
1449  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1450  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1451  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1452  }
1453  }
1454 
1455  // hardcoded for now
1456  c->gamma_value = 2.2;
1457  tmpFmt = AV_PIX_FMT_RGBA64LE;
1458 
1459 
1460  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1461  SwsContext *c2;
1462  c->cascaded_context[0] = NULL;
1463 
1465  srcW, srcH, tmpFmt, 64);
1466  if (ret < 0)
1467  return ret;
1468 
1469  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1470  srcW, srcH, tmpFmt,
1471  flags, NULL, NULL, c->param);
1472  if (!c->cascaded_context[0]) {
1473  return -1;
1474  }
1475 
1476  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1477  dstW, dstH, tmpFmt,
1478  flags, srcFilter, dstFilter, c->param);
1479 
1480  if (!c->cascaded_context[1])
1481  return -1;
1482 
1483  c2 = c->cascaded_context[1];
1484  c2->is_internal_gamma = 1;
1485  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1486  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1487  if (!c2->gamma || !c2->inv_gamma)
1488  return AVERROR(ENOMEM);
1489 
1490  // is_internal_flag is set after creating the context
1491  // to properly create the gamma convert FilterDescriptor
1492  // we have to re-initialize it
1493  ff_free_filters(c2);
1494  if (ff_init_filters(c2) < 0) {
1495  sws_freeContext(c2);
1496  return -1;
1497  }
1498 
1499  c->cascaded_context[2] = NULL;
1500  if (dstFormat != tmpFmt) {
1502  dstW, dstH, tmpFmt, 64);
1503  if (ret < 0)
1504  return ret;
1505 
1506  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1507  dstW, dstH, dstFormat,
1508  flags, NULL, NULL, c->param);
1509  if (!c->cascaded_context[2])
1510  return -1;
1511  }
1512  return 0;
1513  }
1514 
1515  if (isBayer(srcFormat)) {
1516  if (!unscaled ||
1517  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1518  enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1519 
1521  srcW, srcH, tmpFormat, 64);
1522  if (ret < 0)
1523  return ret;
1524 
1525  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1526  srcW, srcH, tmpFormat,
1527  flags, srcFilter, NULL, c->param);
1528  if (!c->cascaded_context[0])
1529  return -1;
1530 
1531  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1532  dstW, dstH, dstFormat,
1533  flags, NULL, dstFilter, c->param);
1534  if (!c->cascaded_context[1])
1535  return -1;
1536  return 0;
1537  }
1538  }
1539 
1540  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1541  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1542 
1543  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
1544  if (!unscaled ||
1545  dstFormat != tmpFormat ||
1546  usesHFilter || usesVFilter ||
1547  c->srcRange != c->dstRange
1548  ) {
1549  c->cascaded_mainindex = 1;
1551  srcW, srcH, tmpFormat, 64);
1552  if (ret < 0)
1553  return ret;
1554 
1555  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1556  srcW, srcH, tmpFormat,
1557  flags, c->param);
1558  if (!c->cascaded_context[0])
1559  return -1;
1561  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1562  if (ret < 0)
1563  return ret;
1564 
1565  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1566  dstW, dstH, dstFormat,
1567  flags, c->param);
1568  if (!c->cascaded_context[1])
1569  return -1;
1570 
1571  c->cascaded_context[1]->srcRange = c->srcRange;
1572  c->cascaded_context[1]->dstRange = c->dstRange;
1573  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1574  if (ret < 0)
1575  return ret;
1576 
1577  return 0;
1578  }
1579  }
1580 
1581 #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
1582 #define USE_MMAP 1
1583 #else
1584 #define USE_MMAP 0
1585 #endif
1586 
1587  /* precalculate horizontal scaler filter coefficients */
1588  {
1589 #if HAVE_MMXEXT_INLINE
1590 // can't downscale !!!
1591  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1593  NULL, NULL, 8);
1595  NULL, NULL, NULL, 4);
1596 
1597 #if USE_MMAP
1599  PROT_READ | PROT_WRITE,
1600  MAP_PRIVATE | MAP_ANONYMOUS,
1601  -1, 0);
1603  PROT_READ | PROT_WRITE,
1604  MAP_PRIVATE | MAP_ANONYMOUS,
1605  -1, 0);
1606 #elif HAVE_VIRTUALALLOC
1607  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1609  MEM_COMMIT,
1610  PAGE_EXECUTE_READWRITE);
1611  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1613  MEM_COMMIT,
1614  PAGE_EXECUTE_READWRITE);
1615 #else
1618 #endif
1619 
1620 #ifdef MAP_ANONYMOUS
1621  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1622 #else
1624 #endif
1625  {
1626  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1627  return AVERROR(ENOMEM);
1628  }
1629 
1630  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1631  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1632  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1633  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1634 
1636  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1638  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1639 
1640 #if USE_MMAP
1641  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1642  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1643  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1644  goto fail;
1645  }
1646 #endif
1647  } else
1648 #endif /* HAVE_MMXEXT_INLINE */
1649  {
1650  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1651  PPC_ALTIVEC(cpu_flags) ? 8 :
1652  have_neon(cpu_flags) ? 8 : 1;
1653 
1654  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1655  &c->hLumFilterSize, c->lumXInc,
1656  srcW, dstW, filterAlign, 1 << 14,
1657  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1658  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1659  c->param,
1660  get_local_pos(c, 0, 0, 0),
1661  get_local_pos(c, 0, 0, 0))) < 0)
1662  goto fail;
1663  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1664  &c->hChrFilterSize, c->chrXInc,
1665  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1666  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1667  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1668  c->param,
1670  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1671  goto fail;
1672  }
1673  } // initialize horizontal stuff
1674 
1675  /* precalculate vertical scaler filter coefficients */
1676  {
1677  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1678  PPC_ALTIVEC(cpu_flags) ? 8 :
1679  have_neon(cpu_flags) ? 2 : 1;
1680 
1681  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1682  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1683  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1684  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1685  c->param,
1686  get_local_pos(c, 0, 0, 1),
1687  get_local_pos(c, 0, 0, 1))) < 0)
1688  goto fail;
1689  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1690  c->chrYInc, c->chrSrcH, c->chrDstH,
1691  filterAlign, (1 << 12),
1692  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1693  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1694  c->param,
1696  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1697 
1698  goto fail;
1699 
1700 #if HAVE_ALTIVEC
1701  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1702  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1703 
1704  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1705  int j;
1706  short *p = (short *)&c->vYCoeffsBank[i];
1707  for (j = 0; j < 8; j++)
1708  p[j] = c->vLumFilter[i];
1709  }
1710 
1711  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1712  int j;
1713  short *p = (short *)&c->vCCoeffsBank[i];
1714  for (j = 0; j < 8; j++)
1715  p[j] = c->vChrFilter[i];
1716  }
1717 #endif
1718  }
1719 
1720  for (i = 0; i < 4; i++)
1721  FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1722 
1723  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1724 
1725  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1726  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1727  c->uv_offx2 = dst_stride + 16;
1728 
1729  av_assert0(c->chrDstH <= dstH);
1730 
1731  if (flags & SWS_PRINT_INFO) {
1732  const char *scaler = NULL, *cpucaps;
1733 
1734  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1735  if (flags & scale_algorithms[i].flag) {
1736  scaler = scale_algorithms[i].description;
1737  break;
1738  }
1739  }
1740  if (!scaler)
1741  scaler = "ehh flags invalid?!";
1742  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1743  scaler,
1744  av_get_pix_fmt_name(srcFormat),
1745 #ifdef DITHER1XBPP
1746  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1747  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1748  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1749  "dithered " : "",
1750 #else
1751  "",
1752 #endif
1753  av_get_pix_fmt_name(dstFormat));
1754 
1755  if (INLINE_MMXEXT(cpu_flags))
1756  cpucaps = "MMXEXT";
1757  else if (INLINE_AMD3DNOW(cpu_flags))
1758  cpucaps = "3DNOW";
1759  else if (INLINE_MMX(cpu_flags))
1760  cpucaps = "MMX";
1761  else if (PPC_ALTIVEC(cpu_flags))
1762  cpucaps = "AltiVec";
1763  else
1764  cpucaps = "C";
1765 
1766  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1767 
1768  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1769  av_log(c, AV_LOG_DEBUG,
1770  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1771  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1772  av_log(c, AV_LOG_DEBUG,
1773  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1774  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1775  c->chrXInc, c->chrYInc);
1776  }
1777 
1778  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1779  if (unscaled && !usesHFilter && !usesVFilter &&
1781  isALPHA(srcFormat) &&
1782  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1783  alphaless_fmt(srcFormat) == dstFormat
1784  ) {
1786 
1787  if (flags & SWS_PRINT_INFO)
1788  av_log(c, AV_LOG_INFO,
1789  "using alpha blendaway %s -> %s special converter\n",
1790  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1791  return 0;
1792  }
1793 
1794  /* unscaled special cases */
1795  if (unscaled && !usesHFilter && !usesVFilter &&
1796  (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
1798 
1799  if (c->swscale) {
1800  if (flags & SWS_PRINT_INFO)
1801  av_log(c, AV_LOG_INFO,
1802  "using unscaled %s -> %s special converter\n",
1803  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1804  return 0;
1805  }
1806  }
1807 
1808  c->swscale = ff_getSwsFunc(c);
1809  return ff_init_filters(c);
1810 fail: // FIXME replace things by appropriate error codes
1811  if (ret == RETCODE_USE_CASCADE) {
1812  int tmpW = sqrt(srcW * (int64_t)dstW);
1813  int tmpH = sqrt(srcH * (int64_t)dstH);
1814  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1815 
1816  if (isALPHA(srcFormat))
1817  tmpFormat = AV_PIX_FMT_YUVA420P;
1818 
1819  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1820  return AVERROR(EINVAL);
1821 
1823  tmpW, tmpH, tmpFormat, 64);
1824  if (ret < 0)
1825  return ret;
1826 
1827  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1828  tmpW, tmpH, tmpFormat,
1829  flags, srcFilter, NULL, c->param);
1830  if (!c->cascaded_context[0])
1831  return -1;
1832 
1833  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1834  dstW, dstH, dstFormat,
1835  flags, NULL, dstFilter, c->param);
1836  if (!c->cascaded_context[1])
1837  return -1;
1838  return 0;
1839  }
1840  return -1;
1841 }
1842 
1843 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1844  int dstW, int dstH, enum AVPixelFormat dstFormat,
1845  int flags, const double *param)
1846 {
1847  SwsContext *c;
1848 
1849  if (!(c = sws_alloc_context()))
1850  return NULL;
1851 
1852  c->flags = flags;
1853  c->srcW = srcW;
1854  c->srcH = srcH;
1855  c->dstW = dstW;
1856  c->dstH = dstH;
1857  c->srcFormat = srcFormat;
1858  c->dstFormat = dstFormat;
1859 
1860  if (param) {
1861  c->param[0] = param[0];
1862  c->param[1] = param[1];
1863  }
1864 
1865  return c;
1866 }
1867 
1868 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1869  int dstW, int dstH, enum AVPixelFormat dstFormat,
1870  int flags, SwsFilter *srcFilter,
1871  SwsFilter *dstFilter, const double *param)
1872 {
1873  SwsContext *c;
1874 
1875  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1876  dstW, dstH, dstFormat,
1877  flags, param);
1878  if (!c)
1879  return NULL;
1880 
1881  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1882  sws_freeContext(c);
1883  return NULL;
1884  }
1885 
1886  return c;
1887 }
1888 
1889 static int isnan_vec(SwsVector *a)
1890 {
1891  int i;
1892  for (i=0; i<a->length; i++)
1893  if (isnan(a->coeff[i]))
1894  return 1;
1895  return 0;
1896 }
1897 
1898 static void makenan_vec(SwsVector *a)
1899 {
1900  int i;
1901  for (i=0; i<a->length; i++)
1902  a->coeff[i] = NAN;
1903 }
1904 
1905 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1906  float lumaSharpen, float chromaSharpen,
1907  float chromaHShift, float chromaVShift,
1908  int verbose)
1909 {
1910  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1911  if (!filter)
1912  return NULL;
1913 
1914  if (lumaGBlur != 0.0) {
1915  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1916  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1917  } else {
1918  filter->lumH = sws_getIdentityVec();
1919  filter->lumV = sws_getIdentityVec();
1920  }
1921 
1922  if (chromaGBlur != 0.0) {
1923  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1924  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1925  } else {
1926  filter->chrH = sws_getIdentityVec();
1927  filter->chrV = sws_getIdentityVec();
1928  }
1929 
1930  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1931  goto fail;
1932 
1933  if (chromaSharpen != 0.0) {
1934  SwsVector *id = sws_getIdentityVec();
1935  if (!id)
1936  goto fail;
1937  sws_scaleVec(filter->chrH, -chromaSharpen);
1938  sws_scaleVec(filter->chrV, -chromaSharpen);
1939  sws_addVec(filter->chrH, id);
1940  sws_addVec(filter->chrV, id);
1941  sws_freeVec(id);
1942  }
1943 
1944  if (lumaSharpen != 0.0) {
1945  SwsVector *id = sws_getIdentityVec();
1946  if (!id)
1947  goto fail;
1948  sws_scaleVec(filter->lumH, -lumaSharpen);
1949  sws_scaleVec(filter->lumV, -lumaSharpen);
1950  sws_addVec(filter->lumH, id);
1951  sws_addVec(filter->lumV, id);
1952  sws_freeVec(id);
1953  }
1954 
1955  if (chromaHShift != 0.0)
1956  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1957 
1958  if (chromaVShift != 0.0)
1959  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1960 
1961  sws_normalizeVec(filter->chrH, 1.0);
1962  sws_normalizeVec(filter->chrV, 1.0);
1963  sws_normalizeVec(filter->lumH, 1.0);
1964  sws_normalizeVec(filter->lumV, 1.0);
1965 
1966  if (isnan_vec(filter->chrH) ||
1967  isnan_vec(filter->chrV) ||
1968  isnan_vec(filter->lumH) ||
1969  isnan_vec(filter->lumV))
1970  goto fail;
1971 
1972  if (verbose)
1973  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1974  if (verbose)
1975  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1976 
1977  return filter;
1978 
1979 fail:
1980  sws_freeVec(filter->lumH);
1981  sws_freeVec(filter->lumV);
1982  sws_freeVec(filter->chrH);
1983  sws_freeVec(filter->chrV);
1984  av_freep(&filter);
1985  return NULL;
1986 }
1987 
1989 {
1990  SwsVector *vec;
1991 
1992  if(length <= 0 || length > INT_MAX/ sizeof(double))
1993  return NULL;
1994 
1995  vec = av_malloc(sizeof(SwsVector));
1996  if (!vec)
1997  return NULL;
1998  vec->length = length;
1999  vec->coeff = av_malloc(sizeof(double) * length);
2000  if (!vec->coeff)
2001  av_freep(&vec);
2002  return vec;
2003 }
2004 
2005 SwsVector *sws_getGaussianVec(double variance, double quality)
2006 {
2007  const int length = (int)(variance * quality + 0.5) | 1;
2008  int i;
2009  double middle = (length - 1) * 0.5;
2010  SwsVector *vec;
2011 
2012  if(variance < 0 || quality < 0)
2013  return NULL;
2014 
2015  vec = sws_allocVec(length);
2016 
2017  if (!vec)
2018  return NULL;
2019 
2020  for (i = 0; i < length; i++) {
2021  double dist = i - middle;
2022  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2023  sqrt(2 * variance * M_PI);
2024  }
2025 
2026  sws_normalizeVec(vec, 1.0);
2027 
2028  return vec;
2029 }
2030 
2031 /**
2032  * Allocate and return a vector with length coefficients, all
2033  * with the same value c.
2034  */
2035 #if !FF_API_SWS_VECTOR
2036 static
2037 #endif
2039 {
2040  int i;
2041  SwsVector *vec = sws_allocVec(length);
2042 
2043  if (!vec)
2044  return NULL;
2045 
2046  for (i = 0; i < length; i++)
2047  vec->coeff[i] = c;
2048 
2049  return vec;
2050 }
2051 
2052 /**
2053  * Allocate and return a vector with just one coefficient, with
2054  * value 1.0.
2055  */
2056 #if !FF_API_SWS_VECTOR
2057 static
2058 #endif
2060 {
2061  return sws_getConstVec(1.0, 1);
2062 }
2063 
2064 static double sws_dcVec(SwsVector *a)
2065 {
2066  int i;
2067  double sum = 0;
2068 
2069  for (i = 0; i < a->length; i++)
2070  sum += a->coeff[i];
2071 
2072  return sum;
2073 }
2074 
2075 void sws_scaleVec(SwsVector *a, double scalar)
2076 {
2077  int i;
2078 
2079  for (i = 0; i < a->length; i++)
2080  a->coeff[i] *= scalar;
2081 }
2082 
2084 {
2085  sws_scaleVec(a, height / sws_dcVec(a));
2086 }
2087 
2088 #if FF_API_SWS_VECTOR
2090 {
2091  int length = a->length + b->length - 1;
2092  int i, j;
2093  SwsVector *vec = sws_getConstVec(0.0, length);
2094 
2095  if (!vec)
2096  return NULL;
2097 
2098  for (i = 0; i < a->length; i++) {
2099  for (j = 0; j < b->length; j++) {
2100  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2101  }
2102  }
2103 
2104  return vec;
2105 }
2106 #endif
2107 
2109 {
2110  int length = FFMAX(a->length, b->length);
2111  int i;
2112  SwsVector *vec = sws_getConstVec(0.0, length);
2113 
2114  if (!vec)
2115  return NULL;
2116 
2117  for (i = 0; i < a->length; i++)
2118  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2119  for (i = 0; i < b->length; i++)
2120  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2121 
2122  return vec;
2123 }
2124 
2125 #if FF_API_SWS_VECTOR
2127 {
2128  int length = FFMAX(a->length, b->length);
2129  int i;
2130  SwsVector *vec = sws_getConstVec(0.0, length);
2131 
2132  if (!vec)
2133  return NULL;
2134 
2135  for (i = 0; i < a->length; i++)
2136  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2137  for (i = 0; i < b->length; i++)
2138  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2139 
2140  return vec;
2141 }
2142 #endif
2143 
2144 /* shift left / or right if "shift" is negative */
2146 {
2147  int length = a->length + FFABS(shift) * 2;
2148  int i;
2149  SwsVector *vec = sws_getConstVec(0.0, length);
2150 
2151  if (!vec)
2152  return NULL;
2153 
2154  for (i = 0; i < a->length; i++) {
2155  vec->coeff[i + (length - 1) / 2 -
2156  (a->length - 1) / 2 - shift] = a->coeff[i];
2157  }
2158 
2159  return vec;
2160 }
2161 
2162 #if !FF_API_SWS_VECTOR
2163 static
2164 #endif
2166 {
2167  SwsVector *shifted = sws_getShiftedVec(a, shift);
2168  if (!shifted) {
2169  makenan_vec(a);
2170  return;
2171  }
2172  av_free(a->coeff);
2173  a->coeff = shifted->coeff;
2174  a->length = shifted->length;
2175  av_free(shifted);
2176 }
2177 
2178 #if !FF_API_SWS_VECTOR
2179 static
2180 #endif
2182 {
2183  SwsVector *sum = sws_sumVec(a, b);
2184  if (!sum) {
2185  makenan_vec(a);
2186  return;
2187  }
2188  av_free(a->coeff);
2189  a->coeff = sum->coeff;
2190  a->length = sum->length;
2191  av_free(sum);
2192 }
2193 
2194 #if FF_API_SWS_VECTOR
2196 {
2197  SwsVector *diff = sws_diffVec(a, b);
2198  if (!diff) {
2199  makenan_vec(a);
2200  return;
2201  }
2202  av_free(a->coeff);
2203  a->coeff = diff->coeff;
2204  a->length = diff->length;
2205  av_free(diff);
2206 }
2207 
2209 {
2210  SwsVector *conv = sws_getConvVec(a, b);
2211  if (!conv) {
2212  makenan_vec(a);
2213  return;
2214  }
2215  av_free(a->coeff);
2216  a->coeff = conv->coeff;
2217  a->length = conv->length;
2218  av_free(conv);
2219 }
2220 
2222 {
2223  SwsVector *vec = sws_allocVec(a->length);
2224 
2225  if (!vec)
2226  return NULL;
2227 
2228  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2229 
2230  return vec;
2231 }
2232 #endif
2233 
2234 /**
2235  * Print with av_log() a textual representation of the vector a
2236  * if log_level <= av_log_level.
2237  */
2238 #if !FF_API_SWS_VECTOR
2239 static
2240 #endif
2241 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2242 {
2243  int i;
2244  double max = 0;
2245  double min = 0;
2246  double range;
2247 
2248  for (i = 0; i < a->length; i++)
2249  if (a->coeff[i] > max)
2250  max = a->coeff[i];
2251 
2252  for (i = 0; i < a->length; i++)
2253  if (a->coeff[i] < min)
2254  min = a->coeff[i];
2255 
2256  range = max - min;
2257 
2258  for (i = 0; i < a->length; i++) {
2259  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2260  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2261  for (; x > 0; x--)
2262  av_log(log_ctx, log_level, " ");
2263  av_log(log_ctx, log_level, "|\n");
2264  }
2265 }
2266 
2268 {
2269  if (!a)
2270  return;
2271  av_freep(&a->coeff);
2272  a->length = 0;
2273  av_free(a);
2274 }
2275 
2277 {
2278  if (!filter)
2279  return;
2280 
2281  sws_freeVec(filter->lumH);
2282  sws_freeVec(filter->lumV);
2283  sws_freeVec(filter->chrH);
2284  sws_freeVec(filter->chrV);
2285  av_free(filter);
2286 }
2287 
2289 {
2290  int i;
2291  if (!c)
2292  return;
2293 
2294  for (i = 0; i < 4; i++)
2295  av_freep(&c->dither_error[i]);
2296 
2297  av_freep(&c->vLumFilter);
2298  av_freep(&c->vChrFilter);
2299  av_freep(&c->hLumFilter);
2300  av_freep(&c->hChrFilter);
2301 #if HAVE_ALTIVEC
2302  av_freep(&c->vYCoeffsBank);
2303  av_freep(&c->vCCoeffsBank);
2304 #endif
2305 
2306  av_freep(&c->vLumFilterPos);
2307  av_freep(&c->vChrFilterPos);
2308  av_freep(&c->hLumFilterPos);
2309  av_freep(&c->hChrFilterPos);
2310 
2311 #if HAVE_MMX_INLINE
2312 #if USE_MMAP
2313  if (c->lumMmxextFilterCode)
2315  if (c->chrMmxextFilterCode)
2317 #elif HAVE_VIRTUALALLOC
2318  if (c->lumMmxextFilterCode)
2319  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2320  if (c->chrMmxextFilterCode)
2321  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2322 #else
2325 #endif
2328 #endif /* HAVE_MMX_INLINE */
2329 
2330  av_freep(&c->yuvTable);
2332 
2336  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2337  av_freep(&c->cascaded_tmp[0]);
2338  av_freep(&c->cascaded1_tmp[0]);
2339 
2340  av_freep(&c->gamma);
2341  av_freep(&c->inv_gamma);
2342 
2343  ff_free_filters(c);
2344 
2345  av_free(c);
2346 }
2347 
2348 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2349  int srcH, enum AVPixelFormat srcFormat,
2350  int dstW, int dstH,
2351  enum AVPixelFormat dstFormat, int flags,
2352  SwsFilter *srcFilter,
2353  SwsFilter *dstFilter,
2354  const double *param)
2355 {
2356  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2358  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2359  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2360 
2361  if (!param)
2362  param = default_param;
2363 
2364  if (context &&
2365  (context->srcW != srcW ||
2366  context->srcH != srcH ||
2367  context->srcFormat != srcFormat ||
2368  context->dstW != dstW ||
2369  context->dstH != dstH ||
2370  context->dstFormat != dstFormat ||
2371  context->flags != flags ||
2372  context->param[0] != param[0] ||
2373  context->param[1] != param[1])) {
2374 
2375  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2376  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2377  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2378  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2379  sws_freeContext(context);
2380  context = NULL;
2381  }
2382 
2383  if (!context) {
2384  if (!(context = sws_alloc_context()))
2385  return NULL;
2386  context->srcW = srcW;
2387  context->srcH = srcH;
2388  context->srcFormat = srcFormat;
2389  context->dstW = dstW;
2390  context->dstH = dstH;
2391  context->dstFormat = dstFormat;
2392  context->flags = flags;
2393  context->param[0] = param[0];
2394  context->param[1] = param[1];
2395 
2396  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2397  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2398  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2399  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2400 
2401  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2402  sws_freeContext(context);
2403  return NULL;
2404  }
2405  }
2406  return context;
2407 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:77
SwsVector * chrV
Definition: swscale.h:119
uint8_t is_supported_out
Definition: utils.c:94
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:287
#define NULL
Definition: coverity.c:32
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:269
static const FormatEntry format_entries[AV_PIX_FMT_NB]
Definition: utils.c:98
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:162
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:271
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:248
static enum AVPixelFormat pix_fmt
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2108
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
static int shift(int a, int b)
Definition: sonic.c:82
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1041
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:241
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:70
static const char * format[]
Definition: af_aiir.c:330
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2384
#define flag(name)
Definition: cbs_h2645.c:255
int chrSrcH
Height of source chroma planes.
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:167
#define SWS_X
Definition: swscale.h:61
int ff_free_filters(SwsContext *c)
Definition: slice.c:377
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
#define RV_IDX
#define SWS_BICUBIC
Definition: swscale.h:60
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:720
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:245
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:155
#define BV_IDX
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:120
#define C
8 bits gray, 8 bits alpha
Definition: pixfmt.h:139
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:204
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
const char * fmt
Definition: avisynth_c.h:769
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:67
misc image utilities
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
SwsVector * lumV
Definition: swscale.h:117
int16_t * rgbgamma
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:64
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:80
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:294
SwsAlphaBlend alphablend
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:985
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:192
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:158
int acc
Definition: yuv2rgb.c:554
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2336
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:2005
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:246
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples */
Definition: pixfmt.h:258
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1298
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples */
Definition: pixfmt.h:259
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:773
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:164
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:203
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:104
#define SWS_BICUBLIN
Definition: swscale.h:64
int16_t * rgbgammainv
const char * b
Definition: vf_curves.c:113
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:281
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:388
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:266
#define GV_IDX
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
int av_log2(unsigned v)
Definition: intmath.c:26
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:367
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:185
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
Convenience header that includes libavutil's core.
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:1003
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:275
static int isnan_vec(SwsVector *a)
Definition: utils.c:1889
int16_t * xyzgammainv
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:107
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:71
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:251
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:152
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:136
static atomic_int cpu_flags
Definition: cpu.c:50
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:235
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples */
Definition: pixfmt.h:256
#define RGB_GAMMA
#define SWS_PRINT_INFO
Definition: swscale.h:75
Y , 12bpp, little-endian.
Definition: pixfmt.h:292
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2480
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:250
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:127
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:83
Macro definitions for various function/variable attributes.
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:102
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:81
#define SWS_BILINEAR
Definition: swscale.h:59
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:175
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2208
#define RU_IDX
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:212
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:186
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhd.c:153
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1085
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:97
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
ptrdiff_t uv_off
offset (in pixels) between u and v planes
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
int length
number of coefficients in the vector
Definition: swscale.h:111
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1157
#define SWS_LANCZOS
Definition: swscale.h:67
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:234
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:73
AVOptions.
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:99
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2221
int vChrFilterSize
Vertical filter size for chroma pixels.
#define f(width, name)
Definition: cbs_vp9.c:255
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:264
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:265
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:201
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:135
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:247
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:79
int cascaded_tmpStride[4]
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:101
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:90
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:187
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:2038
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:272
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:170
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
Definition: pixfmt.h:96
Y , 9bpp, little-endian.
Definition: pixfmt.h:312
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1868
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:75
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:190
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:363
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int16_t rgb2xyz_matrix[3][4]
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:385
Y , 10bpp, little-endian.
Definition: pixfmt.h:294
external API header
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale.c:51
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
#define flags(name, subs,...)
Definition: cbs_h2645.c:263
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:274
uint16_t * inv_gamma
#define A(x)
Definition: vp56_arith.h:28
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:260
#define FFALIGN(x, a)
Definition: macros.h:48
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
#define av_log(a,...)
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2145
uint64_t vRounder
#define ROUNDED_DIV(a, b)
Definition: common.h:56
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
int * dither_error[4]
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:153
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1905
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:166
#define INLINE_MMX(flags)
Definition: cpu.h:86
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:161
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:172
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
16 bits gray, 16 bits alpha (big-endian)
Definition: pixfmt.h:208
like NV12, with 16bpp per component, big-endian
Definition: pixfmt.h:297
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:132
#define AVERROR(e)
Definition: error.h:43
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:592
const char * description
human-readable description
Definition: utils.c:305
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2412
static const struct endianess table[]
#define B
Definition: huffyuvdsp.h:32
#define PPC_ALTIVEC(flags)
Definition: cpu.h:25
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:87
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:91
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2195
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2241
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:178
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:157
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:561
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:85
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:358
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:244
GLsizei GLsizei * length
Definition: opengl_enc.c:115
like NV12, with 16bpp per component, little-endian
Definition: pixfmt.h:296
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:130
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:375
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
Definition: pixfmt.h:281
#define SWS_CS_DEFAULT
Definition: swscale.h:95
#define X86_MMX(flags)
Definition: cpu.h:30
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:179
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:88
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2075
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:116
#define fail()
Definition: checkasm.h:117
int8_t exp
Definition: eval.c:72
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:145
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:89
uint8_t * cascaded1_tmp[4]
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2083
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:180
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2348
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:66
#define RETCODE_USE_CASCADE
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1099
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2276
int hChrFilterSize
Horizontal filter size for chroma pixels.
int16_t * xyzgamma
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:1988
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:370
as above, but U and V bytes are swapped
Definition: pixfmt.h:86
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:283
#define RGB2YUV_SHIFT
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:286
#define APCK_SIZE
#define have_neon(flags)
Definition: cpu.h:26
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:391
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:356
#define NAN
Definition: mathematics.h:64
#define FFMIN(a, b)
Definition: common.h:96
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:84
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:74
#define SWS_GAUSS
Definition: swscale.h:65
SwsVector * chrH
Definition: swscale.h:118
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:84
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:137
int32_t
#define RY_IDX
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2165
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2288
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:184
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:206
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:176
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:65
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:239
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:196
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:154
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:534
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1843
unsigned swscale_version(void)
Definition: utils.c:75
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
Definition: pixfmt.h:280
double gamma_value
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:850
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:371
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:163
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:144
#define DITHER1XBPP
static void error(const char *err)
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:106
uint8_t * cascaded_tmp[4]
#define FF_ARRAY_ELEMS(a)
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:309
int cascaded1_tmpStride[4]
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:284
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:383
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define isGray(x)
Definition: swscale.c:40
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:365
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:881
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:79
double * coeff
pointer to the list of coefficients
Definition: swscale.h:110
int flag
flag associated to the algorithm
Definition: utils.c:304
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:128
int dstColorspaceTable[4]
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:323
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
const AVClass * av_class
info on struct for av_log
int16_t xyz2rgb_matrix[3][4]
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:173
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
#define DITHER32_INT
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:263
void sws_freeVec(SwsVector *a)
Definition: utils.c:2267
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:168
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:31
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:267
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:188
int chrDstH
Height of destination chroma planes.
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:63
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:273
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:253
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:85
Replacements for frequently missing libm functions.
#define SWS_AREA
Definition: swscale.h:63
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:372
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:68
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:189
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2126
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:67
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:191
#define W(a, i, v)
Definition: jpegls.h:124
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
Y , 16bpp, big-endian.
Definition: pixfmt.h:93
#define isnan(x)
Definition: libm.h:340
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:83
byte swapping routines
static void handle_formats(SwsContext *c)
Definition: utils.c:1061
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:240
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:236
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
Y , 9bpp, big-endian.
Definition: pixfmt.h:311
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:252
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:174
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:369
const VDPAUPixFmtMap * map
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:109
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:93
#define SWS_POINT
Definition: swscale.h:62
int ff_init_filters(SwsContext *c)
Definition: slice.c:249
Y , 14bpp, little-endian.
Definition: pixfmt.h:334
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:261
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1071
#define GY_IDX
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:364
#define SWS_SPLINE
Definition: swscale.h:68
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:389
#define SWS_SINC
Definition: swscale.h:66
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:183
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:373
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:103
#define SWS_BITEXACT
Definition: swscale.h:84
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:262
Y , 10bpp, big-endian.
Definition: pixfmt.h:293
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:138
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:159
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:131
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1052
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:158
Definition: vc1_parser.c:48
SwsDither dither
uint8_t is_supported_in
Definition: utils.c:93
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:72
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2181
#define INLINE_MMXEXT(flags)
Definition: cpu.h:87
int
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2064
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:62
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:243
Y , 8bpp.
Definition: pixfmt.h:70
double param[2]
Input parameters for scaling algorithms that need them.
#define exp2(x)
Definition: libm.h:288
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:71
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:211
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:140
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:167
static double c[64]
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:98
#define AV_WL16(p, v)
Definition: intreadwrite.h:412
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:129
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:76
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples */
Definition: pixfmt.h:257
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:82
static const uint64_t c2
Definition: murmur3.c:50
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:69
#define XYZ_GAMMA
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:181
struct SwsContext * cascaded_context[3]
#define SWS_PARAM_DEFAULT
Definition: swscale.h:73
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:81
uint16_t * gamma
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
#define MAX_FILTER_SIZE
static av_always_inline int diff(const uint32_t a, const uint32_t b)
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:195
#define av_free(p)
int size_factor
size factor used when initing the filters
Definition: utils.c:306
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:249
int srcFormatBpp
Number of bits per pixel of the source pixel format.
Y , 14bpp, big-endian.
Definition: pixfmt.h:333
const AVClass ff_sws_context_class
Definition: options.c:87
Y , 16bpp, little-endian.
Definition: pixfmt.h:94
uint8_t is_supported_endianness
Definition: utils.c:95
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:254
#define lrint
Definition: tablegen.h:53
16 bits gray, 16 bits alpha (little-endian)
Definition: pixfmt.h:209
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:263
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2059
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:182
Y , 12bpp, big-endian.
Definition: pixfmt.h:291
static int height
Definition: utils.c:158
int32_t input_rgb2yuv_table[16+40 *4]
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:108
number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of...
Definition: pixfmt.h:336
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
#define av_freep(p)
#define GU_IDX
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:95
#define M_PI
Definition: mathematics.h:52
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:171
static void makenan_vec(SwsVector *a)
Definition: utils.c:1898
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define av_malloc_array(a, b)
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:137
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2300
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:177
#define BY_IDX
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
int depth
Number of bits in the component.
Definition: pixdesc.h:58
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:213
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:233
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:78
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:814
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:238
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:384
#define BU_IDX
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:160
for(j=16;j >0;--j)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:242
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:149
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:169
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2089
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:202
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:275
#define V
Definition: avdct.c:30
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:156
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86