FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_MMAP
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
136  [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
137  [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
138  [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
139  [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
140  [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
141  [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
142  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
143  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
144  [AV_PIX_FMT_YUV440P] = { 1, 1 },
145  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
146  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
147  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
148  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
149  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
151  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
152  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
153  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
154  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
155  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
156  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
157  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
158  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
159  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
163  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
164  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
165  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
166  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
167  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
168  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
169  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
170  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
171  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
172  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
173  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
174  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
175  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
176  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
177  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
178  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
179  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
180  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
181  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
182  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
183  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
185  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
186  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
187  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
188  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
189  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
190  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
191  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
192  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
193  [AV_PIX_FMT_YA8] = { 1, 1 },
194  [AV_PIX_FMT_YA16BE] = { 1, 1 },
195  [AV_PIX_FMT_YA16LE] = { 1, 1 },
196  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
197  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
198  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
199  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
200  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
216  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
217  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
218  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
219  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
220  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
221  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
222  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
223  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
224  [AV_PIX_FMT_GBRP] = { 1, 1 },
225  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
228  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
229  [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
231  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
232  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
233  [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
234  [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
235  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
236  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
237  [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
238  [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
239  [AV_PIX_FMT_GBRAP] = { 1, 1 },
240  [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
241  [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
242  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
243  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
244  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
245  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
246  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
247  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
248  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
249  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
250  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
251  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
252  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
253  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
254  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
255  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
256  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
257  [AV_PIX_FMT_P010LE] = { 1, 1 },
258  [AV_PIX_FMT_P010BE] = { 1, 1 },
259  [AV_PIX_FMT_P016LE] = { 1, 1 },
260  [AV_PIX_FMT_P016BE] = { 1, 1 },
261  [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
262  [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
263  [AV_PIX_FMT_YUVA422P12BE] = { 1, 1 },
264  [AV_PIX_FMT_YUVA422P12LE] = { 1, 1 },
265  [AV_PIX_FMT_YUVA444P12BE] = { 1, 1 },
266  [AV_PIX_FMT_YUVA444P12LE] = { 1, 1 },
267 };
268 
270 {
271  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
272  format_entries[pix_fmt].is_supported_in : 0;
273 }
274 
276 {
277  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
278  format_entries[pix_fmt].is_supported_out : 0;
279 }
280 
282 {
283  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
284  format_entries[pix_fmt].is_supported_endianness : 0;
285 }
286 
287 static double getSplineCoeff(double a, double b, double c, double d,
288  double dist)
289 {
290  if (dist <= 1.0)
291  return ((d * dist + c) * dist + b) * dist + a;
292  else
293  return getSplineCoeff(0.0,
294  b + 2.0 * c + 3.0 * d,
295  c + 3.0 * d,
296  -b - 3.0 * c - 6.0 * d,
297  dist - 1.0);
298 }
299 
300 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
301 {
302  if (pos == -1 || pos <= -513) {
303  pos = (128 << chr_subsample) - 128;
304  }
305  pos += 128; // relative to ideal left edge
306  return pos >> chr_subsample;
307 }
308 
309 typedef struct {
310  int flag; ///< flag associated to the algorithm
311  const char *description; ///< human-readable description
312  int size_factor; ///< size factor used when initing the filters
314 
316  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
317  { SWS_BICUBIC, "bicubic", 4 },
318  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
319  { SWS_BILINEAR, "bilinear", 2 },
320  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
321  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
322  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
323  { SWS_POINT, "nearest neighbor / point", -1 },
324  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
325  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
326  { SWS_X, "experimental", 8 },
327 };
328 
329 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
330  int *outFilterSize, int xInc, int srcW,
331  int dstW, int filterAlign, int one,
332  int flags, int cpu_flags,
333  SwsVector *srcFilter, SwsVector *dstFilter,
334  double param[2], int srcPos, int dstPos)
335 {
336  int i;
337  int filterSize;
338  int filter2Size;
339  int minFilterSize;
340  int64_t *filter = NULL;
341  int64_t *filter2 = NULL;
342  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
343  int ret = -1;
344 
345  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
346 
347  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
348  FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
349 
350  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
351  int i;
352  filterSize = 1;
354  dstW, sizeof(*filter) * filterSize, fail);
355 
356  for (i = 0; i < dstW; i++) {
357  filter[i * filterSize] = fone;
358  (*filterPos)[i] = i;
359  }
360  } else if (flags & SWS_POINT) { // lame looking point sampling mode
361  int i;
362  int64_t xDstInSrc;
363  filterSize = 1;
365  dstW, sizeof(*filter) * filterSize, fail);
366 
367  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
368  for (i = 0; i < dstW; i++) {
369  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
370 
371  (*filterPos)[i] = xx;
372  filter[i] = fone;
373  xDstInSrc += xInc;
374  }
375  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
376  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
377  int i;
378  int64_t xDstInSrc;
379  filterSize = 2;
381  dstW, sizeof(*filter) * filterSize, fail);
382 
383  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
384  for (i = 0; i < dstW; i++) {
385  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
386  int j;
387 
388  (*filterPos)[i] = xx;
389  // bilinear upscale / linear interpolate / area averaging
390  for (j = 0; j < filterSize; j++) {
391  int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
392  if (coeff < 0)
393  coeff = 0;
394  filter[i * filterSize + j] = coeff;
395  xx++;
396  }
397  xDstInSrc += xInc;
398  }
399  } else {
400  int64_t xDstInSrc;
401  int sizeFactor = -1;
402 
403  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
404  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
405  sizeFactor = scale_algorithms[i].size_factor;
406  break;
407  }
408  }
409  if (flags & SWS_LANCZOS)
410  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
411  av_assert0(sizeFactor > 0);
412 
413  if (xInc <= 1 << 16)
414  filterSize = 1 + sizeFactor; // upscale
415  else
416  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
417 
418  filterSize = FFMIN(filterSize, srcW - 2);
419  filterSize = FFMAX(filterSize, 1);
420 
422  dstW, sizeof(*filter) * filterSize, fail);
423 
424  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
425  for (i = 0; i < dstW; i++) {
426  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
427  int j;
428  (*filterPos)[i] = xx;
429  for (j = 0; j < filterSize; j++) {
430  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
431  double floatd;
432  int64_t coeff;
433 
434  if (xInc > 1 << 16)
435  d = d * dstW / srcW;
436  floatd = d * (1.0 / (1 << 30));
437 
438  if (flags & SWS_BICUBIC) {
439  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
440  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
441 
442  if (d >= 1LL << 31) {
443  coeff = 0.0;
444  } else {
445  int64_t dd = (d * d) >> 30;
446  int64_t ddd = (dd * d) >> 30;
447 
448  if (d < 1LL << 30)
449  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
450  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
451  (6 * (1 << 24) - 2 * B) * (1 << 30);
452  else
453  coeff = (-B - 6 * C) * ddd +
454  (6 * B + 30 * C) * dd +
455  (-12 * B - 48 * C) * d +
456  (8 * B + 24 * C) * (1 << 30);
457  }
458  coeff /= (1LL<<54)/fone;
459  } else if (flags & SWS_X) {
460  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
461  double c;
462 
463  if (floatd < 1.0)
464  c = cos(floatd * M_PI);
465  else
466  c = -1.0;
467  if (c < 0.0)
468  c = -pow(-c, A);
469  else
470  c = pow(c, A);
471  coeff = (c * 0.5 + 0.5) * fone;
472  } else if (flags & SWS_AREA) {
473  int64_t d2 = d - (1 << 29);
474  if (d2 * xInc < -(1LL << (29 + 16)))
475  coeff = 1.0 * (1LL << (30 + 16));
476  else if (d2 * xInc < (1LL << (29 + 16)))
477  coeff = -d2 * xInc + (1LL << (29 + 16));
478  else
479  coeff = 0.0;
480  coeff *= fone >> (30 + 16);
481  } else if (flags & SWS_GAUSS) {
482  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
483  coeff = exp2(-p * floatd * floatd) * fone;
484  } else if (flags & SWS_SINC) {
485  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
486  } else if (flags & SWS_LANCZOS) {
487  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
488  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
489  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
490  if (floatd > p)
491  coeff = 0;
492  } else if (flags & SWS_BILINEAR) {
493  coeff = (1 << 30) - d;
494  if (coeff < 0)
495  coeff = 0;
496  coeff *= fone >> 30;
497  } else if (flags & SWS_SPLINE) {
498  double p = -2.196152422706632;
499  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
500  } else {
501  av_assert0(0);
502  }
503 
504  filter[i * filterSize + j] = coeff;
505  xx++;
506  }
507  xDstInSrc += 2 * xInc;
508  }
509  }
510 
511  /* apply src & dst Filter to filter -> filter2
512  * av_free(filter);
513  */
514  av_assert0(filterSize > 0);
515  filter2Size = filterSize;
516  if (srcFilter)
517  filter2Size += srcFilter->length - 1;
518  if (dstFilter)
519  filter2Size += dstFilter->length - 1;
520  av_assert0(filter2Size > 0);
521  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
522 
523  for (i = 0; i < dstW; i++) {
524  int j, k;
525 
526  if (srcFilter) {
527  for (k = 0; k < srcFilter->length; k++) {
528  for (j = 0; j < filterSize; j++)
529  filter2[i * filter2Size + k + j] +=
530  srcFilter->coeff[k] * filter[i * filterSize + j];
531  }
532  } else {
533  for (j = 0; j < filterSize; j++)
534  filter2[i * filter2Size + j] = filter[i * filterSize + j];
535  }
536  // FIXME dstFilter
537 
538  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
539  }
540  av_freep(&filter);
541 
542  /* try to reduce the filter-size (step1 find size and shift left) */
543  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
544  minFilterSize = 0;
545  for (i = dstW - 1; i >= 0; i--) {
546  int min = filter2Size;
547  int j;
548  int64_t cutOff = 0.0;
549 
550  /* get rid of near zero elements on the left by shifting left */
551  for (j = 0; j < filter2Size; j++) {
552  int k;
553  cutOff += FFABS(filter2[i * filter2Size]);
554 
555  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
556  break;
557 
558  /* preserve monotonicity because the core can't handle the
559  * filter otherwise */
560  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
561  break;
562 
563  // move filter coefficients left
564  for (k = 1; k < filter2Size; k++)
565  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
566  filter2[i * filter2Size + k - 1] = 0;
567  (*filterPos)[i]++;
568  }
569 
570  cutOff = 0;
571  /* count near zeros on the right */
572  for (j = filter2Size - 1; j > 0; j--) {
573  cutOff += FFABS(filter2[i * filter2Size + j]);
574 
575  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
576  break;
577  min--;
578  }
579 
580  if (min > minFilterSize)
581  minFilterSize = min;
582  }
583 
584  if (PPC_ALTIVEC(cpu_flags)) {
585  // we can handle the special case 4, so we don't want to go the full 8
586  if (minFilterSize < 5)
587  filterAlign = 4;
588 
589  /* We really don't want to waste our time doing useless computation, so
590  * fall back on the scalar C code for very small filters.
591  * Vectorizing is worth it only if you have a decent-sized vector. */
592  if (minFilterSize < 3)
593  filterAlign = 1;
594  }
595 
596  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
597  // special case for unscaled vertical filtering
598  if (minFilterSize == 1 && filterAlign == 2)
599  filterAlign = 1;
600  }
601 
602  av_assert0(minFilterSize > 0);
603  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
604  av_assert0(filterSize > 0);
605  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
606  if (!filter)
607  goto fail;
608  if (filterSize >= MAX_FILTER_SIZE * 16 /
609  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
610  ret = RETCODE_USE_CASCADE;
611  goto fail;
612  }
613  *outFilterSize = filterSize;
614 
615  if (flags & SWS_PRINT_INFO)
617  "SwScaler: reducing / aligning filtersize %d -> %d\n",
618  filter2Size, filterSize);
619  /* try to reduce the filter-size (step2 reduce it) */
620  for (i = 0; i < dstW; i++) {
621  int j;
622 
623  for (j = 0; j < filterSize; j++) {
624  if (j >= filter2Size)
625  filter[i * filterSize + j] = 0;
626  else
627  filter[i * filterSize + j] = filter2[i * filter2Size + j];
628  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
629  filter[i * filterSize + j] = 0;
630  }
631  }
632 
633  // FIXME try to align filterPos if possible
634 
635  // fix borders
636  for (i = 0; i < dstW; i++) {
637  int j;
638  if ((*filterPos)[i] < 0) {
639  // move filter coefficients left to compensate for filterPos
640  for (j = 1; j < filterSize; j++) {
641  int left = FFMAX(j + (*filterPos)[i], 0);
642  filter[i * filterSize + left] += filter[i * filterSize + j];
643  filter[i * filterSize + j] = 0;
644  }
645  (*filterPos)[i]= 0;
646  }
647 
648  if ((*filterPos)[i] + filterSize > srcW) {
649  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
650  int64_t acc = 0;
651 
652  for (j = filterSize - 1; j >= 0; j--) {
653  if ((*filterPos)[i] + j >= srcW) {
654  acc += filter[i * filterSize + j];
655  filter[i * filterSize + j] = 0;
656  }
657  }
658  for (j = filterSize - 1; j >= 0; j--) {
659  if (j < shift) {
660  filter[i * filterSize + j] = 0;
661  } else {
662  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
663  }
664  }
665 
666  (*filterPos)[i]-= shift;
667  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
668  }
669  av_assert0((*filterPos)[i] >= 0);
670  av_assert0((*filterPos)[i] < srcW);
671  if ((*filterPos)[i] + filterSize > srcW) {
672  for (j = 0; j < filterSize; j++) {
673  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
674  }
675  }
676  }
677 
678  // Note the +1 is for the MMX scaler which reads over the end
679  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
680  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
681  (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
682 
683  /* normalize & store in outFilter */
684  for (i = 0; i < dstW; i++) {
685  int j;
686  int64_t error = 0;
687  int64_t sum = 0;
688 
689  for (j = 0; j < filterSize; j++) {
690  sum += filter[i * filterSize + j];
691  }
692  sum = (sum + one / 2) / one;
693  if (!sum) {
694  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
695  sum = 1;
696  }
697  for (j = 0; j < *outFilterSize; j++) {
698  int64_t v = filter[i * filterSize + j] + error;
699  int intV = ROUNDED_DIV(v, sum);
700  (*outFilter)[i * (*outFilterSize) + j] = intV;
701  error = v - intV * sum;
702  }
703  }
704 
705  (*filterPos)[dstW + 0] =
706  (*filterPos)[dstW + 1] =
707  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
708  * read over the end */
709  for (i = 0; i < *outFilterSize; i++) {
710  int k = (dstW - 1) * (*outFilterSize) + i;
711  (*outFilter)[k + 1 * (*outFilterSize)] =
712  (*outFilter)[k + 2 * (*outFilterSize)] =
713  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
714  }
715 
716  ret = 0;
717 
718 fail:
719  if(ret < 0)
720  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
721  av_free(filter);
722  av_free(filter2);
723  return ret;
724 }
725 
726 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
727 {
728  int64_t W, V, Z, Cy, Cu, Cv;
729  int64_t vr = table[0];
730  int64_t ub = table[1];
731  int64_t ug = -table[2];
732  int64_t vg = -table[3];
733  int64_t ONE = 65536;
734  int64_t cy = ONE;
736  int i;
737  static const int8_t map[] = {
738  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
739  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
740  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
741  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
742  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
743  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
744  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
745  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
746  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
747  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
748  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
749  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
752  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
753  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
756  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
757  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
760  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
761  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
762  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
763  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
764  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
765  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
766  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
767  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
768  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
769  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
770  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
771  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
772  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
773  };
774 
775  dstRange = 0; //FIXME range = 1 is handled elsewhere
776 
777  if (!dstRange) {
778  cy = cy * 255 / 219;
779  } else {
780  vr = vr * 224 / 255;
781  ub = ub * 224 / 255;
782  ug = ug * 224 / 255;
783  vg = vg * 224 / 255;
784  }
785  W = ROUNDED_DIV(ONE*ONE*ug, ub);
786  V = ROUNDED_DIV(ONE*ONE*vg, vr);
787  Z = ONE*ONE-W-V;
788 
789  Cy = ROUNDED_DIV(cy*Z, ONE);
790  Cu = ROUNDED_DIV(ub*Z, ONE);
791  Cv = ROUNDED_DIV(vr*Z, ONE);
792 
793  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
794  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
795  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
796 
797  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
798  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
799  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
800 
801  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
802  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
803  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
804 
805  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
806  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
807  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
808  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
809  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
810  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
811  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
812  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
813  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
814  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
815  }
816  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
817  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
818 }
819 
820 static void fill_xyztables(struct SwsContext *c)
821 {
822  int i;
823  double xyzgamma = XYZ_GAMMA;
824  double rgbgamma = 1.0 / RGB_GAMMA;
825  double xyzgammainv = 1.0 / XYZ_GAMMA;
826  double rgbgammainv = RGB_GAMMA;
827  static const int16_t xyz2rgb_matrix[3][4] = {
828  {13270, -6295, -2041},
829  {-3969, 7682, 170},
830  { 228, -835, 4329} };
831  static const int16_t rgb2xyz_matrix[3][4] = {
832  {1689, 1464, 739},
833  { 871, 2929, 296},
834  { 79, 488, 3891} };
835  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
836 
837  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
838  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
839  c->xyzgamma = xyzgamma_tab;
840  c->rgbgamma = rgbgamma_tab;
841  c->xyzgammainv = xyzgammainv_tab;
842  c->rgbgammainv = rgbgammainv_tab;
843 
844  if (rgbgamma_tab[4095])
845  return;
846 
847  /* set gamma vectors */
848  for (i = 0; i < 4096; i++) {
849  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
850  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
851  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
852  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
853  }
854 }
855 
856 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
857  int srcRange, const int table[4], int dstRange,
858  int brightness, int contrast, int saturation)
859 {
860  const AVPixFmtDescriptor *desc_dst;
861  const AVPixFmtDescriptor *desc_src;
862  int need_reinit = 0;
863 
864  handle_formats(c);
865  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
866  desc_src = av_pix_fmt_desc_get(c->srcFormat);
867 
868  if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
869  dstRange = 0;
870  if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
871  srcRange = 0;
872 
873  if (c->srcRange != srcRange ||
874  c->dstRange != dstRange ||
875  c->brightness != brightness ||
876  c->contrast != contrast ||
877  c->saturation != saturation ||
878  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
879  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
880  )
881  need_reinit = 1;
882 
883  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
884  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
885 
886 
887 
888  c->brightness = brightness;
889  c->contrast = contrast;
890  c->saturation = saturation;
891  c->srcRange = srcRange;
892  c->dstRange = dstRange;
893 
894  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
895  //and what we have in ticket 2939 looks better with this check
896  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
898 
899  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
900  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
901 
903  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
904 
905  if (!need_reinit)
906  return 0;
907 
908  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
909  if (!c->cascaded_context[0] &&
910  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
911  c->srcW && c->srcH && c->dstW && c->dstH) {
912  enum AVPixelFormat tmp_format;
913  int tmp_width, tmp_height;
914  int srcW = c->srcW;
915  int srcH = c->srcH;
916  int dstW = c->dstW;
917  int dstH = c->dstH;
918  int ret;
919  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
920 
921  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
922  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
923  tmp_format = AV_PIX_FMT_BGRA64;
924  } else {
925  tmp_format = AV_PIX_FMT_BGR48;
926  }
927  } else {
928  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
929  tmp_format = AV_PIX_FMT_BGRA;
930  } else {
931  tmp_format = AV_PIX_FMT_BGR24;
932  }
933  }
934 
935  if (srcW*srcH > dstW*dstH) {
936  tmp_width = dstW;
937  tmp_height = dstH;
938  } else {
939  tmp_width = srcW;
940  tmp_height = srcH;
941  }
942 
944  tmp_width, tmp_height, tmp_format, 64);
945  if (ret < 0)
946  return ret;
947 
948  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
949  tmp_width, tmp_height, tmp_format,
950  c->flags, c->param);
951  if (!c->cascaded_context[0])
952  return -1;
953 
955  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
956  if (ret < 0)
957  return ret;
958  //we set both src and dst depending on that the RGB side will be ignored
960  srcRange, table, dstRange,
961  brightness, contrast, saturation);
962 
963  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
964  dstW, dstH, c->dstFormat,
965  c->flags, NULL, NULL, c->param);
966  if (!c->cascaded_context[1])
967  return -1;
969  srcRange, table, dstRange,
970  0, 1 << 16, 1 << 16);
971  return 0;
972  }
973  return -1;
974  }
975 
976  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
977  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
978  contrast, saturation);
979  // FIXME factorize
980 
981  if (ARCH_PPC)
982  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
983  contrast, saturation);
984  }
985 
986  fill_rgb2yuv_table(c, table, dstRange);
987 
988  return 0;
989 }
990 
991 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
992  int *srcRange, int **table, int *dstRange,
993  int *brightness, int *contrast, int *saturation)
994 {
995  if (!c )
996  return -1;
997 
998  *inv_table = c->srcColorspaceTable;
999  *table = c->dstColorspaceTable;
1000  *srcRange = c->srcRange;
1001  *dstRange = c->dstRange;
1002  *brightness = c->brightness;
1003  *contrast = c->contrast;
1004  *saturation = c->saturation;
1005 
1006  return 0;
1007 }
1008 
1010 {
1011  switch (*format) {
1012  case AV_PIX_FMT_YUVJ420P:
1013  *format = AV_PIX_FMT_YUV420P;
1014  return 1;
1015  case AV_PIX_FMT_YUVJ411P:
1016  *format = AV_PIX_FMT_YUV411P;
1017  return 1;
1018  case AV_PIX_FMT_YUVJ422P:
1019  *format = AV_PIX_FMT_YUV422P;
1020  return 1;
1021  case AV_PIX_FMT_YUVJ444P:
1022  *format = AV_PIX_FMT_YUV444P;
1023  return 1;
1024  case AV_PIX_FMT_YUVJ440P:
1025  *format = AV_PIX_FMT_YUV440P;
1026  return 1;
1027  case AV_PIX_FMT_GRAY8:
1028  case AV_PIX_FMT_YA8:
1029  case AV_PIX_FMT_GRAY9LE:
1030  case AV_PIX_FMT_GRAY9BE:
1031  case AV_PIX_FMT_GRAY10LE:
1032  case AV_PIX_FMT_GRAY10BE:
1033  case AV_PIX_FMT_GRAY12LE:
1034  case AV_PIX_FMT_GRAY12BE:
1035  case AV_PIX_FMT_GRAY14LE:
1036  case AV_PIX_FMT_GRAY14BE:
1037  case AV_PIX_FMT_GRAY16LE:
1038  case AV_PIX_FMT_GRAY16BE:
1039  case AV_PIX_FMT_YA16BE:
1040  case AV_PIX_FMT_YA16LE:
1041  return 1;
1042  default:
1043  return 0;
1044  }
1045 }
1046 
1048 {
1049  switch (*format) {
1050  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1051  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1052  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1053  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1054  default: return 0;
1055  }
1056 }
1057 
1059 {
1060  switch (*format) {
1061  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1062  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1063  default: return 0;
1064  }
1065 }
1066 
1068 {
1069  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1070  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1071  c->srcXYZ |= handle_xyz(&c->srcFormat);
1072  c->dstXYZ |= handle_xyz(&c->dstFormat);
1073  if (c->srcXYZ || c->dstXYZ)
1074  fill_xyztables(c);
1075 }
1076 
1078 {
1079  SwsContext *c = av_mallocz(sizeof(SwsContext));
1080 
1081  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1082 
1083  if (c) {
1086  }
1087 
1088  return c;
1089 }
1090 
1091 static uint16_t * alloc_gamma_tbl(double e)
1092 {
1093  int i = 0;
1094  uint16_t * tbl;
1095  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1096  if (!tbl)
1097  return NULL;
1098 
1099  for (i = 0; i < 65536; ++i) {
1100  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1101  }
1102  return tbl;
1103 }
1104 
1106 {
1107  switch(fmt) {
1108  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1109  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1110  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1111  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1112  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1113 
1117 
1118  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1119 
1122 
1125 
1128 
1133 
1134  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1135  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1136 
1155 
1156 // case AV_PIX_FMT_AYUV64LE:
1157 // case AV_PIX_FMT_AYUV64BE:
1158 // case AV_PIX_FMT_PAL8:
1159  default: return AV_PIX_FMT_NONE;
1160  }
1161 }
1162 
1164  SwsFilter *dstFilter)
1165 {
1166  int i;
1167  int usesVFilter, usesHFilter;
1168  int unscaled;
1169  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1170  int srcW = c->srcW;
1171  int srcH = c->srcH;
1172  int dstW = c->dstW;
1173  int dstH = c->dstH;
1174  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1175  int flags, cpu_flags;
1176  enum AVPixelFormat srcFormat = c->srcFormat;
1177  enum AVPixelFormat dstFormat = c->dstFormat;
1178  const AVPixFmtDescriptor *desc_src;
1179  const AVPixFmtDescriptor *desc_dst;
1180  int ret = 0;
1181  enum AVPixelFormat tmpFmt;
1182  static const float float_mult = 1.0f / 255.0f;
1183 
1184  cpu_flags = av_get_cpu_flags();
1185  flags = c->flags;
1186  emms_c();
1187  if (!rgb15to16)
1189 
1190  unscaled = (srcW == dstW && srcH == dstH);
1191 
1192  c->srcRange |= handle_jpeg(&c->srcFormat);
1193  c->dstRange |= handle_jpeg(&c->dstFormat);
1194 
1195  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1196  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1197 
1198  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1199  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1200  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1201  c->dstRange, 0, 1 << 16, 1 << 16);
1202 
1203  handle_formats(c);
1204  srcFormat = c->srcFormat;
1205  dstFormat = c->dstFormat;
1206  desc_src = av_pix_fmt_desc_get(srcFormat);
1207  desc_dst = av_pix_fmt_desc_get(dstFormat);
1208 
1209  // If the source has no alpha then disable alpha blendaway
1210  if (c->src0Alpha)
1212 
1213  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1214  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1215  if (!sws_isSupportedInput(srcFormat)) {
1216  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1217  av_get_pix_fmt_name(srcFormat));
1218  return AVERROR(EINVAL);
1219  }
1220  if (!sws_isSupportedOutput(dstFormat)) {
1221  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1222  av_get_pix_fmt_name(dstFormat));
1223  return AVERROR(EINVAL);
1224  }
1225  }
1226  av_assert2(desc_src && desc_dst);
1227 
1228  i = flags & (SWS_POINT |
1229  SWS_AREA |
1230  SWS_BILINEAR |
1232  SWS_BICUBIC |
1233  SWS_X |
1234  SWS_GAUSS |
1235  SWS_LANCZOS |
1236  SWS_SINC |
1237  SWS_SPLINE |
1238  SWS_BICUBLIN);
1239 
1240  /* provide a default scaler if not set by caller */
1241  if (!i) {
1242  if (dstW < srcW && dstH < srcH)
1243  flags |= SWS_BICUBIC;
1244  else if (dstW > srcW && dstH > srcH)
1245  flags |= SWS_BICUBIC;
1246  else
1247  flags |= SWS_BICUBIC;
1248  c->flags = flags;
1249  } else if (i & (i - 1)) {
1250  av_log(c, AV_LOG_ERROR,
1251  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1252  return AVERROR(EINVAL);
1253  }
1254  /* sanity check */
1255  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1256  /* FIXME check if these are enough and try to lower them after
1257  * fixing the relevant parts of the code */
1258  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1259  srcW, srcH, dstW, dstH);
1260  return AVERROR(EINVAL);
1261  }
1262  if (flags & SWS_FAST_BILINEAR) {
1263  if (srcW < 8 || dstW < 8) {
1264  flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1265  c->flags = flags;
1266  }
1267  }
1268 
1269  if (!dstFilter)
1270  dstFilter = &dummyFilter;
1271  if (!srcFilter)
1272  srcFilter = &dummyFilter;
1273 
1274  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1275  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1276  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1277  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1278  c->vRounder = 4 * 0x0001000100010001ULL;
1279 
1280  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1281  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1282  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1283  (dstFilter->chrV && dstFilter->chrV->length > 1);
1284  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1285  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1286  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1287  (dstFilter->chrH && dstFilter->chrH->length > 1);
1288 
1291 
1292  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1293  if (dstW&1) {
1294  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1295  flags |= SWS_FULL_CHR_H_INT;
1296  c->flags = flags;
1297  }
1298 
1299  if ( c->chrSrcHSubSample == 0
1300  && c->chrSrcVSubSample == 0
1301  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1302  && !(c->flags & SWS_FAST_BILINEAR)
1303  ) {
1304  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1305  flags |= SWS_FULL_CHR_H_INT;
1306  c->flags = flags;
1307  }
1308  }
1309 
1310  if (c->dither == SWS_DITHER_AUTO) {
1311  if (flags & SWS_ERROR_DIFFUSION)
1312  c->dither = SWS_DITHER_ED;
1313  }
1314 
1315  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1316  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1317  dstFormat == AV_PIX_FMT_BGR8 ||
1318  dstFormat == AV_PIX_FMT_RGB8) {
1319  if (c->dither == SWS_DITHER_AUTO)
1321  if (!(flags & SWS_FULL_CHR_H_INT)) {
1323  av_log(c, AV_LOG_DEBUG,
1324  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1325  av_get_pix_fmt_name(dstFormat));
1326  flags |= SWS_FULL_CHR_H_INT;
1327  c->flags = flags;
1328  }
1329  }
1330  if (flags & SWS_FULL_CHR_H_INT) {
1331  if (c->dither == SWS_DITHER_BAYER) {
1332  av_log(c, AV_LOG_DEBUG,
1333  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1334  av_get_pix_fmt_name(dstFormat));
1335  c->dither = SWS_DITHER_ED;
1336  }
1337  }
1338  }
1339  if (isPlanarRGB(dstFormat)) {
1340  if (!(flags & SWS_FULL_CHR_H_INT)) {
1341  av_log(c, AV_LOG_DEBUG,
1342  "%s output is not supported with half chroma resolution, switching to full\n",
1343  av_get_pix_fmt_name(dstFormat));
1344  flags |= SWS_FULL_CHR_H_INT;
1345  c->flags = flags;
1346  }
1347  }
1348 
1349  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1350  * chroma interpolation */
1351  if (flags & SWS_FULL_CHR_H_INT &&
1352  isAnyRGB(dstFormat) &&
1353  !isPlanarRGB(dstFormat) &&
1354  dstFormat != AV_PIX_FMT_RGBA64LE &&
1355  dstFormat != AV_PIX_FMT_RGBA64BE &&
1356  dstFormat != AV_PIX_FMT_BGRA64LE &&
1357  dstFormat != AV_PIX_FMT_BGRA64BE &&
1358  dstFormat != AV_PIX_FMT_RGB48LE &&
1359  dstFormat != AV_PIX_FMT_RGB48BE &&
1360  dstFormat != AV_PIX_FMT_BGR48LE &&
1361  dstFormat != AV_PIX_FMT_BGR48BE &&
1362  dstFormat != AV_PIX_FMT_RGBA &&
1363  dstFormat != AV_PIX_FMT_ARGB &&
1364  dstFormat != AV_PIX_FMT_BGRA &&
1365  dstFormat != AV_PIX_FMT_ABGR &&
1366  dstFormat != AV_PIX_FMT_RGB24 &&
1367  dstFormat != AV_PIX_FMT_BGR24 &&
1368  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1369  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1370  dstFormat != AV_PIX_FMT_BGR8 &&
1371  dstFormat != AV_PIX_FMT_RGB8
1372  ) {
1374  "full chroma interpolation for destination format '%s' not yet implemented\n",
1375  av_get_pix_fmt_name(dstFormat));
1376  flags &= ~SWS_FULL_CHR_H_INT;
1377  c->flags = flags;
1378  }
1379  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1380  c->chrDstHSubSample = 1;
1381 
1382  // drop some chroma lines if the user wants it
1383  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1385  c->chrSrcVSubSample += c->vChrDrop;
1386 
1387  /* drop every other pixel for chroma calculation unless user
1388  * wants full chroma */
1389  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1390  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1391  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1392  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1393  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1394  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1395  srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
1396  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1397  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1398  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1399  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1400  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1401  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1402  (flags & SWS_FAST_BILINEAR)))
1403  c->chrSrcHSubSample = 1;
1404 
1405  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1406  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1407  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1408  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1409  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1410 
1411  FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1412 
1413  c->srcBpc = desc_src->comp[0].depth;
1414  if (c->srcBpc < 8)
1415  c->srcBpc = 8;
1416  c->dstBpc = desc_dst->comp[0].depth;
1417  if (c->dstBpc < 8)
1418  c->dstBpc = 8;
1419  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1420  c->srcBpc = 16;
1421  if (c->dstBpc == 16)
1422  dst_stride <<= 1;
1423 
1424  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1425  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1426  c->chrDstW >= c->chrSrcW &&
1427  (srcW & 15) == 0;
1428  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1429 
1430  && (flags & SWS_FAST_BILINEAR)) {
1431  if (flags & SWS_PRINT_INFO)
1432  av_log(c, AV_LOG_INFO,
1433  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1434  }
1435  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1436  c->canMMXEXTBeUsed = 0;
1437  } else
1438  c->canMMXEXTBeUsed = 0;
1439 
1440  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1441  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1442 
1443  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1444  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1445  * correct scaling.
1446  * n-2 is the last chrominance sample available.
1447  * This is not perfect, but no one should notice the difference, the more
1448  * correct variant would be like the vertical one, but that would require
1449  * some special code for the first and last pixel */
1450  if (flags & SWS_FAST_BILINEAR) {
1451  if (c->canMMXEXTBeUsed) {
1452  c->lumXInc += 20;
1453  c->chrXInc += 20;
1454  }
1455  // we don't use the x86 asm scaler if MMX is available
1456  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1457  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1458  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1459  }
1460  }
1461 
1462  // hardcoded for now
1463  c->gamma_value = 2.2;
1464  tmpFmt = AV_PIX_FMT_RGBA64LE;
1465 
1466 
1467  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1468  SwsContext *c2;
1469  c->cascaded_context[0] = NULL;
1470 
1472  srcW, srcH, tmpFmt, 64);
1473  if (ret < 0)
1474  return ret;
1475 
1476  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1477  srcW, srcH, tmpFmt,
1478  flags, NULL, NULL, c->param);
1479  if (!c->cascaded_context[0]) {
1480  return -1;
1481  }
1482 
1483  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1484  dstW, dstH, tmpFmt,
1485  flags, srcFilter, dstFilter, c->param);
1486 
1487  if (!c->cascaded_context[1])
1488  return -1;
1489 
1490  c2 = c->cascaded_context[1];
1491  c2->is_internal_gamma = 1;
1492  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1493  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1494  if (!c2->gamma || !c2->inv_gamma)
1495  return AVERROR(ENOMEM);
1496 
1497  // is_internal_flag is set after creating the context
1498  // to properly create the gamma convert FilterDescriptor
1499  // we have to re-initialize it
1500  ff_free_filters(c2);
1501  if (ff_init_filters(c2) < 0) {
1502  sws_freeContext(c2);
1503  return -1;
1504  }
1505 
1506  c->cascaded_context[2] = NULL;
1507  if (dstFormat != tmpFmt) {
1509  dstW, dstH, tmpFmt, 64);
1510  if (ret < 0)
1511  return ret;
1512 
1513  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1514  dstW, dstH, dstFormat,
1515  flags, NULL, NULL, c->param);
1516  if (!c->cascaded_context[2])
1517  return -1;
1518  }
1519  return 0;
1520  }
1521 
1522  if (isBayer(srcFormat)) {
1523  if (!unscaled ||
1524  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1525  enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1526 
1528  srcW, srcH, tmpFormat, 64);
1529  if (ret < 0)
1530  return ret;
1531 
1532  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1533  srcW, srcH, tmpFormat,
1534  flags, srcFilter, NULL, c->param);
1535  if (!c->cascaded_context[0])
1536  return -1;
1537 
1538  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1539  dstW, dstH, dstFormat,
1540  flags, NULL, dstFilter, c->param);
1541  if (!c->cascaded_context[1])
1542  return -1;
1543  return 0;
1544  }
1545  }
1546 
1547  if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
1548  for (i = 0; i < 256; ++i){
1549  c->uint2float_lut[i] = (float)i * float_mult;
1550  }
1551  }
1552 
1553  // float will be converted to uint16_t
1554  if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
1555  (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
1556  dstFormat != AV_PIX_FMT_GRAY8))){
1557  c->srcBpc = 16;
1558  }
1559 
1560  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1561  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1562 
1563  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
1564  if (!unscaled ||
1565  dstFormat != tmpFormat ||
1566  usesHFilter || usesVFilter ||
1567  c->srcRange != c->dstRange
1568  ) {
1569  c->cascaded_mainindex = 1;
1571  srcW, srcH, tmpFormat, 64);
1572  if (ret < 0)
1573  return ret;
1574 
1575  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1576  srcW, srcH, tmpFormat,
1577  flags, c->param);
1578  if (!c->cascaded_context[0])
1579  return -1;
1581  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1582  if (ret < 0)
1583  return ret;
1584 
1585  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1586  dstW, dstH, dstFormat,
1587  flags, c->param);
1588  if (!c->cascaded_context[1])
1589  return -1;
1590 
1591  c->cascaded_context[1]->srcRange = c->srcRange;
1592  c->cascaded_context[1]->dstRange = c->dstRange;
1593  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1594  if (ret < 0)
1595  return ret;
1596 
1597  return 0;
1598  }
1599  }
1600 
1601 #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
1602 #define USE_MMAP 1
1603 #else
1604 #define USE_MMAP 0
1605 #endif
1606 
1607  /* precalculate horizontal scaler filter coefficients */
1608  {
1609 #if HAVE_MMXEXT_INLINE
1610 // can't downscale !!!
1611  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1613  NULL, NULL, 8);
1615  NULL, NULL, NULL, 4);
1616 
1617 #if USE_MMAP
1619  PROT_READ | PROT_WRITE,
1620  MAP_PRIVATE | MAP_ANONYMOUS,
1621  -1, 0);
1623  PROT_READ | PROT_WRITE,
1624  MAP_PRIVATE | MAP_ANONYMOUS,
1625  -1, 0);
1626 #elif HAVE_VIRTUALALLOC
1627  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1629  MEM_COMMIT,
1630  PAGE_EXECUTE_READWRITE);
1631  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1633  MEM_COMMIT,
1634  PAGE_EXECUTE_READWRITE);
1635 #else
1638 #endif
1639 
1640 #ifdef MAP_ANONYMOUS
1641  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1642 #else
1644 #endif
1645  {
1646  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1647  return AVERROR(ENOMEM);
1648  }
1649 
1650  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1651  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1652  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1653  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1654 
1656  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1658  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1659 
1660 #if USE_MMAP
1661  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1662  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1663  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1664  goto fail;
1665  }
1666 #endif
1667  } else
1668 #endif /* HAVE_MMXEXT_INLINE */
1669  {
1670  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1671  PPC_ALTIVEC(cpu_flags) ? 8 :
1672  have_neon(cpu_flags) ? 8 : 1;
1673 
1674  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1675  &c->hLumFilterSize, c->lumXInc,
1676  srcW, dstW, filterAlign, 1 << 14,
1677  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1678  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1679  c->param,
1680  get_local_pos(c, 0, 0, 0),
1681  get_local_pos(c, 0, 0, 0))) < 0)
1682  goto fail;
1683  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1684  &c->hChrFilterSize, c->chrXInc,
1685  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1686  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1687  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1688  c->param,
1690  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1691  goto fail;
1692  }
1693  } // initialize horizontal stuff
1694 
1695  /* precalculate vertical scaler filter coefficients */
1696  {
1697  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1698  PPC_ALTIVEC(cpu_flags) ? 8 :
1699  have_neon(cpu_flags) ? 2 : 1;
1700 
1701  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1702  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1703  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1704  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1705  c->param,
1706  get_local_pos(c, 0, 0, 1),
1707  get_local_pos(c, 0, 0, 1))) < 0)
1708  goto fail;
1709  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1710  c->chrYInc, c->chrSrcH, c->chrDstH,
1711  filterAlign, (1 << 12),
1712  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1713  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1714  c->param,
1716  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1717 
1718  goto fail;
1719 
1720 #if HAVE_ALTIVEC
1721  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1722  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1723 
1724  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1725  int j;
1726  short *p = (short *)&c->vYCoeffsBank[i];
1727  for (j = 0; j < 8; j++)
1728  p[j] = c->vLumFilter[i];
1729  }
1730 
1731  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1732  int j;
1733  short *p = (short *)&c->vCCoeffsBank[i];
1734  for (j = 0; j < 8; j++)
1735  p[j] = c->vChrFilter[i];
1736  }
1737 #endif
1738  }
1739 
1740  for (i = 0; i < 4; i++)
1741  FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1742 
1743  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1744 
1745  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1746  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1747  c->uv_offx2 = dst_stride + 16;
1748 
1749  av_assert0(c->chrDstH <= dstH);
1750 
1751  if (flags & SWS_PRINT_INFO) {
1752  const char *scaler = NULL, *cpucaps;
1753 
1754  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1755  if (flags & scale_algorithms[i].flag) {
1756  scaler = scale_algorithms[i].description;
1757  break;
1758  }
1759  }
1760  if (!scaler)
1761  scaler = "ehh flags invalid?!";
1762  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1763  scaler,
1764  av_get_pix_fmt_name(srcFormat),
1765 #ifdef DITHER1XBPP
1766  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1767  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1768  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1769  "dithered " : "",
1770 #else
1771  "",
1772 #endif
1773  av_get_pix_fmt_name(dstFormat));
1774 
1775  if (INLINE_MMXEXT(cpu_flags))
1776  cpucaps = "MMXEXT";
1777  else if (INLINE_AMD3DNOW(cpu_flags))
1778  cpucaps = "3DNOW";
1779  else if (INLINE_MMX(cpu_flags))
1780  cpucaps = "MMX";
1781  else if (PPC_ALTIVEC(cpu_flags))
1782  cpucaps = "AltiVec";
1783  else
1784  cpucaps = "C";
1785 
1786  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1787 
1788  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1789  av_log(c, AV_LOG_DEBUG,
1790  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1791  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1792  av_log(c, AV_LOG_DEBUG,
1793  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1794  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1795  c->chrXInc, c->chrYInc);
1796  }
1797 
1798  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1799  if (unscaled && !usesHFilter && !usesVFilter &&
1801  isALPHA(srcFormat) &&
1802  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1803  alphaless_fmt(srcFormat) == dstFormat
1804  ) {
1806 
1807  if (flags & SWS_PRINT_INFO)
1808  av_log(c, AV_LOG_INFO,
1809  "using alpha blendaway %s -> %s special converter\n",
1810  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1811  return 0;
1812  }
1813 
1814  /* unscaled special cases */
1815  if (unscaled && !usesHFilter && !usesVFilter &&
1816  (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
1817  isFloat(srcFormat) || isFloat(dstFormat))){
1819 
1820  if (c->swscale) {
1821  if (flags & SWS_PRINT_INFO)
1822  av_log(c, AV_LOG_INFO,
1823  "using unscaled %s -> %s special converter\n",
1824  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1825  return 0;
1826  }
1827  }
1828 
1829  c->swscale = ff_getSwsFunc(c);
1830  return ff_init_filters(c);
1831 fail: // FIXME replace things by appropriate error codes
1832  if (ret == RETCODE_USE_CASCADE) {
1833  int tmpW = sqrt(srcW * (int64_t)dstW);
1834  int tmpH = sqrt(srcH * (int64_t)dstH);
1835  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1836 
1837  if (isALPHA(srcFormat))
1838  tmpFormat = AV_PIX_FMT_YUVA420P;
1839 
1840  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1841  return AVERROR(EINVAL);
1842 
1844  tmpW, tmpH, tmpFormat, 64);
1845  if (ret < 0)
1846  return ret;
1847 
1848  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1849  tmpW, tmpH, tmpFormat,
1850  flags, srcFilter, NULL, c->param);
1851  if (!c->cascaded_context[0])
1852  return -1;
1853 
1854  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1855  dstW, dstH, dstFormat,
1856  flags, NULL, dstFilter, c->param);
1857  if (!c->cascaded_context[1])
1858  return -1;
1859  return 0;
1860  }
1861  return -1;
1862 }
1863 
1864 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1865  int dstW, int dstH, enum AVPixelFormat dstFormat,
1866  int flags, const double *param)
1867 {
1868  SwsContext *c;
1869 
1870  if (!(c = sws_alloc_context()))
1871  return NULL;
1872 
1873  c->flags = flags;
1874  c->srcW = srcW;
1875  c->srcH = srcH;
1876  c->dstW = dstW;
1877  c->dstH = dstH;
1878  c->srcFormat = srcFormat;
1879  c->dstFormat = dstFormat;
1880 
1881  if (param) {
1882  c->param[0] = param[0];
1883  c->param[1] = param[1];
1884  }
1885 
1886  return c;
1887 }
1888 
1889 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1890  int dstW, int dstH, enum AVPixelFormat dstFormat,
1891  int flags, SwsFilter *srcFilter,
1892  SwsFilter *dstFilter, const double *param)
1893 {
1894  SwsContext *c;
1895 
1896  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1897  dstW, dstH, dstFormat,
1898  flags, param);
1899  if (!c)
1900  return NULL;
1901 
1902  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1903  sws_freeContext(c);
1904  return NULL;
1905  }
1906 
1907  return c;
1908 }
1909 
1910 static int isnan_vec(SwsVector *a)
1911 {
1912  int i;
1913  for (i=0; i<a->length; i++)
1914  if (isnan(a->coeff[i]))
1915  return 1;
1916  return 0;
1917 }
1918 
1919 static void makenan_vec(SwsVector *a)
1920 {
1921  int i;
1922  for (i=0; i<a->length; i++)
1923  a->coeff[i] = NAN;
1924 }
1925 
1926 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1927  float lumaSharpen, float chromaSharpen,
1928  float chromaHShift, float chromaVShift,
1929  int verbose)
1930 {
1931  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1932  if (!filter)
1933  return NULL;
1934 
1935  if (lumaGBlur != 0.0) {
1936  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1937  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1938  } else {
1939  filter->lumH = sws_getIdentityVec();
1940  filter->lumV = sws_getIdentityVec();
1941  }
1942 
1943  if (chromaGBlur != 0.0) {
1944  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1945  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1946  } else {
1947  filter->chrH = sws_getIdentityVec();
1948  filter->chrV = sws_getIdentityVec();
1949  }
1950 
1951  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1952  goto fail;
1953 
1954  if (chromaSharpen != 0.0) {
1955  SwsVector *id = sws_getIdentityVec();
1956  if (!id)
1957  goto fail;
1958  sws_scaleVec(filter->chrH, -chromaSharpen);
1959  sws_scaleVec(filter->chrV, -chromaSharpen);
1960  sws_addVec(filter->chrH, id);
1961  sws_addVec(filter->chrV, id);
1962  sws_freeVec(id);
1963  }
1964 
1965  if (lumaSharpen != 0.0) {
1966  SwsVector *id = sws_getIdentityVec();
1967  if (!id)
1968  goto fail;
1969  sws_scaleVec(filter->lumH, -lumaSharpen);
1970  sws_scaleVec(filter->lumV, -lumaSharpen);
1971  sws_addVec(filter->lumH, id);
1972  sws_addVec(filter->lumV, id);
1973  sws_freeVec(id);
1974  }
1975 
1976  if (chromaHShift != 0.0)
1977  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1978 
1979  if (chromaVShift != 0.0)
1980  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1981 
1982  sws_normalizeVec(filter->chrH, 1.0);
1983  sws_normalizeVec(filter->chrV, 1.0);
1984  sws_normalizeVec(filter->lumH, 1.0);
1985  sws_normalizeVec(filter->lumV, 1.0);
1986 
1987  if (isnan_vec(filter->chrH) ||
1988  isnan_vec(filter->chrV) ||
1989  isnan_vec(filter->lumH) ||
1990  isnan_vec(filter->lumV))
1991  goto fail;
1992 
1993  if (verbose)
1994  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1995  if (verbose)
1996  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1997 
1998  return filter;
1999 
2000 fail:
2001  sws_freeVec(filter->lumH);
2002  sws_freeVec(filter->lumV);
2003  sws_freeVec(filter->chrH);
2004  sws_freeVec(filter->chrV);
2005  av_freep(&filter);
2006  return NULL;
2007 }
2008 
2010 {
2011  SwsVector *vec;
2012 
2013  if(length <= 0 || length > INT_MAX/ sizeof(double))
2014  return NULL;
2015 
2016  vec = av_malloc(sizeof(SwsVector));
2017  if (!vec)
2018  return NULL;
2019  vec->length = length;
2020  vec->coeff = av_malloc(sizeof(double) * length);
2021  if (!vec->coeff)
2022  av_freep(&vec);
2023  return vec;
2024 }
2025 
2026 SwsVector *sws_getGaussianVec(double variance, double quality)
2027 {
2028  const int length = (int)(variance * quality + 0.5) | 1;
2029  int i;
2030  double middle = (length - 1) * 0.5;
2031  SwsVector *vec;
2032 
2033  if(variance < 0 || quality < 0)
2034  return NULL;
2035 
2036  vec = sws_allocVec(length);
2037 
2038  if (!vec)
2039  return NULL;
2040 
2041  for (i = 0; i < length; i++) {
2042  double dist = i - middle;
2043  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2044  sqrt(2 * variance * M_PI);
2045  }
2046 
2047  sws_normalizeVec(vec, 1.0);
2048 
2049  return vec;
2050 }
2051 
2052 /**
2053  * Allocate and return a vector with length coefficients, all
2054  * with the same value c.
2055  */
2056 #if !FF_API_SWS_VECTOR
2057 static
2058 #endif
2060 {
2061  int i;
2062  SwsVector *vec = sws_allocVec(length);
2063 
2064  if (!vec)
2065  return NULL;
2066 
2067  for (i = 0; i < length; i++)
2068  vec->coeff[i] = c;
2069 
2070  return vec;
2071 }
2072 
2073 /**
2074  * Allocate and return a vector with just one coefficient, with
2075  * value 1.0.
2076  */
2077 #if !FF_API_SWS_VECTOR
2078 static
2079 #endif
2081 {
2082  return sws_getConstVec(1.0, 1);
2083 }
2084 
2085 static double sws_dcVec(SwsVector *a)
2086 {
2087  int i;
2088  double sum = 0;
2089 
2090  for (i = 0; i < a->length; i++)
2091  sum += a->coeff[i];
2092 
2093  return sum;
2094 }
2095 
2096 void sws_scaleVec(SwsVector *a, double scalar)
2097 {
2098  int i;
2099 
2100  for (i = 0; i < a->length; i++)
2101  a->coeff[i] *= scalar;
2102 }
2103 
2105 {
2106  sws_scaleVec(a, height / sws_dcVec(a));
2107 }
2108 
2109 #if FF_API_SWS_VECTOR
2111 {
2112  int length = a->length + b->length - 1;
2113  int i, j;
2114  SwsVector *vec = sws_getConstVec(0.0, length);
2115 
2116  if (!vec)
2117  return NULL;
2118 
2119  for (i = 0; i < a->length; i++) {
2120  for (j = 0; j < b->length; j++) {
2121  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2122  }
2123  }
2124 
2125  return vec;
2126 }
2127 #endif
2128 
2130 {
2131  int length = FFMAX(a->length, b->length);
2132  int i;
2133  SwsVector *vec = sws_getConstVec(0.0, length);
2134 
2135  if (!vec)
2136  return NULL;
2137 
2138  for (i = 0; i < a->length; i++)
2139  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2140  for (i = 0; i < b->length; i++)
2141  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2142 
2143  return vec;
2144 }
2145 
2146 #if FF_API_SWS_VECTOR
2148 {
2149  int length = FFMAX(a->length, b->length);
2150  int i;
2151  SwsVector *vec = sws_getConstVec(0.0, length);
2152 
2153  if (!vec)
2154  return NULL;
2155 
2156  for (i = 0; i < a->length; i++)
2157  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2158  for (i = 0; i < b->length; i++)
2159  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2160 
2161  return vec;
2162 }
2163 #endif
2164 
2165 /* shift left / or right if "shift" is negative */
2167 {
2168  int length = a->length + FFABS(shift) * 2;
2169  int i;
2170  SwsVector *vec = sws_getConstVec(0.0, length);
2171 
2172  if (!vec)
2173  return NULL;
2174 
2175  for (i = 0; i < a->length; i++) {
2176  vec->coeff[i + (length - 1) / 2 -
2177  (a->length - 1) / 2 - shift] = a->coeff[i];
2178  }
2179 
2180  return vec;
2181 }
2182 
2183 #if !FF_API_SWS_VECTOR
2184 static
2185 #endif
2187 {
2188  SwsVector *shifted = sws_getShiftedVec(a, shift);
2189  if (!shifted) {
2190  makenan_vec(a);
2191  return;
2192  }
2193  av_free(a->coeff);
2194  a->coeff = shifted->coeff;
2195  a->length = shifted->length;
2196  av_free(shifted);
2197 }
2198 
2199 #if !FF_API_SWS_VECTOR
2200 static
2201 #endif
2203 {
2204  SwsVector *sum = sws_sumVec(a, b);
2205  if (!sum) {
2206  makenan_vec(a);
2207  return;
2208  }
2209  av_free(a->coeff);
2210  a->coeff = sum->coeff;
2211  a->length = sum->length;
2212  av_free(sum);
2213 }
2214 
2215 #if FF_API_SWS_VECTOR
2217 {
2218  SwsVector *diff = sws_diffVec(a, b);
2219  if (!diff) {
2220  makenan_vec(a);
2221  return;
2222  }
2223  av_free(a->coeff);
2224  a->coeff = diff->coeff;
2225  a->length = diff->length;
2226  av_free(diff);
2227 }
2228 
2230 {
2231  SwsVector *conv = sws_getConvVec(a, b);
2232  if (!conv) {
2233  makenan_vec(a);
2234  return;
2235  }
2236  av_free(a->coeff);
2237  a->coeff = conv->coeff;
2238  a->length = conv->length;
2239  av_free(conv);
2240 }
2241 
2243 {
2244  SwsVector *vec = sws_allocVec(a->length);
2245 
2246  if (!vec)
2247  return NULL;
2248 
2249  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2250 
2251  return vec;
2252 }
2253 #endif
2254 
2255 /**
2256  * Print with av_log() a textual representation of the vector a
2257  * if log_level <= av_log_level.
2258  */
2259 #if !FF_API_SWS_VECTOR
2260 static
2261 #endif
2262 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2263 {
2264  int i;
2265  double max = 0;
2266  double min = 0;
2267  double range;
2268 
2269  for (i = 0; i < a->length; i++)
2270  if (a->coeff[i] > max)
2271  max = a->coeff[i];
2272 
2273  for (i = 0; i < a->length; i++)
2274  if (a->coeff[i] < min)
2275  min = a->coeff[i];
2276 
2277  range = max - min;
2278 
2279  for (i = 0; i < a->length; i++) {
2280  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2281  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2282  for (; x > 0; x--)
2283  av_log(log_ctx, log_level, " ");
2284  av_log(log_ctx, log_level, "|\n");
2285  }
2286 }
2287 
2289 {
2290  if (!a)
2291  return;
2292  av_freep(&a->coeff);
2293  a->length = 0;
2294  av_free(a);
2295 }
2296 
2298 {
2299  if (!filter)
2300  return;
2301 
2302  sws_freeVec(filter->lumH);
2303  sws_freeVec(filter->lumV);
2304  sws_freeVec(filter->chrH);
2305  sws_freeVec(filter->chrV);
2306  av_free(filter);
2307 }
2308 
2310 {
2311  int i;
2312  if (!c)
2313  return;
2314 
2315  for (i = 0; i < 4; i++)
2316  av_freep(&c->dither_error[i]);
2317 
2318  av_freep(&c->vLumFilter);
2319  av_freep(&c->vChrFilter);
2320  av_freep(&c->hLumFilter);
2321  av_freep(&c->hChrFilter);
2322 #if HAVE_ALTIVEC
2323  av_freep(&c->vYCoeffsBank);
2324  av_freep(&c->vCCoeffsBank);
2325 #endif
2326 
2327  av_freep(&c->vLumFilterPos);
2328  av_freep(&c->vChrFilterPos);
2329  av_freep(&c->hLumFilterPos);
2330  av_freep(&c->hChrFilterPos);
2331 
2332 #if HAVE_MMX_INLINE
2333 #if USE_MMAP
2334  if (c->lumMmxextFilterCode)
2336  if (c->chrMmxextFilterCode)
2338 #elif HAVE_VIRTUALALLOC
2339  if (c->lumMmxextFilterCode)
2340  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2341  if (c->chrMmxextFilterCode)
2342  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2343 #else
2346 #endif
2349 #endif /* HAVE_MMX_INLINE */
2350 
2351  av_freep(&c->yuvTable);
2353 
2357  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2358  av_freep(&c->cascaded_tmp[0]);
2359  av_freep(&c->cascaded1_tmp[0]);
2360 
2361  av_freep(&c->gamma);
2362  av_freep(&c->inv_gamma);
2363 
2364  ff_free_filters(c);
2365 
2366  av_free(c);
2367 }
2368 
2369 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2370  int srcH, enum AVPixelFormat srcFormat,
2371  int dstW, int dstH,
2372  enum AVPixelFormat dstFormat, int flags,
2373  SwsFilter *srcFilter,
2374  SwsFilter *dstFilter,
2375  const double *param)
2376 {
2377  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2379  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2380  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2381 
2382  if (!param)
2383  param = default_param;
2384 
2385  if (context &&
2386  (context->srcW != srcW ||
2387  context->srcH != srcH ||
2388  context->srcFormat != srcFormat ||
2389  context->dstW != dstW ||
2390  context->dstH != dstH ||
2391  context->dstFormat != dstFormat ||
2392  context->flags != flags ||
2393  context->param[0] != param[0] ||
2394  context->param[1] != param[1])) {
2395 
2396  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2397  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2398  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2399  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2400  sws_freeContext(context);
2401  context = NULL;
2402  }
2403 
2404  if (!context) {
2405  if (!(context = sws_alloc_context()))
2406  return NULL;
2407  context->srcW = srcW;
2408  context->srcH = srcH;
2409  context->srcFormat = srcFormat;
2410  context->dstW = dstW;
2411  context->dstH = dstH;
2412  context->dstFormat = dstFormat;
2413  context->flags = flags;
2414  context->param[0] = param[0];
2415  context->param[1] = param[1];
2416 
2417  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2418  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2419  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2420  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2421 
2422  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2423  sws_freeContext(context);
2424  return NULL;
2425  }
2426  }
2427  return context;
2428 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:81
SwsVector * chrV
Definition: swscale.h:119
IEEE-754 single precision Y, 32bpp, big-endian.
Definition: pixfmt.h:340
uint8_t is_supported_out
Definition: utils.c:94
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:291
#define NULL
Definition: coverity.c:32
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:275
static const FormatEntry format_entries[AV_PIX_FMT_NB]
Definition: utils.c:98
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:166
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:275
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:252
static enum AVPixelFormat pix_fmt
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2129
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
static int shift(int a, int b)
Definition: sonic.c:82
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1047
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:245
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:70
static const char * format[]
Definition: af_aiir.c:331
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2498
int chrSrcH
Height of source chroma planes.
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:167
#define SWS_X
Definition: swscale.h:61
int ff_free_filters(SwsContext *c)
Definition: slice.c:377
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
#define RV_IDX
#define SWS_BICUBIC
Definition: swscale.h:60
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:726
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:249
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:159
#define BV_IDX
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:120
#define C
8 bits gray, 8 bits alpha
Definition: pixfmt.h:143
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:208
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
const char * fmt
Definition: avisynth_c.h:769
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
SwsVector * lumV
Definition: swscale.h:117
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, little-endian ...
Definition: pixfmt.h:346
int16_t * rgbgamma
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:84
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:300
SwsAlphaBlend alphablend
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:991
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:192
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:162
int acc
Definition: yuv2rgb.c:554
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2450
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:2026
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:250
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples */
Definition: pixfmt.h:262
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1305
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples */
Definition: pixfmt.h:263
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:773
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:207
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:108
#define SWS_BICUBLIN
Definition: swscale.h:64
int16_t * rgbgammainv
const char * b
Definition: vf_curves.c:116
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:287
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:400
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:270
#define GV_IDX
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
int av_log2(unsigned v)
Definition: intmath.c:26
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:379
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:189
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
Convenience header that includes libavutil's core.
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:1009
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:281
static int isnan_vec(SwsVector *a)
Definition: utils.c:1910
int16_t * xyzgammainv
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:111
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:71
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:255
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:156
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:140
static atomic_int cpu_flags
Definition: cpu.c:50
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples */
Definition: pixfmt.h:260
#define RGB_GAMMA
#define SWS_PRINT_INFO
Definition: swscale.h:75
Y , 12bpp, little-endian.
Definition: pixfmt.h:296
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2594
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:254
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:131
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:87
Macro definitions for various function/variable attributes.
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:106
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:85
#define SWS_BILINEAR
Definition: swscale.h:59
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:179
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2229
#define RU_IDX
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:216
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:190
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhd.c:153
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1091
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, little-endian ...
Definition: pixfmt.h:344
ptrdiff_t uv_off
offset (in pixels) between u and v planes
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
int length
number of coefficients in the vector
Definition: swscale.h:111
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1163
#define SWS_LANCZOS
Definition: swscale.h:67
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:77
AVOptions.
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:103
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2242
int vChrFilterSize
Vertical filter size for chroma pixels.
#define f(width, name)
Definition: cbs_vp9.c:255
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:268
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:269
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:205
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:139
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:251
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:79
int cascaded_tmpStride[4]
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:105
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:191
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:2059
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:276
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:174
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
Definition: pixfmt.h:100
Y , 9bpp, little-endian.
Definition: pixfmt.h:316
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1889
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:194
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:375
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int16_t rgb2xyz_matrix[3][4]
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:397
Y , 10bpp, little-endian.
Definition: pixfmt.h:298
external API header
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale.c:51
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:278
uint16_t * inv_gamma
#define A(x)
Definition: vp56_arith.h:28
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:264
#define FFALIGN(x, a)
Definition: macros.h:48
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
#define av_log(a,...)
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
float uint2float_lut[256]
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2166
static const uint16_t table[]
Definition: prosumer.c:203
uint64_t vRounder
#define ROUNDED_DIV(a, b)
Definition: common.h:56
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
int * dither_error[4]
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:157
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1926
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:170
#define INLINE_MMX(flags)
Definition: cpu.h:86
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:165
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:176
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
16 bits gray, 16 bits alpha (big-endian)
Definition: pixfmt.h:212
like NV12, with 16bpp per component, big-endian
Definition: pixfmt.h:301
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:136
#define AVERROR(e)
Definition: error.h:43
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:598
const char * description
human-readable description
Definition: utils.c:311
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2526
#define B
Definition: huffyuvdsp.h:32
#define PPC_ALTIVEC(flags)
Definition: cpu.h:25
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:87
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2216
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2262
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:182
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:161
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:568
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:89
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:370
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:248
GLsizei GLsizei * length
Definition: opengl_enc.c:115
like NV12, with 16bpp per component, little-endian
Definition: pixfmt.h:300
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:134
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:387
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
Definition: pixfmt.h:285
#define SWS_CS_DEFAULT
Definition: swscale.h:95
#define X86_MMX(flags)
Definition: cpu.h:30
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:183
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2096
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:116
#define fail()
Definition: checkasm.h:117
int8_t exp
Definition: eval.c:72
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:149
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
uint8_t * cascaded1_tmp[4]
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2104
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:184
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2369
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define RETCODE_USE_CASCADE
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1105
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2297
int hChrFilterSize
Horizontal filter size for chroma pixels.
int16_t * xyzgamma
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:2009
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:382
as above, but U and V bytes are swapped
Definition: pixfmt.h:90
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:287
#define RGB2YUV_SHIFT
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:290
#define APCK_SIZE
#define have_neon(flags)
Definition: cpu.h:26
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:403
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:368
#define NAN
Definition: mathematics.h:64
#define FFMIN(a, b)
Definition: common.h:96
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:88
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
#define SWS_GAUSS
Definition: swscale.h:65
SwsVector * chrH
Definition: swscale.h:118
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:84
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:137
int32_t
#define RY_IDX
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2186
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2309
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:188
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:210
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:180
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:243
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:200
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:158
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:540
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1864
unsigned swscale_version(void)
Definition: utils.c:75
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
Definition: pixfmt.h:284
double gamma_value
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:856
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:383
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:167
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:148
#define DITHER1XBPP
static void error(const char *err)
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:110
uint8_t * cascaded_tmp[4]
#define FF_ARRAY_ELEMS(a)
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:315
int cascaded1_tmpStride[4]
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:288
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:395
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define isGray(x)
Definition: swscale.c:40
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:377
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:888
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:83
double * coeff
pointer to the list of coefficients
Definition: swscale.h:110
int flag
flag associated to the algorithm
Definition: utils.c:310
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:132
int dstColorspaceTable[4]
#define AV_PIX_FMT_GRAYF32
Definition: pixfmt.h:416
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:329
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
const AVClass * av_class
info on struct for av_log
int16_t xyz2rgb_matrix[3][4]
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
#define DITHER32_INT
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:267
void sws_freeVec(SwsVector *a)
Definition: utils.c:2288
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:172
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:31
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:271
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:192
int chrDstH
Height of destination chroma planes.
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:67
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:277
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:257
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:85
Replacements for frequently missing libm functions.
#define SWS_AREA
Definition: swscale.h:63
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:384
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:193
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2147
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:67
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:195
#define W(a, i, v)
Definition: jpegls.h:124
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
Y , 16bpp, big-endian.
Definition: pixfmt.h:97
#define isnan(x)
Definition: libm.h:340
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:83
byte swapping routines
static void handle_formats(SwsContext *c)
Definition: utils.c:1067
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:244
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, big-endian ...
Definition: pixfmt.h:345
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
Y , 9bpp, big-endian.
Definition: pixfmt.h:315
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:256
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:178
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:381
const VDPAUPixFmtMap * map
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:113
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:93
#define SWS_POINT
Definition: swscale.h:62
int ff_init_filters(SwsContext *c)
Definition: slice.c:249
Y , 14bpp, little-endian.
Definition: pixfmt.h:338
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:265
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1077
#define GY_IDX
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:376
#define SWS_SPLINE
Definition: swscale.h:68
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:401
#define SWS_SINC
Definition: swscale.h:66
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:187
#define flags(name, subs,...)
Definition: cbs_av1.c:584
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:385
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:107
#define SWS_BITEXACT
Definition: swscale.h:84
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:266
Y , 10bpp, big-endian.
Definition: pixfmt.h:297
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:142
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:163
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:135
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1058
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:158
Definition: vc1_parser.c:48
SwsDither dither
uint8_t is_supported_in
Definition: utils.c:93
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:76
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2202
#define INLINE_MMXEXT(flags)
Definition: cpu.h:87
int
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2085
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:247
Y , 8bpp.
Definition: pixfmt.h:74
double param[2]
Input parameters for scaling algorithms that need them.
#define exp2(x)
Definition: libm.h:288
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:75
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:140
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:171
#define flag(name)
Definition: cbs_av1.c:576
static double c[64]
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:102
#define AV_WL16(p, v)
Definition: intreadwrite.h:412
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:133
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples */
Definition: pixfmt.h:261
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:86
static const uint64_t c2
Definition: murmur3.c:50
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:73
#define XYZ_GAMMA
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:185
struct SwsContext * cascaded_context[3]
#define SWS_PARAM_DEFAULT
Definition: swscale.h:73
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:81
uint16_t * gamma
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
#define MAX_FILTER_SIZE
static av_always_inline int diff(const uint32_t a, const uint32_t b)
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:199
#define av_free(p)
int size_factor
size factor used when initing the filters
Definition: utils.c:312
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:253
int srcFormatBpp
Number of bits per pixel of the source pixel format.
Y , 14bpp, big-endian.
Definition: pixfmt.h:337
const AVClass ff_sws_context_class
Definition: options.c:87
Y , 16bpp, little-endian.
Definition: pixfmt.h:98
uint8_t is_supported_endianness
Definition: utils.c:95
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:258
#define lrint
Definition: tablegen.h:53
16 bits gray, 16 bits alpha (little-endian)
Definition: pixfmt.h:213
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:269
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2080
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:186
Y , 12bpp, big-endian.
Definition: pixfmt.h:295
static int height
Definition: utils.c:158
int32_t input_rgb2yuv_table[16+40 *4]
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:112
number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of...
Definition: pixfmt.h:348
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
#define av_freep(p)
#define GU_IDX
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:99
#define M_PI
Definition: mathematics.h:52
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:175
static void makenan_vec(SwsVector *a)
Definition: utils.c:1919
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define av_malloc_array(a, b)
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:141
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2414
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:181
#define BY_IDX
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
int depth
Number of bits in the component.
Definition: pixdesc.h:58
IEEE-754 single precision Y, 32bpp, little-endian.
Definition: pixfmt.h:341
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:217
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:82
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:820
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:242
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:396
#define BU_IDX
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:164
for(j=16;j >0;--j)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:246
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:149
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:173
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2110
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:206
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:279
#define V
Definition: avdct.c:30
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, big-endian ...
Definition: pixfmt.h:343
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:160
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86