FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_SYS_MMAN_H
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
136  [AV_PIX_FMT_YUV440P] = { 1, 1 },
137  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
138  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
139  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
140  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
141  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
142  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
143  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
144  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
145  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
146  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
147  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
148  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
149  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
151  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
152  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
153  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
154  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
155  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
156  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
157  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
158  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
159  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
163  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
164  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
165  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
166  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
167  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
168  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
169  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
170  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
171  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
172  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
173  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
174  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
175  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
176  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
177  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
178  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
179  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
180  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
181  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
182  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
183  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
184  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
185  [AV_PIX_FMT_YA8] = { 1, 1 },
186  [AV_PIX_FMT_YA16BE] = { 1, 0 },
187  [AV_PIX_FMT_YA16LE] = { 1, 0 },
188  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
189  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
190  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
191  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
192  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
193  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
194  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
195  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
196  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
197  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
198  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
199  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
200  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
216  [AV_PIX_FMT_GBRP] = { 1, 1 },
217  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
218  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
219  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
220  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
221  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
222  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
223  [AV_PIX_FMT_GBRAP12LE] = { 1, 0 },
224  [AV_PIX_FMT_GBRAP12BE] = { 1, 0 },
225  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
228  [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
229  [AV_PIX_FMT_GBRAP] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
231  [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
232  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
233  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
234  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
235  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
236  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
237  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
238  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
239  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
240  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
241  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
242  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
243  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
244  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
245  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
246  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
247  [AV_PIX_FMT_P010LE] = { 1, 0 },
248  [AV_PIX_FMT_P010BE] = { 1, 0 },
249 };
250 
252 {
253  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
254  format_entries[pix_fmt].is_supported_in : 0;
255 }
256 
258 {
259  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
260  format_entries[pix_fmt].is_supported_out : 0;
261 }
262 
264 {
265  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
266  format_entries[pix_fmt].is_supported_endianness : 0;
267 }
268 
269 static double getSplineCoeff(double a, double b, double c, double d,
270  double dist)
271 {
272  if (dist <= 1.0)
273  return ((d * dist + c) * dist + b) * dist + a;
274  else
275  return getSplineCoeff(0.0,
276  b + 2.0 * c + 3.0 * d,
277  c + 3.0 * d,
278  -b - 3.0 * c - 6.0 * d,
279  dist - 1.0);
280 }
281 
282 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
283 {
284  if (pos == -1 || pos <= -513) {
285  pos = (128 << chr_subsample) - 128;
286  }
287  pos += 128; // relative to ideal left edge
288  return pos >> chr_subsample;
289 }
290 
291 typedef struct {
292  int flag; ///< flag associated to the algorithm
293  const char *description; ///< human-readable description
294  int size_factor; ///< size factor used when initing the filters
296 
298  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
299  { SWS_BICUBIC, "bicubic", 4 },
300  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
301  { SWS_BILINEAR, "bilinear", 2 },
302  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
303  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
304  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
305  { SWS_POINT, "nearest neighbor / point", -1 },
306  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
307  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
308  { SWS_X, "experimental", 8 },
309 };
310 
311 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
312  int *outFilterSize, int xInc, int srcW,
313  int dstW, int filterAlign, int one,
314  int flags, int cpu_flags,
315  SwsVector *srcFilter, SwsVector *dstFilter,
316  double param[2], int srcPos, int dstPos)
317 {
318  int i;
319  int filterSize;
320  int filter2Size;
321  int minFilterSize;
322  int64_t *filter = NULL;
323  int64_t *filter2 = NULL;
324  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
325  int ret = -1;
326 
327  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
328 
329  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
330  FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
331 
332  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
333  int i;
334  filterSize = 1;
336  dstW, sizeof(*filter) * filterSize, fail);
337 
338  for (i = 0; i < dstW; i++) {
339  filter[i * filterSize] = fone;
340  (*filterPos)[i] = i;
341  }
342  } else if (flags & SWS_POINT) { // lame looking point sampling mode
343  int i;
344  int64_t xDstInSrc;
345  filterSize = 1;
347  dstW, sizeof(*filter) * filterSize, fail);
348 
349  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
350  for (i = 0; i < dstW; i++) {
351  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
352 
353  (*filterPos)[i] = xx;
354  filter[i] = fone;
355  xDstInSrc += xInc;
356  }
357  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
358  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
359  int i;
360  int64_t xDstInSrc;
361  filterSize = 2;
363  dstW, sizeof(*filter) * filterSize, fail);
364 
365  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
366  for (i = 0; i < dstW; i++) {
367  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
368  int j;
369 
370  (*filterPos)[i] = xx;
371  // bilinear upscale / linear interpolate / area averaging
372  for (j = 0; j < filterSize; j++) {
373  int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
374  if (coeff < 0)
375  coeff = 0;
376  filter[i * filterSize + j] = coeff;
377  xx++;
378  }
379  xDstInSrc += xInc;
380  }
381  } else {
382  int64_t xDstInSrc;
383  int sizeFactor = -1;
384 
385  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
386  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
387  sizeFactor = scale_algorithms[i].size_factor;
388  break;
389  }
390  }
391  if (flags & SWS_LANCZOS)
392  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
393  av_assert0(sizeFactor > 0);
394 
395  if (xInc <= 1 << 16)
396  filterSize = 1 + sizeFactor; // upscale
397  else
398  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
399 
400  filterSize = FFMIN(filterSize, srcW - 2);
401  filterSize = FFMAX(filterSize, 1);
402 
404  dstW, sizeof(*filter) * filterSize, fail);
405 
406  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
407  for (i = 0; i < dstW; i++) {
408  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
409  int j;
410  (*filterPos)[i] = xx;
411  for (j = 0; j < filterSize; j++) {
412  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
413  double floatd;
414  int64_t coeff;
415 
416  if (xInc > 1 << 16)
417  d = d * dstW / srcW;
418  floatd = d * (1.0 / (1 << 30));
419 
420  if (flags & SWS_BICUBIC) {
421  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
422  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
423 
424  if (d >= 1LL << 31) {
425  coeff = 0.0;
426  } else {
427  int64_t dd = (d * d) >> 30;
428  int64_t ddd = (dd * d) >> 30;
429 
430  if (d < 1LL << 30)
431  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
432  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
433  (6 * (1 << 24) - 2 * B) * (1 << 30);
434  else
435  coeff = (-B - 6 * C) * ddd +
436  (6 * B + 30 * C) * dd +
437  (-12 * B - 48 * C) * d +
438  (8 * B + 24 * C) * (1 << 30);
439  }
440  coeff /= (1LL<<54)/fone;
441  }
442 #if 0
443  else if (flags & SWS_X) {
444  double p = param ? param * 0.01 : 0.3;
445  coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
446  coeff *= pow(2.0, -p * d * d);
447  }
448 #endif
449  else if (flags & SWS_X) {
450  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
451  double c;
452 
453  if (floatd < 1.0)
454  c = cos(floatd * M_PI);
455  else
456  c = -1.0;
457  if (c < 0.0)
458  c = -pow(-c, A);
459  else
460  c = pow(c, A);
461  coeff = (c * 0.5 + 0.5) * fone;
462  } else if (flags & SWS_AREA) {
463  int64_t d2 = d - (1 << 29);
464  if (d2 * xInc < -(1LL << (29 + 16)))
465  coeff = 1.0 * (1LL << (30 + 16));
466  else if (d2 * xInc < (1LL << (29 + 16)))
467  coeff = -d2 * xInc + (1LL << (29 + 16));
468  else
469  coeff = 0.0;
470  coeff *= fone >> (30 + 16);
471  } else if (flags & SWS_GAUSS) {
472  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
473  coeff = exp2(-p * floatd * floatd) * fone;
474  } else if (flags & SWS_SINC) {
475  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
476  } else if (flags & SWS_LANCZOS) {
477  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
478  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
479  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
480  if (floatd > p)
481  coeff = 0;
482  } else if (flags & SWS_BILINEAR) {
483  coeff = (1 << 30) - d;
484  if (coeff < 0)
485  coeff = 0;
486  coeff *= fone >> 30;
487  } else if (flags & SWS_SPLINE) {
488  double p = -2.196152422706632;
489  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
490  } else {
491  av_assert0(0);
492  }
493 
494  filter[i * filterSize + j] = coeff;
495  xx++;
496  }
497  xDstInSrc += 2 * xInc;
498  }
499  }
500 
501  /* apply src & dst Filter to filter -> filter2
502  * av_free(filter);
503  */
504  av_assert0(filterSize > 0);
505  filter2Size = filterSize;
506  if (srcFilter)
507  filter2Size += srcFilter->length - 1;
508  if (dstFilter)
509  filter2Size += dstFilter->length - 1;
510  av_assert0(filter2Size > 0);
511  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
512 
513  for (i = 0; i < dstW; i++) {
514  int j, k;
515 
516  if (srcFilter) {
517  for (k = 0; k < srcFilter->length; k++) {
518  for (j = 0; j < filterSize; j++)
519  filter2[i * filter2Size + k + j] +=
520  srcFilter->coeff[k] * filter[i * filterSize + j];
521  }
522  } else {
523  for (j = 0; j < filterSize; j++)
524  filter2[i * filter2Size + j] = filter[i * filterSize + j];
525  }
526  // FIXME dstFilter
527 
528  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
529  }
530  av_freep(&filter);
531 
532  /* try to reduce the filter-size (step1 find size and shift left) */
533  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
534  minFilterSize = 0;
535  for (i = dstW - 1; i >= 0; i--) {
536  int min = filter2Size;
537  int j;
538  int64_t cutOff = 0.0;
539 
540  /* get rid of near zero elements on the left by shifting left */
541  for (j = 0; j < filter2Size; j++) {
542  int k;
543  cutOff += FFABS(filter2[i * filter2Size]);
544 
545  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
546  break;
547 
548  /* preserve monotonicity because the core can't handle the
549  * filter otherwise */
550  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
551  break;
552 
553  // move filter coefficients left
554  for (k = 1; k < filter2Size; k++)
555  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
556  filter2[i * filter2Size + k - 1] = 0;
557  (*filterPos)[i]++;
558  }
559 
560  cutOff = 0;
561  /* count near zeros on the right */
562  for (j = filter2Size - 1; j > 0; j--) {
563  cutOff += FFABS(filter2[i * filter2Size + j]);
564 
565  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
566  break;
567  min--;
568  }
569 
570  if (min > minFilterSize)
571  minFilterSize = min;
572  }
573 
574  if (PPC_ALTIVEC(cpu_flags)) {
575  // we can handle the special case 4, so we don't want to go the full 8
576  if (minFilterSize < 5)
577  filterAlign = 4;
578 
579  /* We really don't want to waste our time doing useless computation, so
580  * fall back on the scalar C code for very small filters.
581  * Vectorizing is worth it only if you have a decent-sized vector. */
582  if (minFilterSize < 3)
583  filterAlign = 1;
584  }
585 
586  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
587  // special case for unscaled vertical filtering
588  if (minFilterSize == 1 && filterAlign == 2)
589  filterAlign = 1;
590  }
591 
592  av_assert0(minFilterSize > 0);
593  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
594  av_assert0(filterSize > 0);
595  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
596  if (!filter)
597  goto fail;
598  if (filterSize >= MAX_FILTER_SIZE * 16 /
599  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
600  ret = RETCODE_USE_CASCADE;
601  goto fail;
602  }
603  *outFilterSize = filterSize;
604 
605  if (flags & SWS_PRINT_INFO)
607  "SwScaler: reducing / aligning filtersize %d -> %d\n",
608  filter2Size, filterSize);
609  /* try to reduce the filter-size (step2 reduce it) */
610  for (i = 0; i < dstW; i++) {
611  int j;
612 
613  for (j = 0; j < filterSize; j++) {
614  if (j >= filter2Size)
615  filter[i * filterSize + j] = 0;
616  else
617  filter[i * filterSize + j] = filter2[i * filter2Size + j];
618  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
619  filter[i * filterSize + j] = 0;
620  }
621  }
622 
623  // FIXME try to align filterPos if possible
624 
625  // fix borders
626  for (i = 0; i < dstW; i++) {
627  int j;
628  if ((*filterPos)[i] < 0) {
629  // move filter coefficients left to compensate for filterPos
630  for (j = 1; j < filterSize; j++) {
631  int left = FFMAX(j + (*filterPos)[i], 0);
632  filter[i * filterSize + left] += filter[i * filterSize + j];
633  filter[i * filterSize + j] = 0;
634  }
635  (*filterPos)[i]= 0;
636  }
637 
638  if ((*filterPos)[i] + filterSize > srcW) {
639  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
640  int64_t acc = 0;
641 
642  for (j = filterSize - 1; j >= 0; j--) {
643  if ((*filterPos)[i] + j >= srcW) {
644  acc += filter[i * filterSize + j];
645  filter[i * filterSize + j] = 0;
646  }
647  }
648  for (j = filterSize - 1; j >= 0; j--) {
649  if (j < shift) {
650  filter[i * filterSize + j] = 0;
651  } else {
652  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
653  }
654  }
655 
656  (*filterPos)[i]-= shift;
657  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
658  }
659  av_assert0((*filterPos)[i] >= 0);
660  av_assert0((*filterPos)[i] < srcW);
661  if ((*filterPos)[i] + filterSize > srcW) {
662  for (j = 0; j < filterSize; j++) {
663  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
664  }
665  }
666  }
667 
668  // Note the +1 is for the MMX scaler which reads over the end
669  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
670  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
671  (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
672 
673  /* normalize & store in outFilter */
674  for (i = 0; i < dstW; i++) {
675  int j;
676  int64_t error = 0;
677  int64_t sum = 0;
678 
679  for (j = 0; j < filterSize; j++) {
680  sum += filter[i * filterSize + j];
681  }
682  sum = (sum + one / 2) / one;
683  if (!sum) {
684  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
685  sum = 1;
686  }
687  for (j = 0; j < *outFilterSize; j++) {
688  int64_t v = filter[i * filterSize + j] + error;
689  int intV = ROUNDED_DIV(v, sum);
690  (*outFilter)[i * (*outFilterSize) + j] = intV;
691  error = v - intV * sum;
692  }
693  }
694 
695  (*filterPos)[dstW + 0] =
696  (*filterPos)[dstW + 1] =
697  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
698  * read over the end */
699  for (i = 0; i < *outFilterSize; i++) {
700  int k = (dstW - 1) * (*outFilterSize) + i;
701  (*outFilter)[k + 1 * (*outFilterSize)] =
702  (*outFilter)[k + 2 * (*outFilterSize)] =
703  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
704  }
705 
706  ret = 0;
707 
708 fail:
709  if(ret < 0)
710  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
711  av_free(filter);
712  av_free(filter2);
713  return ret;
714 }
715 
716 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
717 {
718  int64_t W, V, Z, Cy, Cu, Cv;
719  int64_t vr = table[0];
720  int64_t ub = table[1];
721  int64_t ug = -table[2];
722  int64_t vg = -table[3];
723  int64_t ONE = 65536;
724  int64_t cy = ONE;
726  int i;
727  static const int8_t map[] = {
728  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
729  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
730  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
731  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
732  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
733  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
734  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
735  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
736  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
737  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
738  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
739  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
742  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
743  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
746  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
747  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
750  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
751  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
752  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
753  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
754  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
755  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
756  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
757  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
758  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
759  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
760  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
761  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
762  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
763  };
764 
765  dstRange = 0; //FIXME range = 1 is handled elsewhere
766 
767  if (!dstRange) {
768  cy = cy * 255 / 219;
769  } else {
770  vr = vr * 224 / 255;
771  ub = ub * 224 / 255;
772  ug = ug * 224 / 255;
773  vg = vg * 224 / 255;
774  }
775  W = ROUNDED_DIV(ONE*ONE*ug, ub);
776  V = ROUNDED_DIV(ONE*ONE*vg, vr);
777  Z = ONE*ONE-W-V;
778 
779  Cy = ROUNDED_DIV(cy*Z, ONE);
780  Cu = ROUNDED_DIV(ub*Z, ONE);
781  Cv = ROUNDED_DIV(vr*Z, ONE);
782 
783  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
784  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
785  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
786 
787  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
788  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
789  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
790 
791  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
792  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
793  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
794 
795  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
796  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
797  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
798  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
799  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
800  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
801  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
802  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
803  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
804  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
805  }
806  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
807  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
808 }
809 
810 static void fill_xyztables(struct SwsContext *c)
811 {
812  int i;
813  double xyzgamma = XYZ_GAMMA;
814  double rgbgamma = 1.0 / RGB_GAMMA;
815  double xyzgammainv = 1.0 / XYZ_GAMMA;
816  double rgbgammainv = RGB_GAMMA;
817  static const int16_t xyz2rgb_matrix[3][4] = {
818  {13270, -6295, -2041},
819  {-3969, 7682, 170},
820  { 228, -835, 4329} };
821  static const int16_t rgb2xyz_matrix[3][4] = {
822  {1689, 1464, 739},
823  { 871, 2929, 296},
824  { 79, 488, 3891} };
825  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
826 
827  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
828  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
829  c->xyzgamma = xyzgamma_tab;
830  c->rgbgamma = rgbgamma_tab;
831  c->xyzgammainv = xyzgammainv_tab;
832  c->rgbgammainv = rgbgammainv_tab;
833 
834  if (rgbgamma_tab[4095])
835  return;
836 
837  /* set gamma vectors */
838  for (i = 0; i < 4096; i++) {
839  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
840  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
841  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
842  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
843  }
844 }
845 
846 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
847  int srcRange, const int table[4], int dstRange,
848  int brightness, int contrast, int saturation)
849 {
850  const AVPixFmtDescriptor *desc_dst;
851  const AVPixFmtDescriptor *desc_src;
852  int need_reinit = 0;
853 
854  handle_formats(c);
855  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
856  desc_src = av_pix_fmt_desc_get(c->srcFormat);
857 
858  if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
859  dstRange = 0;
860  if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
861  srcRange = 0;
862 
863  if (c->srcRange != srcRange ||
864  c->dstRange != dstRange ||
865  c->brightness != brightness ||
866  c->contrast != contrast ||
867  c->saturation != saturation ||
868  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
869  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
870  )
871  need_reinit = 1;
872 
873  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
874  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
875 
876 
877 
878  c->brightness = brightness;
879  c->contrast = contrast;
880  c->saturation = saturation;
881  c->srcRange = srcRange;
882  c->dstRange = dstRange;
883 
884  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
885  //and what we have in ticket 2939 looks better with this check
886  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
888 
889  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
890  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
891 
893  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
894 
895  if (!need_reinit)
896  return 0;
897 
898  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
899  if (!c->cascaded_context[0] &&
900  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
901  c->srcW && c->srcH && c->dstW && c->dstH) {
902  enum AVPixelFormat tmp_format;
903  int tmp_width, tmp_height;
904  int srcW = c->srcW;
905  int srcH = c->srcH;
906  int dstW = c->dstW;
907  int dstH = c->dstH;
908  int ret;
909  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
910 
911  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
912  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
913  tmp_format = AV_PIX_FMT_BGRA64;
914  } else {
915  tmp_format = AV_PIX_FMT_BGR48;
916  }
917  } else {
918  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
919  tmp_format = AV_PIX_FMT_BGRA;
920  } else {
921  tmp_format = AV_PIX_FMT_BGR24;
922  }
923  }
924 
925  if (srcW*srcH > dstW*dstH) {
926  tmp_width = dstW;
927  tmp_height = dstH;
928  } else {
929  tmp_width = srcW;
930  tmp_height = srcH;
931  }
932 
934  tmp_width, tmp_height, tmp_format, 64);
935  if (ret < 0)
936  return ret;
937 
938  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
939  tmp_width, tmp_height, tmp_format,
940  c->flags, c->param);
941  if (!c->cascaded_context[0])
942  return -1;
943 
945  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
946  if (ret < 0)
947  return ret;
948  //we set both src and dst depending on that the RGB side will be ignored
950  srcRange, table, dstRange,
951  brightness, contrast, saturation);
952 
953  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
954  dstW, dstH, c->dstFormat,
955  c->flags, NULL, NULL, c->param);
956  if (!c->cascaded_context[1])
957  return -1;
959  srcRange, table, dstRange,
960  0, 1 << 16, 1 << 16);
961  return 0;
962  }
963  return -1;
964  }
965 
966  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
967  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
968  contrast, saturation);
969  // FIXME factorize
970 
971  if (ARCH_PPC)
972  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
973  contrast, saturation);
974  }
975 
976  fill_rgb2yuv_table(c, table, dstRange);
977 
978  return 0;
979 }
980 
981 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
982  int *srcRange, int **table, int *dstRange,
983  int *brightness, int *contrast, int *saturation)
984 {
985  if (!c )
986  return -1;
987 
988  *inv_table = c->srcColorspaceTable;
989  *table = c->dstColorspaceTable;
990  *srcRange = c->srcRange;
991  *dstRange = c->dstRange;
992  *brightness = c->brightness;
993  *contrast = c->contrast;
994  *saturation = c->saturation;
995 
996  return 0;
997 }
998 
1000 {
1001  switch (*format) {
1002  case AV_PIX_FMT_YUVJ420P:
1003  *format = AV_PIX_FMT_YUV420P;
1004  return 1;
1005  case AV_PIX_FMT_YUVJ411P:
1006  *format = AV_PIX_FMT_YUV411P;
1007  return 1;
1008  case AV_PIX_FMT_YUVJ422P:
1009  *format = AV_PIX_FMT_YUV422P;
1010  return 1;
1011  case AV_PIX_FMT_YUVJ444P:
1012  *format = AV_PIX_FMT_YUV444P;
1013  return 1;
1014  case AV_PIX_FMT_YUVJ440P:
1015  *format = AV_PIX_FMT_YUV440P;
1016  return 1;
1017  case AV_PIX_FMT_GRAY8:
1018  case AV_PIX_FMT_YA8:
1019  case AV_PIX_FMT_GRAY16LE:
1020  case AV_PIX_FMT_GRAY16BE:
1021  case AV_PIX_FMT_YA16BE:
1022  case AV_PIX_FMT_YA16LE:
1023  return 1;
1024  default:
1025  return 0;
1026  }
1027 }
1028 
1030 {
1031  switch (*format) {
1032  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1033  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1034  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1035  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1036  default: return 0;
1037  }
1038 }
1039 
1041 {
1042  switch (*format) {
1043  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1044  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1045  default: return 0;
1046  }
1047 }
1048 
1050 {
1051  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1052  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1053  c->srcXYZ |= handle_xyz(&c->srcFormat);
1054  c->dstXYZ |= handle_xyz(&c->dstFormat);
1055  if (c->srcXYZ || c->dstXYZ)
1056  fill_xyztables(c);
1057 }
1058 
1060 {
1061  SwsContext *c = av_mallocz(sizeof(SwsContext));
1062 
1063  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1064 
1065  if (c) {
1068  }
1069 
1070  return c;
1071 }
1072 
1073 static uint16_t * alloc_gamma_tbl(double e)
1074 {
1075  int i = 0;
1076  uint16_t * tbl;
1077  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1078  if (!tbl)
1079  return NULL;
1080 
1081  for (i = 0; i < 65536; ++i) {
1082  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1083  }
1084  return tbl;
1085 }
1086 
1088 {
1089  switch(fmt) {
1090  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1091  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1092  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1093  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1094  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1095 
1099 
1100  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1101 
1104 
1107 
1112 
1113  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1114  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1115 
1134 
1135 // case AV_PIX_FMT_AYUV64LE:
1136 // case AV_PIX_FMT_AYUV64BE:
1137 // case AV_PIX_FMT_PAL8:
1138  default: return AV_PIX_FMT_NONE;
1139  }
1140 }
1141 
1143  SwsFilter *dstFilter)
1144 {
1145  int i;
1146  int usesVFilter, usesHFilter;
1147  int unscaled;
1148  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1149  int srcW = c->srcW;
1150  int srcH = c->srcH;
1151  int dstW = c->dstW;
1152  int dstH = c->dstH;
1153  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1154  int flags, cpu_flags;
1155  enum AVPixelFormat srcFormat = c->srcFormat;
1156  enum AVPixelFormat dstFormat = c->dstFormat;
1157  const AVPixFmtDescriptor *desc_src;
1158  const AVPixFmtDescriptor *desc_dst;
1159  int ret = 0;
1160  enum AVPixelFormat tmpFmt;
1161 
1162  cpu_flags = av_get_cpu_flags();
1163  flags = c->flags;
1164  emms_c();
1165  if (!rgb15to16)
1167 
1168  unscaled = (srcW == dstW && srcH == dstH);
1169 
1170  c->srcRange |= handle_jpeg(&c->srcFormat);
1171  c->dstRange |= handle_jpeg(&c->dstFormat);
1172 
1173  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1174  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1175 
1176  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1177  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1178  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1179  c->dstRange, 0, 1 << 16, 1 << 16);
1180 
1181  handle_formats(c);
1182  srcFormat = c->srcFormat;
1183  dstFormat = c->dstFormat;
1184  desc_src = av_pix_fmt_desc_get(srcFormat);
1185  desc_dst = av_pix_fmt_desc_get(dstFormat);
1186 
1187  // If the source has no alpha then disable alpha blendaway
1188  if (c->src0Alpha)
1190 
1191  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1192  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1193  if (!sws_isSupportedInput(srcFormat)) {
1194  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1195  av_get_pix_fmt_name(srcFormat));
1196  return AVERROR(EINVAL);
1197  }
1198  if (!sws_isSupportedOutput(dstFormat)) {
1199  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1200  av_get_pix_fmt_name(dstFormat));
1201  return AVERROR(EINVAL);
1202  }
1203  }
1204  av_assert2(desc_src && desc_dst);
1205 
1206  i = flags & (SWS_POINT |
1207  SWS_AREA |
1208  SWS_BILINEAR |
1210  SWS_BICUBIC |
1211  SWS_X |
1212  SWS_GAUSS |
1213  SWS_LANCZOS |
1214  SWS_SINC |
1215  SWS_SPLINE |
1216  SWS_BICUBLIN);
1217 
1218  /* provide a default scaler if not set by caller */
1219  if (!i) {
1220  if (dstW < srcW && dstH < srcH)
1221  flags |= SWS_BICUBIC;
1222  else if (dstW > srcW && dstH > srcH)
1223  flags |= SWS_BICUBIC;
1224  else
1225  flags |= SWS_BICUBIC;
1226  c->flags = flags;
1227  } else if (i & (i - 1)) {
1228  av_log(c, AV_LOG_ERROR,
1229  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1230  return AVERROR(EINVAL);
1231  }
1232  /* sanity check */
1233  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1234  /* FIXME check if these are enough and try to lower them after
1235  * fixing the relevant parts of the code */
1236  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1237  srcW, srcH, dstW, dstH);
1238  return AVERROR(EINVAL);
1239  }
1240  if (flags & SWS_FAST_BILINEAR) {
1241  if (srcW < 8 || dstW < 8) {
1242  flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1243  c->flags = flags;
1244  }
1245  }
1246 
1247  if (!dstFilter)
1248  dstFilter = &dummyFilter;
1249  if (!srcFilter)
1250  srcFilter = &dummyFilter;
1251 
1252  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1253  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1254  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1255  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1256  c->vRounder = 4 * 0x0001000100010001ULL;
1257 
1258  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1259  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1260  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1261  (dstFilter->chrV && dstFilter->chrV->length > 1);
1262  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1263  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1264  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1265  (dstFilter->chrH && dstFilter->chrH->length > 1);
1266 
1269 
1270  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1271  if (dstW&1) {
1272  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1273  flags |= SWS_FULL_CHR_H_INT;
1274  c->flags = flags;
1275  }
1276 
1277  if ( c->chrSrcHSubSample == 0
1278  && c->chrSrcVSubSample == 0
1279  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1280  && !(c->flags & SWS_FAST_BILINEAR)
1281  ) {
1282  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1283  flags |= SWS_FULL_CHR_H_INT;
1284  c->flags = flags;
1285  }
1286  }
1287 
1288  if (c->dither == SWS_DITHER_AUTO) {
1289  if (flags & SWS_ERROR_DIFFUSION)
1290  c->dither = SWS_DITHER_ED;
1291  }
1292 
1293  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1294  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1295  dstFormat == AV_PIX_FMT_BGR8 ||
1296  dstFormat == AV_PIX_FMT_RGB8) {
1297  if (c->dither == SWS_DITHER_AUTO)
1299  if (!(flags & SWS_FULL_CHR_H_INT)) {
1301  av_log(c, AV_LOG_DEBUG,
1302  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1303  av_get_pix_fmt_name(dstFormat));
1304  flags |= SWS_FULL_CHR_H_INT;
1305  c->flags = flags;
1306  }
1307  }
1308  if (flags & SWS_FULL_CHR_H_INT) {
1309  if (c->dither == SWS_DITHER_BAYER) {
1310  av_log(c, AV_LOG_DEBUG,
1311  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1312  av_get_pix_fmt_name(dstFormat));
1313  c->dither = SWS_DITHER_ED;
1314  }
1315  }
1316  }
1317  if (isPlanarRGB(dstFormat)) {
1318  if (!(flags & SWS_FULL_CHR_H_INT)) {
1319  av_log(c, AV_LOG_DEBUG,
1320  "%s output is not supported with half chroma resolution, switching to full\n",
1321  av_get_pix_fmt_name(dstFormat));
1322  flags |= SWS_FULL_CHR_H_INT;
1323  c->flags = flags;
1324  }
1325  }
1326 
1327  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1328  * chroma interpolation */
1329  if (flags & SWS_FULL_CHR_H_INT &&
1330  isAnyRGB(dstFormat) &&
1331  !isPlanarRGB(dstFormat) &&
1332  dstFormat != AV_PIX_FMT_RGBA64LE &&
1333  dstFormat != AV_PIX_FMT_RGBA64BE &&
1334  dstFormat != AV_PIX_FMT_BGRA64LE &&
1335  dstFormat != AV_PIX_FMT_BGRA64BE &&
1336  dstFormat != AV_PIX_FMT_RGB48LE &&
1337  dstFormat != AV_PIX_FMT_RGB48BE &&
1338  dstFormat != AV_PIX_FMT_BGR48LE &&
1339  dstFormat != AV_PIX_FMT_BGR48BE &&
1340  dstFormat != AV_PIX_FMT_RGBA &&
1341  dstFormat != AV_PIX_FMT_ARGB &&
1342  dstFormat != AV_PIX_FMT_BGRA &&
1343  dstFormat != AV_PIX_FMT_ABGR &&
1344  dstFormat != AV_PIX_FMT_RGB24 &&
1345  dstFormat != AV_PIX_FMT_BGR24 &&
1346  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1347  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1348  dstFormat != AV_PIX_FMT_BGR8 &&
1349  dstFormat != AV_PIX_FMT_RGB8
1350  ) {
1352  "full chroma interpolation for destination format '%s' not yet implemented\n",
1353  av_get_pix_fmt_name(dstFormat));
1354  flags &= ~SWS_FULL_CHR_H_INT;
1355  c->flags = flags;
1356  }
1357  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1358  c->chrDstHSubSample = 1;
1359 
1360  // drop some chroma lines if the user wants it
1361  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1363  c->chrSrcVSubSample += c->vChrDrop;
1364 
1365  /* drop every other pixel for chroma calculation unless user
1366  * wants full chroma */
1367  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1368  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1369  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1370  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1371  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1372  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1373  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1374  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1375  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1376  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1377  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1378  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1379  (flags & SWS_FAST_BILINEAR)))
1380  c->chrSrcHSubSample = 1;
1381 
1382  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1383  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1384  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1385  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1386  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1387 
1388  FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1389 
1390  c->srcBpc = desc_src->comp[0].depth;
1391  if (c->srcBpc < 8)
1392  c->srcBpc = 8;
1393  c->dstBpc = desc_dst->comp[0].depth;
1394  if (c->dstBpc < 8)
1395  c->dstBpc = 8;
1396  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1397  c->srcBpc = 16;
1398  if (c->dstBpc == 16)
1399  dst_stride <<= 1;
1400 
1401  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1402  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1403  c->chrDstW >= c->chrSrcW &&
1404  (srcW & 15) == 0;
1405  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1406 
1407  && (flags & SWS_FAST_BILINEAR)) {
1408  if (flags & SWS_PRINT_INFO)
1409  av_log(c, AV_LOG_INFO,
1410  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1411  }
1412  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1413  c->canMMXEXTBeUsed = 0;
1414  } else
1415  c->canMMXEXTBeUsed = 0;
1416 
1417  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1418  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1419 
1420  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1421  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1422  * correct scaling.
1423  * n-2 is the last chrominance sample available.
1424  * This is not perfect, but no one should notice the difference, the more
1425  * correct variant would be like the vertical one, but that would require
1426  * some special code for the first and last pixel */
1427  if (flags & SWS_FAST_BILINEAR) {
1428  if (c->canMMXEXTBeUsed) {
1429  c->lumXInc += 20;
1430  c->chrXInc += 20;
1431  }
1432  // we don't use the x86 asm scaler if MMX is available
1433  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1434  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1435  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1436  }
1437  }
1438 
1439  // hardcoded for now
1440  c->gamma_value = 2.2;
1441  tmpFmt = AV_PIX_FMT_RGBA64LE;
1442 
1443 
1444  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1445  SwsContext *c2;
1446  c->cascaded_context[0] = NULL;
1447 
1449  srcW, srcH, tmpFmt, 64);
1450  if (ret < 0)
1451  return ret;
1452 
1453  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1454  srcW, srcH, tmpFmt,
1455  flags, NULL, NULL, c->param);
1456  if (!c->cascaded_context[0]) {
1457  return -1;
1458  }
1459 
1460  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1461  dstW, dstH, tmpFmt,
1462  flags, srcFilter, dstFilter, c->param);
1463 
1464  if (!c->cascaded_context[1])
1465  return -1;
1466 
1467  c2 = c->cascaded_context[1];
1468  c2->is_internal_gamma = 1;
1469  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1470  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1471  if (!c2->gamma || !c2->inv_gamma)
1472  return AVERROR(ENOMEM);
1473 
1474  // is_internal_flag is set after creating the context
1475  // to properly create the gamma convert FilterDescriptor
1476  // we have to re-initialize it
1477  ff_free_filters(c2);
1478  if (ff_init_filters(c2) < 0) {
1479  sws_freeContext(c2);
1480  return -1;
1481  }
1482 
1483  c->cascaded_context[2] = NULL;
1484  if (dstFormat != tmpFmt) {
1486  dstW, dstH, tmpFmt, 64);
1487  if (ret < 0)
1488  return ret;
1489 
1490  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1491  dstW, dstH, dstFormat,
1492  flags, NULL, NULL, c->param);
1493  if (!c->cascaded_context[2])
1494  return -1;
1495  }
1496  return 0;
1497  }
1498 
1499  if (isBayer(srcFormat)) {
1500  if (!unscaled ||
1501  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1502  enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1503 
1505  srcW, srcH, tmpFormat, 64);
1506  if (ret < 0)
1507  return ret;
1508 
1509  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1510  srcW, srcH, tmpFormat,
1511  flags, srcFilter, NULL, c->param);
1512  if (!c->cascaded_context[0])
1513  return -1;
1514 
1515  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1516  dstW, dstH, dstFormat,
1517  flags, NULL, dstFilter, c->param);
1518  if (!c->cascaded_context[1])
1519  return -1;
1520  return 0;
1521  }
1522  }
1523 
1524  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1525  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1526 
1527  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
1528  if (!unscaled ||
1529  dstFormat != tmpFormat ||
1530  usesHFilter || usesVFilter ||
1531  c->srcRange != c->dstRange
1532  ) {
1533  c->cascaded_mainindex = 1;
1535  srcW, srcH, tmpFormat, 64);
1536  if (ret < 0)
1537  return ret;
1538 
1539  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1540  srcW, srcH, tmpFormat,
1541  flags, c->param);
1542  if (!c->cascaded_context[0])
1543  return -1;
1545  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1546  if (ret < 0)
1547  return ret;
1548 
1549  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1550  dstW, dstH, dstFormat,
1551  flags, c->param);
1552  if (!c->cascaded_context[1])
1553  return -1;
1554 
1555  c->cascaded_context[1]->srcRange = c->srcRange;
1556  c->cascaded_context[1]->dstRange = c->dstRange;
1557  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1558  if (ret < 0)
1559  return ret;
1560 
1561  return 0;
1562  }
1563  }
1564 
1565 #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
1566 
1567  /* precalculate horizontal scaler filter coefficients */
1568  {
1569 #if HAVE_MMXEXT_INLINE
1570 // can't downscale !!!
1571  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1573  NULL, NULL, 8);
1575  NULL, NULL, NULL, 4);
1576 
1577 #if USE_MMAP
1579  PROT_READ | PROT_WRITE,
1580  MAP_PRIVATE | MAP_ANONYMOUS,
1581  -1, 0);
1583  PROT_READ | PROT_WRITE,
1584  MAP_PRIVATE | MAP_ANONYMOUS,
1585  -1, 0);
1586 #elif HAVE_VIRTUALALLOC
1587  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1589  MEM_COMMIT,
1590  PAGE_EXECUTE_READWRITE);
1591  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1593  MEM_COMMIT,
1594  PAGE_EXECUTE_READWRITE);
1595 #else
1598 #endif
1599 
1600 #ifdef MAP_ANONYMOUS
1601  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1602 #else
1604 #endif
1605  {
1606  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1607  return AVERROR(ENOMEM);
1608  }
1609 
1610  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1611  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1612  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1613  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1614 
1616  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1618  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1619 
1620 #if USE_MMAP
1621  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1622  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1623  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1624  goto fail;
1625  }
1626 #endif
1627  } else
1628 #endif /* HAVE_MMXEXT_INLINE */
1629  {
1630  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1631  PPC_ALTIVEC(cpu_flags) ? 8 :
1632  have_neon(cpu_flags) ? 8 : 1;
1633 
1634  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1635  &c->hLumFilterSize, c->lumXInc,
1636  srcW, dstW, filterAlign, 1 << 14,
1637  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1638  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1639  c->param,
1640  get_local_pos(c, 0, 0, 0),
1641  get_local_pos(c, 0, 0, 0))) < 0)
1642  goto fail;
1643  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1644  &c->hChrFilterSize, c->chrXInc,
1645  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1646  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1647  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1648  c->param,
1650  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1651  goto fail;
1652  }
1653  } // initialize horizontal stuff
1654 
1655  /* precalculate vertical scaler filter coefficients */
1656  {
1657  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1658  PPC_ALTIVEC(cpu_flags) ? 8 :
1659  have_neon(cpu_flags) ? 2 : 1;
1660 
1661  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1662  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1663  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1664  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1665  c->param,
1666  get_local_pos(c, 0, 0, 1),
1667  get_local_pos(c, 0, 0, 1))) < 0)
1668  goto fail;
1669  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1670  c->chrYInc, c->chrSrcH, c->chrDstH,
1671  filterAlign, (1 << 12),
1672  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1673  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1674  c->param,
1676  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1677 
1678  goto fail;
1679 
1680 #if HAVE_ALTIVEC
1681  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1682  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1683 
1684  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1685  int j;
1686  short *p = (short *)&c->vYCoeffsBank[i];
1687  for (j = 0; j < 8; j++)
1688  p[j] = c->vLumFilter[i];
1689  }
1690 
1691  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1692  int j;
1693  short *p = (short *)&c->vCCoeffsBank[i];
1694  for (j = 0; j < 8; j++)
1695  p[j] = c->vChrFilter[i];
1696  }
1697 #endif
1698  }
1699 
1700  for (i = 0; i < 4; i++)
1701  FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1702 
1703  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1704 
1705  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1706  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1707  c->uv_offx2 = dst_stride + 16;
1708 
1709  av_assert0(c->chrDstH <= dstH);
1710 
1711  if (flags & SWS_PRINT_INFO) {
1712  const char *scaler = NULL, *cpucaps;
1713 
1714  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1715  if (flags & scale_algorithms[i].flag) {
1716  scaler = scale_algorithms[i].description;
1717  break;
1718  }
1719  }
1720  if (!scaler)
1721  scaler = "ehh flags invalid?!";
1722  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1723  scaler,
1724  av_get_pix_fmt_name(srcFormat),
1725 #ifdef DITHER1XBPP
1726  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1727  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1728  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1729  "dithered " : "",
1730 #else
1731  "",
1732 #endif
1733  av_get_pix_fmt_name(dstFormat));
1734 
1735  if (INLINE_MMXEXT(cpu_flags))
1736  cpucaps = "MMXEXT";
1737  else if (INLINE_AMD3DNOW(cpu_flags))
1738  cpucaps = "3DNOW";
1739  else if (INLINE_MMX(cpu_flags))
1740  cpucaps = "MMX";
1741  else if (PPC_ALTIVEC(cpu_flags))
1742  cpucaps = "AltiVec";
1743  else
1744  cpucaps = "C";
1745 
1746  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1747 
1748  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1749  av_log(c, AV_LOG_DEBUG,
1750  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1751  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1752  av_log(c, AV_LOG_DEBUG,
1753  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1754  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1755  c->chrXInc, c->chrYInc);
1756  }
1757 
1758  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1759  if (unscaled && !usesHFilter && !usesVFilter &&
1761  isALPHA(srcFormat) &&
1762  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1763  alphaless_fmt(srcFormat) == dstFormat
1764  ) {
1766 
1767  if (flags & SWS_PRINT_INFO)
1768  av_log(c, AV_LOG_INFO,
1769  "using alpha blendaway %s -> %s special converter\n",
1770  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1771  return 0;
1772  }
1773 
1774  /* unscaled special cases */
1775  if (unscaled && !usesHFilter && !usesVFilter &&
1776  (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
1778 
1779  if (c->swscale) {
1780  if (flags & SWS_PRINT_INFO)
1781  av_log(c, AV_LOG_INFO,
1782  "using unscaled %s -> %s special converter\n",
1783  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1784  return 0;
1785  }
1786  }
1787 
1788  c->swscale = ff_getSwsFunc(c);
1789  return ff_init_filters(c);
1790 fail: // FIXME replace things by appropriate error codes
1791  if (ret == RETCODE_USE_CASCADE) {
1792  int tmpW = sqrt(srcW * (int64_t)dstW);
1793  int tmpH = sqrt(srcH * (int64_t)dstH);
1794  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1795 
1796  if (isALPHA(srcFormat))
1797  tmpFormat = AV_PIX_FMT_YUVA420P;
1798 
1799  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1800  return AVERROR(EINVAL);
1801 
1803  tmpW, tmpH, tmpFormat, 64);
1804  if (ret < 0)
1805  return ret;
1806 
1807  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1808  tmpW, tmpH, tmpFormat,
1809  flags, srcFilter, NULL, c->param);
1810  if (!c->cascaded_context[0])
1811  return -1;
1812 
1813  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1814  dstW, dstH, dstFormat,
1815  flags, NULL, dstFilter, c->param);
1816  if (!c->cascaded_context[1])
1817  return -1;
1818  return 0;
1819  }
1820  return -1;
1821 }
1822 
1823 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1824  int dstW, int dstH, enum AVPixelFormat dstFormat,
1825  int flags, const double *param)
1826 {
1827  SwsContext *c;
1828 
1829  if (!(c = sws_alloc_context()))
1830  return NULL;
1831 
1832  c->flags = flags;
1833  c->srcW = srcW;
1834  c->srcH = srcH;
1835  c->dstW = dstW;
1836  c->dstH = dstH;
1837  c->srcFormat = srcFormat;
1838  c->dstFormat = dstFormat;
1839 
1840  if (param) {
1841  c->param[0] = param[0];
1842  c->param[1] = param[1];
1843  }
1844 
1845  return c;
1846 }
1847 
1848 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1849  int dstW, int dstH, enum AVPixelFormat dstFormat,
1850  int flags, SwsFilter *srcFilter,
1851  SwsFilter *dstFilter, const double *param)
1852 {
1853  SwsContext *c;
1854 
1855  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1856  dstW, dstH, dstFormat,
1857  flags, param);
1858  if (!c)
1859  return NULL;
1860 
1861  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1862  sws_freeContext(c);
1863  return NULL;
1864  }
1865 
1866  return c;
1867 }
1868 
1869 static int isnan_vec(SwsVector *a)
1870 {
1871  int i;
1872  for (i=0; i<a->length; i++)
1873  if (isnan(a->coeff[i]))
1874  return 1;
1875  return 0;
1876 }
1877 
1878 static void makenan_vec(SwsVector *a)
1879 {
1880  int i;
1881  for (i=0; i<a->length; i++)
1882  a->coeff[i] = NAN;
1883 }
1884 
1885 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1886  float lumaSharpen, float chromaSharpen,
1887  float chromaHShift, float chromaVShift,
1888  int verbose)
1889 {
1890  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1891  if (!filter)
1892  return NULL;
1893 
1894  if (lumaGBlur != 0.0) {
1895  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1896  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1897  } else {
1898  filter->lumH = sws_getIdentityVec();
1899  filter->lumV = sws_getIdentityVec();
1900  }
1901 
1902  if (chromaGBlur != 0.0) {
1903  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1904  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1905  } else {
1906  filter->chrH = sws_getIdentityVec();
1907  filter->chrV = sws_getIdentityVec();
1908  }
1909 
1910  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1911  goto fail;
1912 
1913  if (chromaSharpen != 0.0) {
1914  SwsVector *id = sws_getIdentityVec();
1915  if (!id)
1916  goto fail;
1917  sws_scaleVec(filter->chrH, -chromaSharpen);
1918  sws_scaleVec(filter->chrV, -chromaSharpen);
1919  sws_addVec(filter->chrH, id);
1920  sws_addVec(filter->chrV, id);
1921  sws_freeVec(id);
1922  }
1923 
1924  if (lumaSharpen != 0.0) {
1925  SwsVector *id = sws_getIdentityVec();
1926  if (!id)
1927  goto fail;
1928  sws_scaleVec(filter->lumH, -lumaSharpen);
1929  sws_scaleVec(filter->lumV, -lumaSharpen);
1930  sws_addVec(filter->lumH, id);
1931  sws_addVec(filter->lumV, id);
1932  sws_freeVec(id);
1933  }
1934 
1935  if (chromaHShift != 0.0)
1936  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1937 
1938  if (chromaVShift != 0.0)
1939  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1940 
1941  sws_normalizeVec(filter->chrH, 1.0);
1942  sws_normalizeVec(filter->chrV, 1.0);
1943  sws_normalizeVec(filter->lumH, 1.0);
1944  sws_normalizeVec(filter->lumV, 1.0);
1945 
1946  if (isnan_vec(filter->chrH) ||
1947  isnan_vec(filter->chrV) ||
1948  isnan_vec(filter->lumH) ||
1949  isnan_vec(filter->lumV))
1950  goto fail;
1951 
1952  if (verbose)
1953  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1954  if (verbose)
1955  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1956 
1957  return filter;
1958 
1959 fail:
1960  sws_freeVec(filter->lumH);
1961  sws_freeVec(filter->lumV);
1962  sws_freeVec(filter->chrH);
1963  sws_freeVec(filter->chrV);
1964  av_freep(&filter);
1965  return NULL;
1966 }
1967 
1969 {
1970  SwsVector *vec;
1971 
1972  if(length <= 0 || length > INT_MAX/ sizeof(double))
1973  return NULL;
1974 
1975  vec = av_malloc(sizeof(SwsVector));
1976  if (!vec)
1977  return NULL;
1978  vec->length = length;
1979  vec->coeff = av_malloc(sizeof(double) * length);
1980  if (!vec->coeff)
1981  av_freep(&vec);
1982  return vec;
1983 }
1984 
1985 SwsVector *sws_getGaussianVec(double variance, double quality)
1986 {
1987  const int length = (int)(variance * quality + 0.5) | 1;
1988  int i;
1989  double middle = (length - 1) * 0.5;
1990  SwsVector *vec;
1991 
1992  if(variance < 0 || quality < 0)
1993  return NULL;
1994 
1995  vec = sws_allocVec(length);
1996 
1997  if (!vec)
1998  return NULL;
1999 
2000  for (i = 0; i < length; i++) {
2001  double dist = i - middle;
2002  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2003  sqrt(2 * variance * M_PI);
2004  }
2005 
2006  sws_normalizeVec(vec, 1.0);
2007 
2008  return vec;
2009 }
2010 
2011 /**
2012  * Allocate and return a vector with length coefficients, all
2013  * with the same value c.
2014  */
2015 #if !FF_API_SWS_VECTOR
2016 static
2017 #endif
2019 {
2020  int i;
2021  SwsVector *vec = sws_allocVec(length);
2022 
2023  if (!vec)
2024  return NULL;
2025 
2026  for (i = 0; i < length; i++)
2027  vec->coeff[i] = c;
2028 
2029  return vec;
2030 }
2031 
2032 /**
2033  * Allocate and return a vector with just one coefficient, with
2034  * value 1.0.
2035  */
2036 #if !FF_API_SWS_VECTOR
2037 static
2038 #endif
2040 {
2041  return sws_getConstVec(1.0, 1);
2042 }
2043 
2044 static double sws_dcVec(SwsVector *a)
2045 {
2046  int i;
2047  double sum = 0;
2048 
2049  for (i = 0; i < a->length; i++)
2050  sum += a->coeff[i];
2051 
2052  return sum;
2053 }
2054 
2055 void sws_scaleVec(SwsVector *a, double scalar)
2056 {
2057  int i;
2058 
2059  for (i = 0; i < a->length; i++)
2060  a->coeff[i] *= scalar;
2061 }
2062 
2064 {
2065  sws_scaleVec(a, height / sws_dcVec(a));
2066 }
2067 
2068 #if FF_API_SWS_VECTOR
2070 {
2071  int length = a->length + b->length - 1;
2072  int i, j;
2073  SwsVector *vec = sws_getConstVec(0.0, length);
2074 
2075  if (!vec)
2076  return NULL;
2077 
2078  for (i = 0; i < a->length; i++) {
2079  for (j = 0; j < b->length; j++) {
2080  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2081  }
2082  }
2083 
2084  return vec;
2085 }
2086 #endif
2087 
2089 {
2090  int length = FFMAX(a->length, b->length);
2091  int i;
2092  SwsVector *vec = sws_getConstVec(0.0, length);
2093 
2094  if (!vec)
2095  return NULL;
2096 
2097  for (i = 0; i < a->length; i++)
2098  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2099  for (i = 0; i < b->length; i++)
2100  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2101 
2102  return vec;
2103 }
2104 
2105 #if FF_API_SWS_VECTOR
2107 {
2108  int length = FFMAX(a->length, b->length);
2109  int i;
2110  SwsVector *vec = sws_getConstVec(0.0, length);
2111 
2112  if (!vec)
2113  return NULL;
2114 
2115  for (i = 0; i < a->length; i++)
2116  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2117  for (i = 0; i < b->length; i++)
2118  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2119 
2120  return vec;
2121 }
2122 #endif
2123 
2124 /* shift left / or right if "shift" is negative */
2126 {
2127  int length = a->length + FFABS(shift) * 2;
2128  int i;
2129  SwsVector *vec = sws_getConstVec(0.0, length);
2130 
2131  if (!vec)
2132  return NULL;
2133 
2134  for (i = 0; i < a->length; i++) {
2135  vec->coeff[i + (length - 1) / 2 -
2136  (a->length - 1) / 2 - shift] = a->coeff[i];
2137  }
2138 
2139  return vec;
2140 }
2141 
2142 #if !FF_API_SWS_VECTOR
2143 static
2144 #endif
2146 {
2147  SwsVector *shifted = sws_getShiftedVec(a, shift);
2148  if (!shifted) {
2149  makenan_vec(a);
2150  return;
2151  }
2152  av_free(a->coeff);
2153  a->coeff = shifted->coeff;
2154  a->length = shifted->length;
2155  av_free(shifted);
2156 }
2157 
2158 #if !FF_API_SWS_VECTOR
2159 static
2160 #endif
2162 {
2163  SwsVector *sum = sws_sumVec(a, b);
2164  if (!sum) {
2165  makenan_vec(a);
2166  return;
2167  }
2168  av_free(a->coeff);
2169  a->coeff = sum->coeff;
2170  a->length = sum->length;
2171  av_free(sum);
2172 }
2173 
2174 #if FF_API_SWS_VECTOR
2176 {
2177  SwsVector *diff = sws_diffVec(a, b);
2178  if (!diff) {
2179  makenan_vec(a);
2180  return;
2181  }
2182  av_free(a->coeff);
2183  a->coeff = diff->coeff;
2184  a->length = diff->length;
2185  av_free(diff);
2186 }
2187 
2189 {
2190  SwsVector *conv = sws_getConvVec(a, b);
2191  if (!conv) {
2192  makenan_vec(a);
2193  return;
2194  }
2195  av_free(a->coeff);
2196  a->coeff = conv->coeff;
2197  a->length = conv->length;
2198  av_free(conv);
2199 }
2200 
2202 {
2203  SwsVector *vec = sws_allocVec(a->length);
2204 
2205  if (!vec)
2206  return NULL;
2207 
2208  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2209 
2210  return vec;
2211 }
2212 #endif
2213 
2214 /**
2215  * Print with av_log() a textual representation of the vector a
2216  * if log_level <= av_log_level.
2217  */
2218 #if !FF_API_SWS_VECTOR
2219 static
2220 #endif
2221 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2222 {
2223  int i;
2224  double max = 0;
2225  double min = 0;
2226  double range;
2227 
2228  for (i = 0; i < a->length; i++)
2229  if (a->coeff[i] > max)
2230  max = a->coeff[i];
2231 
2232  for (i = 0; i < a->length; i++)
2233  if (a->coeff[i] < min)
2234  min = a->coeff[i];
2235 
2236  range = max - min;
2237 
2238  for (i = 0; i < a->length; i++) {
2239  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2240  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2241  for (; x > 0; x--)
2242  av_log(log_ctx, log_level, " ");
2243  av_log(log_ctx, log_level, "|\n");
2244  }
2245 }
2246 
2248 {
2249  if (!a)
2250  return;
2251  av_freep(&a->coeff);
2252  a->length = 0;
2253  av_free(a);
2254 }
2255 
2257 {
2258  if (!filter)
2259  return;
2260 
2261  sws_freeVec(filter->lumH);
2262  sws_freeVec(filter->lumV);
2263  sws_freeVec(filter->chrH);
2264  sws_freeVec(filter->chrV);
2265  av_free(filter);
2266 }
2267 
2269 {
2270  int i;
2271  if (!c)
2272  return;
2273 
2274  for (i = 0; i < 4; i++)
2275  av_freep(&c->dither_error[i]);
2276 
2277  av_freep(&c->vLumFilter);
2278  av_freep(&c->vChrFilter);
2279  av_freep(&c->hLumFilter);
2280  av_freep(&c->hChrFilter);
2281 #if HAVE_ALTIVEC
2282  av_freep(&c->vYCoeffsBank);
2283  av_freep(&c->vCCoeffsBank);
2284 #endif
2285 
2286  av_freep(&c->vLumFilterPos);
2287  av_freep(&c->vChrFilterPos);
2288  av_freep(&c->hLumFilterPos);
2289  av_freep(&c->hChrFilterPos);
2290 
2291 #if HAVE_MMX_INLINE
2292 #if USE_MMAP
2293  if (c->lumMmxextFilterCode)
2295  if (c->chrMmxextFilterCode)
2297 #elif HAVE_VIRTUALALLOC
2298  if (c->lumMmxextFilterCode)
2299  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2300  if (c->chrMmxextFilterCode)
2301  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2302 #else
2305 #endif
2308 #endif /* HAVE_MMX_INLINE */
2309 
2310  av_freep(&c->yuvTable);
2312 
2316  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2317  av_freep(&c->cascaded_tmp[0]);
2318  av_freep(&c->cascaded1_tmp[0]);
2319 
2320  av_freep(&c->gamma);
2321  av_freep(&c->inv_gamma);
2322 
2323  ff_free_filters(c);
2324 
2325  av_free(c);
2326 }
2327 
2328 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2329  int srcH, enum AVPixelFormat srcFormat,
2330  int dstW, int dstH,
2331  enum AVPixelFormat dstFormat, int flags,
2332  SwsFilter *srcFilter,
2333  SwsFilter *dstFilter,
2334  const double *param)
2335 {
2336  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2338  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2339  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2340 
2341  if (!param)
2342  param = default_param;
2343 
2344  if (context &&
2345  (context->srcW != srcW ||
2346  context->srcH != srcH ||
2347  context->srcFormat != srcFormat ||
2348  context->dstW != dstW ||
2349  context->dstH != dstH ||
2350  context->dstFormat != dstFormat ||
2351  context->flags != flags ||
2352  context->param[0] != param[0] ||
2353  context->param[1] != param[1])) {
2354 
2355  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2356  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2357  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2358  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2359  sws_freeContext(context);
2360  context = NULL;
2361  }
2362 
2363  if (!context) {
2364  if (!(context = sws_alloc_context()))
2365  return NULL;
2366  context->srcW = srcW;
2367  context->srcH = srcH;
2368  context->srcFormat = srcFormat;
2369  context->dstW = dstW;
2370  context->dstH = dstH;
2371  context->dstFormat = dstFormat;
2372  context->flags = flags;
2373  context->param[0] = param[0];
2374  context->param[1] = param[1];
2375 
2376  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2377  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2378  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2379  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2380 
2381  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2382  sws_freeContext(context);
2383  return NULL;
2384  }
2385  }
2386  return context;
2387 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:82
SwsVector * chrV
Definition: swscale.h:117
uint8_t is_supported_out
Definition: utils.c:94
#define NULL
Definition: coverity.c:32
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:257
static const FormatEntry format_entries[AV_PIX_FMT_NB]
Definition: utils.c:98
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:177
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:288
const char * s
Definition: avisynth_c.h:631
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:265
static enum AVPixelFormat pix_fmt
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2088
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
static int shift(int a, int b)
Definition: sonic.c:82
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1029
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:258
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:68
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2193
int chrSrcH
Height of source chroma planes.
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:157
#define SWS_X
Definition: swscale.h:59
int ff_free_filters(SwsContext *c)
Definition: slice.c:334
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
#define RV_IDX
#define SWS_BICUBIC
Definition: swscale.h:58
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:716
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:262
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:170
#define BV_IDX
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:120
#define C
8bit gray, 8bit alpha
Definition: pixfmt.h:154
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:219
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
const char * fmt
Definition: avisynth_c.h:632
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:67
misc image utilities
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
SwsVector * lumV
Definition: swscale.h:115
int16_t * rgbgamma
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:64
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:85
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:282
SwsAlphaBlend alphablend
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:981
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:191
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:173
int acc
Definition: yuv2rgb.c:546
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2145
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:1985
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:263
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples */
Definition: pixfmt.h:275
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1259
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples */
Definition: pixfmt.h:276
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:765
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:180
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:218
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:116
#define SWS_BICUBLIN
Definition: swscale.h:62
int16_t * rgbgammainv
const char * b
Definition: vf_curves.c:109
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:269
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:283
#define GV_IDX
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
int av_log2(unsigned v)
Definition: intmath.c:26
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:333
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:200
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
external API header
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:999
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:263
static int isnan_vec(SwsVector *a)
Definition: utils.c:1869
int16_t * xyzgammainv
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:119
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:69
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:268
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:167
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:151
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:252
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples */
Definition: pixfmt.h:273
#define RGB_GAMMA
#define SWS_PRINT_INFO
Definition: swscale.h:73
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2290
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:267
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:139
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:88
Macro definitions for various function/variable attributes.
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:114
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:86
#define SWS_BILINEAR
Definition: swscale.h:57
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:190
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2188
#define RU_IDX
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:229
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:201
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1073
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:102
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
ptrdiff_t uv_off
offset (in pixels) between u and v planes
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
int length
number of coefficients in the vector
Definition: swscale.h:109
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1142
#define SWS_LANCZOS
Definition: swscale.h:65
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:63
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:251
8 bit with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:73
AVOptions.
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:111
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2201
int vChrFilterSize
Vertical filter size for chroma pixels.
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:281
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:282
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:216
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:150
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:264
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:77
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, uint8_t clip)
Definition: cfhd.c:80
int cascaded_tmpStride[4]
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:113
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:95
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:202
#define SWS_FAST_BILINEAR
Definition: swscale.h:56
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:2018
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:289
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:185
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
Definition: pixfmt.h:101
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1848
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:75
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:205
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:329
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int16_t rgb2xyz_matrix[3][4]
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:351
#define isAnyRGB(x)
external API header
enum AVPixelFormat dstFormat
Destination pixel format.
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:291
#define isALPHA(x)
Definition: swscale-test.c:49
uint16_t * inv_gamma
#define A(x)
Definition: vp56_arith.h:28
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:277
#define FFALIGN(x, a)
Definition: macros.h:48
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
#define av_log(a,...)
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2125
uint64_t vRounder
#define ROUNDED_DIV(a, b)
Definition: common.h:56
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
int * dither_error[4]
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:168
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1885
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:181
#define INLINE_MMX(flags)
Definition: cpu.h:81
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:176
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:187
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
16bit gray, 16bit alpha (big-endian)
Definition: pixfmt.h:225
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:144
#define AVERROR(e)
Definition: error.h:43
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:590
const char * description
human-readable description
Definition: utils.c:293
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2221
static const struct endianess table[]
#define PPC_ALTIVEC(flags)
Definition: cpu.h:26
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:85
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:96
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2175
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2221
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:193
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:172
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:534
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:90
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:324
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:261
GLsizei GLsizei * length
Definition: opengl_enc.c:115
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:142
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:341
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
Definition: pixfmt.h:298
#define SWS_CS_DEFAULT
Definition: swscale.h:93
#define X86_MMX(flags)
Definition: cpu.h:31
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:194
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:93
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2055
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:114
#define fail()
Definition: checkasm.h:81
int8_t exp
Definition: eval.c:64
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:160
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:94
#define isNBPS(x)
uint8_t * cascaded1_tmp[4]
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2063
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:195
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2328
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:66
#define RETCODE_USE_CASCADE
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1087
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2256
int hChrFilterSize
Horizontal filter size for chroma pixels.
int16_t * xyzgamma
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:1968
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:336
as above, but U and V bytes are swapped
Definition: pixfmt.h:91
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:300
#define RGB2YUV_SHIFT
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
#define APCK_SIZE
#define have_neon(flags)
Definition: cpu.h:27
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:357
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:322
int flag
Definition: cpu-test.c:33
#define FFMIN(a, b)
Definition: common.h:96
#define isBayer(x)
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:89
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:74
#define SWS_GAUSS
Definition: swscale.h:63
SwsVector * chrH
Definition: swscale.h:116
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:79
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:133
int32_t
#define RY_IDX
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2145
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2268
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:199
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:221
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:191
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:65
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:256
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:211
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:169
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:532
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1823
unsigned swscale_version(void)
Definition: utils.c:75
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
Definition: pixfmt.h:297
double gamma_value
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:846
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:337
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:178
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:159
#define DITHER1XBPP
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:118
uint8_t * cascaded_tmp[4]
#define FF_ARRAY_ELEMS(a)
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:297
int cascaded1_tmpStride[4]
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:301
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:349
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:331
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:848
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:84
double * coeff
pointer to the list of coefficients
Definition: swscale.h:108
int flag
flag associated to the algorithm
Definition: utils.c:292
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:140
int dstColorspaceTable[4]
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:311
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
const AVClass * av_class
info on struct for av_log
int16_t xyz2rgb_matrix[3][4]
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:188
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
#define DITHER32_INT
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:280
void sws_freeVec(SwsVector *a)
Definition: utils.c:2247
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:183
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:29
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:284
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:203
static const char * format
Definition: movenc-test.c:47
int chrDstH
Height of destination chroma planes.
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:63
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:290
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:270
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:83
Replacements for frequently missing libm functions.
#define SWS_AREA
Definition: swscale.h:61
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:338
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:68
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:204
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2106
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:67
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:206
#define W(a, i, v)
Definition: jpegls.h:122
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
Y , 16bpp, big-endian.
Definition: pixfmt.h:98
#define isnan(x)
Definition: libm.h:340
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:81
byte swapping routines
static void handle_formats(SwsContext *c)
Definition: utils.c:1049
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:257
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:253
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:269
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:189
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:335
const VDPAUPixFmtMap * map
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:121
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
#define isGray(x)
Definition: swscale-test.c:38
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:76
#define SWS_POINT
Definition: swscale.h:60
int ff_init_filters(SwsContext *c)
Definition: slice.c:213
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:278
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1059
#define GY_IDX
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:330
#define SWS_SPLINE
Definition: swscale.h:66
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:355
#define SWS_SINC
Definition: swscale.h:64
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:198
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:339
static int flags
Definition: cpu.c:47
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:115
#define SWS_BITEXACT
Definition: swscale.h:82
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:279
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:153
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:174
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:143
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1040
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:148
Definition: vc1_parser.c:48
SwsDither dither
uint8_t is_supported_in
Definition: utils.c:93
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:72
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2161
#define INLINE_MMXEXT(flags)
Definition: cpu.h:82
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2044
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:62
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:260
Y , 8bpp.
Definition: pixfmt.h:70
double param[2]
Input parameters for scaling algorithms that need them.
#define exp2(x)
Definition: libm.h:288
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:71
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:228
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:130
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:182
static double c[64]
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:110
#define AV_WL16(p, v)
Definition: intreadwrite.h:412
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:141
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:76
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples */
Definition: pixfmt.h:274
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:87
static const uint64_t c2
Definition: murmur3.c:50
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:69
#define XYZ_GAMMA
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:196
struct SwsContext * cascaded_context[3]
#define SWS_PARAM_DEFAULT
Definition: swscale.h:71
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:79
Definition: vf_geq.c:46
uint16_t * gamma
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
#define MAX_FILTER_SIZE
static av_always_inline int diff(const uint32_t a, const uint32_t b)
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:210
#define av_free(p)
int size_factor
size factor used when initing the filters
Definition: utils.c:294
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:266
#define NAN
Definition: math.h:28
int srcFormatBpp
Number of bits per pixel of the source pixel format.
const AVClass ff_sws_context_class
Definition: options.c:87
Y , 16bpp, little-endian.
Definition: pixfmt.h:99
uint8_t is_supported_endianness
Definition: utils.c:95
static const double coeff[2][5]
Definition: vf_owdenoise.c:71
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:271
#define lrint
Definition: tablegen.h:53
16bit gray, 16bit alpha (little-endian)
Definition: pixfmt.h:226
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:251
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2039
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:197
static int height
Definition: utils.c:158
int32_t input_rgb2yuv_table[16+40 *4]
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:120
number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of...
Definition: pixfmt.h:303
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
#define av_freep(p)
#define GU_IDX
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:100
#define M_PI
Definition: mathematics.h:46
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:186
static void makenan_vec(SwsVector *a)
Definition: utils.c:1878
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define av_malloc_array(a, b)
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:152
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2109
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:192
#define BY_IDX
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
int depth
Number of bits in the component.
Definition: pixdesc.h:58
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:230
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:250
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:83
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:810
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:252
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:255
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:350
#define BU_IDX
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:175
for(j=16;j >0;--j)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:259
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:139
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:184
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2069
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:217
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:292
#define V
Definition: avdct.c:30
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:171
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86