FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_SYS_MMAN_H
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
136  [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
137  [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
138  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
139  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
140  [AV_PIX_FMT_YUV440P] = { 1, 1 },
141  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
142  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
143  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
144  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
145  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
146  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
147  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
148  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
149  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
151  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
152  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
153  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
154  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
155  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
156  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
157  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
158  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
159  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
163  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
164  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
165  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
166  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
167  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
168  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
169  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
170  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
171  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
172  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
173  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
174  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
175  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
176  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
177  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
178  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
179  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
180  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
181  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
182  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
183  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
185  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
186  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
187  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
188  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
189  [AV_PIX_FMT_YA8] = { 1, 1 },
190  [AV_PIX_FMT_YA16BE] = { 1, 0 },
191  [AV_PIX_FMT_YA16LE] = { 1, 0 },
192  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
193  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
194  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
195  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
196  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
197  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
198  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
199  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
200  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
216  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
217  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
218  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
219  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
220  [AV_PIX_FMT_GBRP] = { 1, 1 },
221  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
222  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
223  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
224  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
225  [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
228  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
229  [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
231  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
232  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
233  [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
234  [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
235  [AV_PIX_FMT_GBRAP] = { 1, 1 },
236  [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
237  [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
238  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
239  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
240  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
241  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
242  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
243  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
244  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
245  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
246  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
247  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
248  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
249  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
250  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
251  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
252  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
253  [AV_PIX_FMT_P010LE] = { 1, 1 },
254  [AV_PIX_FMT_P010BE] = { 1, 1 },
255  [AV_PIX_FMT_P016LE] = { 1, 0 },
256  [AV_PIX_FMT_P016BE] = { 1, 0 },
257 };
258 
260 {
261  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
262  format_entries[pix_fmt].is_supported_in : 0;
263 }
264 
266 {
267  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
268  format_entries[pix_fmt].is_supported_out : 0;
269 }
270 
272 {
273  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
274  format_entries[pix_fmt].is_supported_endianness : 0;
275 }
276 
277 static double getSplineCoeff(double a, double b, double c, double d,
278  double dist)
279 {
280  if (dist <= 1.0)
281  return ((d * dist + c) * dist + b) * dist + a;
282  else
283  return getSplineCoeff(0.0,
284  b + 2.0 * c + 3.0 * d,
285  c + 3.0 * d,
286  -b - 3.0 * c - 6.0 * d,
287  dist - 1.0);
288 }
289 
290 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
291 {
292  if (pos == -1 || pos <= -513) {
293  pos = (128 << chr_subsample) - 128;
294  }
295  pos += 128; // relative to ideal left edge
296  return pos >> chr_subsample;
297 }
298 
299 typedef struct {
300  int flag; ///< flag associated to the algorithm
301  const char *description; ///< human-readable description
302  int size_factor; ///< size factor used when initing the filters
304 
306  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
307  { SWS_BICUBIC, "bicubic", 4 },
308  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
309  { SWS_BILINEAR, "bilinear", 2 },
310  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
311  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
312  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
313  { SWS_POINT, "nearest neighbor / point", -1 },
314  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
315  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
316  { SWS_X, "experimental", 8 },
317 };
318 
319 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
320  int *outFilterSize, int xInc, int srcW,
321  int dstW, int filterAlign, int one,
322  int flags, int cpu_flags,
323  SwsVector *srcFilter, SwsVector *dstFilter,
324  double param[2], int srcPos, int dstPos)
325 {
326  int i;
327  int filterSize;
328  int filter2Size;
329  int minFilterSize;
330  int64_t *filter = NULL;
331  int64_t *filter2 = NULL;
332  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
333  int ret = -1;
334 
335  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
336 
337  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
338  FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
339 
340  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
341  int i;
342  filterSize = 1;
344  dstW, sizeof(*filter) * filterSize, fail);
345 
346  for (i = 0; i < dstW; i++) {
347  filter[i * filterSize] = fone;
348  (*filterPos)[i] = i;
349  }
350  } else if (flags & SWS_POINT) { // lame looking point sampling mode
351  int i;
352  int64_t xDstInSrc;
353  filterSize = 1;
355  dstW, sizeof(*filter) * filterSize, fail);
356 
357  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
358  for (i = 0; i < dstW; i++) {
359  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
360 
361  (*filterPos)[i] = xx;
362  filter[i] = fone;
363  xDstInSrc += xInc;
364  }
365  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
366  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
367  int i;
368  int64_t xDstInSrc;
369  filterSize = 2;
371  dstW, sizeof(*filter) * filterSize, fail);
372 
373  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
374  for (i = 0; i < dstW; i++) {
375  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
376  int j;
377 
378  (*filterPos)[i] = xx;
379  // bilinear upscale / linear interpolate / area averaging
380  for (j = 0; j < filterSize; j++) {
381  int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
382  if (coeff < 0)
383  coeff = 0;
384  filter[i * filterSize + j] = coeff;
385  xx++;
386  }
387  xDstInSrc += xInc;
388  }
389  } else {
390  int64_t xDstInSrc;
391  int sizeFactor = -1;
392 
393  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
394  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
395  sizeFactor = scale_algorithms[i].size_factor;
396  break;
397  }
398  }
399  if (flags & SWS_LANCZOS)
400  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
401  av_assert0(sizeFactor > 0);
402 
403  if (xInc <= 1 << 16)
404  filterSize = 1 + sizeFactor; // upscale
405  else
406  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
407 
408  filterSize = FFMIN(filterSize, srcW - 2);
409  filterSize = FFMAX(filterSize, 1);
410 
412  dstW, sizeof(*filter) * filterSize, fail);
413 
414  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
415  for (i = 0; i < dstW; i++) {
416  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
417  int j;
418  (*filterPos)[i] = xx;
419  for (j = 0; j < filterSize; j++) {
420  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
421  double floatd;
422  int64_t coeff;
423 
424  if (xInc > 1 << 16)
425  d = d * dstW / srcW;
426  floatd = d * (1.0 / (1 << 30));
427 
428  if (flags & SWS_BICUBIC) {
429  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
430  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
431 
432  if (d >= 1LL << 31) {
433  coeff = 0.0;
434  } else {
435  int64_t dd = (d * d) >> 30;
436  int64_t ddd = (dd * d) >> 30;
437 
438  if (d < 1LL << 30)
439  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
440  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
441  (6 * (1 << 24) - 2 * B) * (1 << 30);
442  else
443  coeff = (-B - 6 * C) * ddd +
444  (6 * B + 30 * C) * dd +
445  (-12 * B - 48 * C) * d +
446  (8 * B + 24 * C) * (1 << 30);
447  }
448  coeff /= (1LL<<54)/fone;
449  } else if (flags & SWS_X) {
450  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
451  double c;
452 
453  if (floatd < 1.0)
454  c = cos(floatd * M_PI);
455  else
456  c = -1.0;
457  if (c < 0.0)
458  c = -pow(-c, A);
459  else
460  c = pow(c, A);
461  coeff = (c * 0.5 + 0.5) * fone;
462  } else if (flags & SWS_AREA) {
463  int64_t d2 = d - (1 << 29);
464  if (d2 * xInc < -(1LL << (29 + 16)))
465  coeff = 1.0 * (1LL << (30 + 16));
466  else if (d2 * xInc < (1LL << (29 + 16)))
467  coeff = -d2 * xInc + (1LL << (29 + 16));
468  else
469  coeff = 0.0;
470  coeff *= fone >> (30 + 16);
471  } else if (flags & SWS_GAUSS) {
472  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
473  coeff = exp2(-p * floatd * floatd) * fone;
474  } else if (flags & SWS_SINC) {
475  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
476  } else if (flags & SWS_LANCZOS) {
477  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
478  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
479  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
480  if (floatd > p)
481  coeff = 0;
482  } else if (flags & SWS_BILINEAR) {
483  coeff = (1 << 30) - d;
484  if (coeff < 0)
485  coeff = 0;
486  coeff *= fone >> 30;
487  } else if (flags & SWS_SPLINE) {
488  double p = -2.196152422706632;
489  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
490  } else {
491  av_assert0(0);
492  }
493 
494  filter[i * filterSize + j] = coeff;
495  xx++;
496  }
497  xDstInSrc += 2 * xInc;
498  }
499  }
500 
501  /* apply src & dst Filter to filter -> filter2
502  * av_free(filter);
503  */
504  av_assert0(filterSize > 0);
505  filter2Size = filterSize;
506  if (srcFilter)
507  filter2Size += srcFilter->length - 1;
508  if (dstFilter)
509  filter2Size += dstFilter->length - 1;
510  av_assert0(filter2Size > 0);
511  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
512 
513  for (i = 0; i < dstW; i++) {
514  int j, k;
515 
516  if (srcFilter) {
517  for (k = 0; k < srcFilter->length; k++) {
518  for (j = 0; j < filterSize; j++)
519  filter2[i * filter2Size + k + j] +=
520  srcFilter->coeff[k] * filter[i * filterSize + j];
521  }
522  } else {
523  for (j = 0; j < filterSize; j++)
524  filter2[i * filter2Size + j] = filter[i * filterSize + j];
525  }
526  // FIXME dstFilter
527 
528  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
529  }
530  av_freep(&filter);
531 
532  /* try to reduce the filter-size (step1 find size and shift left) */
533  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
534  minFilterSize = 0;
535  for (i = dstW - 1; i >= 0; i--) {
536  int min = filter2Size;
537  int j;
538  int64_t cutOff = 0.0;
539 
540  /* get rid of near zero elements on the left by shifting left */
541  for (j = 0; j < filter2Size; j++) {
542  int k;
543  cutOff += FFABS(filter2[i * filter2Size]);
544 
545  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
546  break;
547 
548  /* preserve monotonicity because the core can't handle the
549  * filter otherwise */
550  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
551  break;
552 
553  // move filter coefficients left
554  for (k = 1; k < filter2Size; k++)
555  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
556  filter2[i * filter2Size + k - 1] = 0;
557  (*filterPos)[i]++;
558  }
559 
560  cutOff = 0;
561  /* count near zeros on the right */
562  for (j = filter2Size - 1; j > 0; j--) {
563  cutOff += FFABS(filter2[i * filter2Size + j]);
564 
565  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
566  break;
567  min--;
568  }
569 
570  if (min > minFilterSize)
571  minFilterSize = min;
572  }
573 
574  if (PPC_ALTIVEC(cpu_flags)) {
575  // we can handle the special case 4, so we don't want to go the full 8
576  if (minFilterSize < 5)
577  filterAlign = 4;
578 
579  /* We really don't want to waste our time doing useless computation, so
580  * fall back on the scalar C code for very small filters.
581  * Vectorizing is worth it only if you have a decent-sized vector. */
582  if (minFilterSize < 3)
583  filterAlign = 1;
584  }
585 
586  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
587  // special case for unscaled vertical filtering
588  if (minFilterSize == 1 && filterAlign == 2)
589  filterAlign = 1;
590  }
591 
592  av_assert0(minFilterSize > 0);
593  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
594  av_assert0(filterSize > 0);
595  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
596  if (!filter)
597  goto fail;
598  if (filterSize >= MAX_FILTER_SIZE * 16 /
599  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
600  ret = RETCODE_USE_CASCADE;
601  goto fail;
602  }
603  *outFilterSize = filterSize;
604 
605  if (flags & SWS_PRINT_INFO)
607  "SwScaler: reducing / aligning filtersize %d -> %d\n",
608  filter2Size, filterSize);
609  /* try to reduce the filter-size (step2 reduce it) */
610  for (i = 0; i < dstW; i++) {
611  int j;
612 
613  for (j = 0; j < filterSize; j++) {
614  if (j >= filter2Size)
615  filter[i * filterSize + j] = 0;
616  else
617  filter[i * filterSize + j] = filter2[i * filter2Size + j];
618  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
619  filter[i * filterSize + j] = 0;
620  }
621  }
622 
623  // FIXME try to align filterPos if possible
624 
625  // fix borders
626  for (i = 0; i < dstW; i++) {
627  int j;
628  if ((*filterPos)[i] < 0) {
629  // move filter coefficients left to compensate for filterPos
630  for (j = 1; j < filterSize; j++) {
631  int left = FFMAX(j + (*filterPos)[i], 0);
632  filter[i * filterSize + left] += filter[i * filterSize + j];
633  filter[i * filterSize + j] = 0;
634  }
635  (*filterPos)[i]= 0;
636  }
637 
638  if ((*filterPos)[i] + filterSize > srcW) {
639  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
640  int64_t acc = 0;
641 
642  for (j = filterSize - 1; j >= 0; j--) {
643  if ((*filterPos)[i] + j >= srcW) {
644  acc += filter[i * filterSize + j];
645  filter[i * filterSize + j] = 0;
646  }
647  }
648  for (j = filterSize - 1; j >= 0; j--) {
649  if (j < shift) {
650  filter[i * filterSize + j] = 0;
651  } else {
652  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
653  }
654  }
655 
656  (*filterPos)[i]-= shift;
657  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
658  }
659  av_assert0((*filterPos)[i] >= 0);
660  av_assert0((*filterPos)[i] < srcW);
661  if ((*filterPos)[i] + filterSize > srcW) {
662  for (j = 0; j < filterSize; j++) {
663  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
664  }
665  }
666  }
667 
668  // Note the +1 is for the MMX scaler which reads over the end
669  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
670  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
671  (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
672 
673  /* normalize & store in outFilter */
674  for (i = 0; i < dstW; i++) {
675  int j;
676  int64_t error = 0;
677  int64_t sum = 0;
678 
679  for (j = 0; j < filterSize; j++) {
680  sum += filter[i * filterSize + j];
681  }
682  sum = (sum + one / 2) / one;
683  if (!sum) {
684  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
685  sum = 1;
686  }
687  for (j = 0; j < *outFilterSize; j++) {
688  int64_t v = filter[i * filterSize + j] + error;
689  int intV = ROUNDED_DIV(v, sum);
690  (*outFilter)[i * (*outFilterSize) + j] = intV;
691  error = v - intV * sum;
692  }
693  }
694 
695  (*filterPos)[dstW + 0] =
696  (*filterPos)[dstW + 1] =
697  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
698  * read over the end */
699  for (i = 0; i < *outFilterSize; i++) {
700  int k = (dstW - 1) * (*outFilterSize) + i;
701  (*outFilter)[k + 1 * (*outFilterSize)] =
702  (*outFilter)[k + 2 * (*outFilterSize)] =
703  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
704  }
705 
706  ret = 0;
707 
708 fail:
709  if(ret < 0)
710  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
711  av_free(filter);
712  av_free(filter2);
713  return ret;
714 }
715 
716 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
717 {
718  int64_t W, V, Z, Cy, Cu, Cv;
719  int64_t vr = table[0];
720  int64_t ub = table[1];
721  int64_t ug = -table[2];
722  int64_t vg = -table[3];
723  int64_t ONE = 65536;
724  int64_t cy = ONE;
726  int i;
727  static const int8_t map[] = {
728  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
729  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
730  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
731  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
732  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
733  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
734  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
735  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
736  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
737  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
738  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
739  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
742  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
743  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
746  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
747  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
750  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
751  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
752  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
753  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
754  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
755  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
756  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
757  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
758  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
759  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
760  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
761  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
762  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
763  };
764 
765  dstRange = 0; //FIXME range = 1 is handled elsewhere
766 
767  if (!dstRange) {
768  cy = cy * 255 / 219;
769  } else {
770  vr = vr * 224 / 255;
771  ub = ub * 224 / 255;
772  ug = ug * 224 / 255;
773  vg = vg * 224 / 255;
774  }
775  W = ROUNDED_DIV(ONE*ONE*ug, ub);
776  V = ROUNDED_DIV(ONE*ONE*vg, vr);
777  Z = ONE*ONE-W-V;
778 
779  Cy = ROUNDED_DIV(cy*Z, ONE);
780  Cu = ROUNDED_DIV(ub*Z, ONE);
781  Cv = ROUNDED_DIV(vr*Z, ONE);
782 
783  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
784  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
785  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
786 
787  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
788  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
789  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
790 
791  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
792  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
793  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
794 
795  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
796  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
797  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
798  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
799  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
800  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
801  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
802  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
803  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
804  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
805  }
806  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
807  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
808 }
809 
810 static void fill_xyztables(struct SwsContext *c)
811 {
812  int i;
813  double xyzgamma = XYZ_GAMMA;
814  double rgbgamma = 1.0 / RGB_GAMMA;
815  double xyzgammainv = 1.0 / XYZ_GAMMA;
816  double rgbgammainv = RGB_GAMMA;
817  static const int16_t xyz2rgb_matrix[3][4] = {
818  {13270, -6295, -2041},
819  {-3969, 7682, 170},
820  { 228, -835, 4329} };
821  static const int16_t rgb2xyz_matrix[3][4] = {
822  {1689, 1464, 739},
823  { 871, 2929, 296},
824  { 79, 488, 3891} };
825  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
826 
827  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
828  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
829  c->xyzgamma = xyzgamma_tab;
830  c->rgbgamma = rgbgamma_tab;
831  c->xyzgammainv = xyzgammainv_tab;
832  c->rgbgammainv = rgbgammainv_tab;
833 
834  if (rgbgamma_tab[4095])
835  return;
836 
837  /* set gamma vectors */
838  for (i = 0; i < 4096; i++) {
839  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
840  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
841  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
842  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
843  }
844 }
845 
846 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
847  int srcRange, const int table[4], int dstRange,
848  int brightness, int contrast, int saturation)
849 {
850  const AVPixFmtDescriptor *desc_dst;
851  const AVPixFmtDescriptor *desc_src;
852  int need_reinit = 0;
853 
854  handle_formats(c);
855  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
856  desc_src = av_pix_fmt_desc_get(c->srcFormat);
857 
858  if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
859  dstRange = 0;
860  if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
861  srcRange = 0;
862 
863  if (c->srcRange != srcRange ||
864  c->dstRange != dstRange ||
865  c->brightness != brightness ||
866  c->contrast != contrast ||
867  c->saturation != saturation ||
868  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
869  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
870  )
871  need_reinit = 1;
872 
873  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
874  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
875 
876 
877 
878  c->brightness = brightness;
879  c->contrast = contrast;
880  c->saturation = saturation;
881  c->srcRange = srcRange;
882  c->dstRange = dstRange;
883 
884  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
885  //and what we have in ticket 2939 looks better with this check
886  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
888 
889  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
890  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
891 
893  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
894 
895  if (!need_reinit)
896  return 0;
897 
898  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
899  if (!c->cascaded_context[0] &&
900  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
901  c->srcW && c->srcH && c->dstW && c->dstH) {
902  enum AVPixelFormat tmp_format;
903  int tmp_width, tmp_height;
904  int srcW = c->srcW;
905  int srcH = c->srcH;
906  int dstW = c->dstW;
907  int dstH = c->dstH;
908  int ret;
909  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
910 
911  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
912  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
913  tmp_format = AV_PIX_FMT_BGRA64;
914  } else {
915  tmp_format = AV_PIX_FMT_BGR48;
916  }
917  } else {
918  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
919  tmp_format = AV_PIX_FMT_BGRA;
920  } else {
921  tmp_format = AV_PIX_FMT_BGR24;
922  }
923  }
924 
925  if (srcW*srcH > dstW*dstH) {
926  tmp_width = dstW;
927  tmp_height = dstH;
928  } else {
929  tmp_width = srcW;
930  tmp_height = srcH;
931  }
932 
934  tmp_width, tmp_height, tmp_format, 64);
935  if (ret < 0)
936  return ret;
937 
938  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
939  tmp_width, tmp_height, tmp_format,
940  c->flags, c->param);
941  if (!c->cascaded_context[0])
942  return -1;
943 
945  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
946  if (ret < 0)
947  return ret;
948  //we set both src and dst depending on that the RGB side will be ignored
950  srcRange, table, dstRange,
951  brightness, contrast, saturation);
952 
953  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
954  dstW, dstH, c->dstFormat,
955  c->flags, NULL, NULL, c->param);
956  if (!c->cascaded_context[1])
957  return -1;
959  srcRange, table, dstRange,
960  0, 1 << 16, 1 << 16);
961  return 0;
962  }
963  return -1;
964  }
965 
966  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
967  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
968  contrast, saturation);
969  // FIXME factorize
970 
971  if (ARCH_PPC)
972  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
973  contrast, saturation);
974  }
975 
976  fill_rgb2yuv_table(c, table, dstRange);
977 
978  return 0;
979 }
980 
981 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
982  int *srcRange, int **table, int *dstRange,
983  int *brightness, int *contrast, int *saturation)
984 {
985  if (!c )
986  return -1;
987 
988  *inv_table = c->srcColorspaceTable;
989  *table = c->dstColorspaceTable;
990  *srcRange = c->srcRange;
991  *dstRange = c->dstRange;
992  *brightness = c->brightness;
993  *contrast = c->contrast;
994  *saturation = c->saturation;
995 
996  return 0;
997 }
998 
1000 {
1001  switch (*format) {
1002  case AV_PIX_FMT_YUVJ420P:
1003  *format = AV_PIX_FMT_YUV420P;
1004  return 1;
1005  case AV_PIX_FMT_YUVJ411P:
1006  *format = AV_PIX_FMT_YUV411P;
1007  return 1;
1008  case AV_PIX_FMT_YUVJ422P:
1009  *format = AV_PIX_FMT_YUV422P;
1010  return 1;
1011  case AV_PIX_FMT_YUVJ444P:
1012  *format = AV_PIX_FMT_YUV444P;
1013  return 1;
1014  case AV_PIX_FMT_YUVJ440P:
1015  *format = AV_PIX_FMT_YUV440P;
1016  return 1;
1017  case AV_PIX_FMT_GRAY8:
1018  case AV_PIX_FMT_YA8:
1019  case AV_PIX_FMT_GRAY16LE:
1020  case AV_PIX_FMT_GRAY16BE:
1021  case AV_PIX_FMT_YA16BE:
1022  case AV_PIX_FMT_YA16LE:
1023  return 1;
1024  default:
1025  return 0;
1026  }
1027 }
1028 
1030 {
1031  switch (*format) {
1032  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1033  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1034  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1035  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1036  default: return 0;
1037  }
1038 }
1039 
1041 {
1042  switch (*format) {
1043  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1044  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1045  default: return 0;
1046  }
1047 }
1048 
1050 {
1051  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1052  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1053  c->srcXYZ |= handle_xyz(&c->srcFormat);
1054  c->dstXYZ |= handle_xyz(&c->dstFormat);
1055  if (c->srcXYZ || c->dstXYZ)
1056  fill_xyztables(c);
1057 }
1058 
1060 {
1061  SwsContext *c = av_mallocz(sizeof(SwsContext));
1062 
1063  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1064 
1065  if (c) {
1068  }
1069 
1070  return c;
1071 }
1072 
1073 static uint16_t * alloc_gamma_tbl(double e)
1074 {
1075  int i = 0;
1076  uint16_t * tbl;
1077  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1078  if (!tbl)
1079  return NULL;
1080 
1081  for (i = 0; i < 65536; ++i) {
1082  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1083  }
1084  return tbl;
1085 }
1086 
1088 {
1089  switch(fmt) {
1090  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1091  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1092  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1093  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1094  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1095 
1099 
1100  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1101 
1104 
1107 
1110 
1115 
1116  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1117  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1118 
1137 
1138 // case AV_PIX_FMT_AYUV64LE:
1139 // case AV_PIX_FMT_AYUV64BE:
1140 // case AV_PIX_FMT_PAL8:
1141  default: return AV_PIX_FMT_NONE;
1142  }
1143 }
1144 
1146  SwsFilter *dstFilter)
1147 {
1148  int i;
1149  int usesVFilter, usesHFilter;
1150  int unscaled;
1151  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1152  int srcW = c->srcW;
1153  int srcH = c->srcH;
1154  int dstW = c->dstW;
1155  int dstH = c->dstH;
1156  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1157  int flags, cpu_flags;
1158  enum AVPixelFormat srcFormat = c->srcFormat;
1159  enum AVPixelFormat dstFormat = c->dstFormat;
1160  const AVPixFmtDescriptor *desc_src;
1161  const AVPixFmtDescriptor *desc_dst;
1162  int ret = 0;
1163  enum AVPixelFormat tmpFmt;
1164 
1165  cpu_flags = av_get_cpu_flags();
1166  flags = c->flags;
1167  emms_c();
1168  if (!rgb15to16)
1170 
1171  unscaled = (srcW == dstW && srcH == dstH);
1172 
1173  c->srcRange |= handle_jpeg(&c->srcFormat);
1174  c->dstRange |= handle_jpeg(&c->dstFormat);
1175 
1176  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1177  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1178 
1179  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1180  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1181  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1182  c->dstRange, 0, 1 << 16, 1 << 16);
1183 
1184  handle_formats(c);
1185  srcFormat = c->srcFormat;
1186  dstFormat = c->dstFormat;
1187  desc_src = av_pix_fmt_desc_get(srcFormat);
1188  desc_dst = av_pix_fmt_desc_get(dstFormat);
1189 
1190  // If the source has no alpha then disable alpha blendaway
1191  if (c->src0Alpha)
1193 
1194  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1195  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1196  if (!sws_isSupportedInput(srcFormat)) {
1197  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1198  av_get_pix_fmt_name(srcFormat));
1199  return AVERROR(EINVAL);
1200  }
1201  if (!sws_isSupportedOutput(dstFormat)) {
1202  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1203  av_get_pix_fmt_name(dstFormat));
1204  return AVERROR(EINVAL);
1205  }
1206  }
1207  av_assert2(desc_src && desc_dst);
1208 
1209  i = flags & (SWS_POINT |
1210  SWS_AREA |
1211  SWS_BILINEAR |
1213  SWS_BICUBIC |
1214  SWS_X |
1215  SWS_GAUSS |
1216  SWS_LANCZOS |
1217  SWS_SINC |
1218  SWS_SPLINE |
1219  SWS_BICUBLIN);
1220 
1221  /* provide a default scaler if not set by caller */
1222  if (!i) {
1223  if (dstW < srcW && dstH < srcH)
1224  flags |= SWS_BICUBIC;
1225  else if (dstW > srcW && dstH > srcH)
1226  flags |= SWS_BICUBIC;
1227  else
1228  flags |= SWS_BICUBIC;
1229  c->flags = flags;
1230  } else if (i & (i - 1)) {
1231  av_log(c, AV_LOG_ERROR,
1232  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1233  return AVERROR(EINVAL);
1234  }
1235  /* sanity check */
1236  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1237  /* FIXME check if these are enough and try to lower them after
1238  * fixing the relevant parts of the code */
1239  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1240  srcW, srcH, dstW, dstH);
1241  return AVERROR(EINVAL);
1242  }
1243  if (flags & SWS_FAST_BILINEAR) {
1244  if (srcW < 8 || dstW < 8) {
1245  flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1246  c->flags = flags;
1247  }
1248  }
1249 
1250  if (!dstFilter)
1251  dstFilter = &dummyFilter;
1252  if (!srcFilter)
1253  srcFilter = &dummyFilter;
1254 
1255  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1256  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1257  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1258  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1259  c->vRounder = 4 * 0x0001000100010001ULL;
1260 
1261  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1262  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1263  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1264  (dstFilter->chrV && dstFilter->chrV->length > 1);
1265  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1266  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1267  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1268  (dstFilter->chrH && dstFilter->chrH->length > 1);
1269 
1272 
1273  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1274  if (dstW&1) {
1275  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1276  flags |= SWS_FULL_CHR_H_INT;
1277  c->flags = flags;
1278  }
1279 
1280  if ( c->chrSrcHSubSample == 0
1281  && c->chrSrcVSubSample == 0
1282  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1283  && !(c->flags & SWS_FAST_BILINEAR)
1284  ) {
1285  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1286  flags |= SWS_FULL_CHR_H_INT;
1287  c->flags = flags;
1288  }
1289  }
1290 
1291  if (c->dither == SWS_DITHER_AUTO) {
1292  if (flags & SWS_ERROR_DIFFUSION)
1293  c->dither = SWS_DITHER_ED;
1294  }
1295 
1296  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1297  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1298  dstFormat == AV_PIX_FMT_BGR8 ||
1299  dstFormat == AV_PIX_FMT_RGB8) {
1300  if (c->dither == SWS_DITHER_AUTO)
1302  if (!(flags & SWS_FULL_CHR_H_INT)) {
1304  av_log(c, AV_LOG_DEBUG,
1305  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1306  av_get_pix_fmt_name(dstFormat));
1307  flags |= SWS_FULL_CHR_H_INT;
1308  c->flags = flags;
1309  }
1310  }
1311  if (flags & SWS_FULL_CHR_H_INT) {
1312  if (c->dither == SWS_DITHER_BAYER) {
1313  av_log(c, AV_LOG_DEBUG,
1314  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1315  av_get_pix_fmt_name(dstFormat));
1316  c->dither = SWS_DITHER_ED;
1317  }
1318  }
1319  }
1320  if (isPlanarRGB(dstFormat)) {
1321  if (!(flags & SWS_FULL_CHR_H_INT)) {
1322  av_log(c, AV_LOG_DEBUG,
1323  "%s output is not supported with half chroma resolution, switching to full\n",
1324  av_get_pix_fmt_name(dstFormat));
1325  flags |= SWS_FULL_CHR_H_INT;
1326  c->flags = flags;
1327  }
1328  }
1329 
1330  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1331  * chroma interpolation */
1332  if (flags & SWS_FULL_CHR_H_INT &&
1333  isAnyRGB(dstFormat) &&
1334  !isPlanarRGB(dstFormat) &&
1335  dstFormat != AV_PIX_FMT_RGBA64LE &&
1336  dstFormat != AV_PIX_FMT_RGBA64BE &&
1337  dstFormat != AV_PIX_FMT_BGRA64LE &&
1338  dstFormat != AV_PIX_FMT_BGRA64BE &&
1339  dstFormat != AV_PIX_FMT_RGB48LE &&
1340  dstFormat != AV_PIX_FMT_RGB48BE &&
1341  dstFormat != AV_PIX_FMT_BGR48LE &&
1342  dstFormat != AV_PIX_FMT_BGR48BE &&
1343  dstFormat != AV_PIX_FMT_RGBA &&
1344  dstFormat != AV_PIX_FMT_ARGB &&
1345  dstFormat != AV_PIX_FMT_BGRA &&
1346  dstFormat != AV_PIX_FMT_ABGR &&
1347  dstFormat != AV_PIX_FMT_RGB24 &&
1348  dstFormat != AV_PIX_FMT_BGR24 &&
1349  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1350  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1351  dstFormat != AV_PIX_FMT_BGR8 &&
1352  dstFormat != AV_PIX_FMT_RGB8
1353  ) {
1355  "full chroma interpolation for destination format '%s' not yet implemented\n",
1356  av_get_pix_fmt_name(dstFormat));
1357  flags &= ~SWS_FULL_CHR_H_INT;
1358  c->flags = flags;
1359  }
1360  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1361  c->chrDstHSubSample = 1;
1362 
1363  // drop some chroma lines if the user wants it
1364  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1366  c->chrSrcVSubSample += c->vChrDrop;
1367 
1368  /* drop every other pixel for chroma calculation unless user
1369  * wants full chroma */
1370  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1371  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1372  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1373  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1374  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1375  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1376  srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
1377  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1378  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1379  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1380  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1381  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1382  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1383  (flags & SWS_FAST_BILINEAR)))
1384  c->chrSrcHSubSample = 1;
1385 
1386  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1387  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1388  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1389  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1390  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1391 
1392  FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1393 
1394  c->srcBpc = desc_src->comp[0].depth;
1395  if (c->srcBpc < 8)
1396  c->srcBpc = 8;
1397  c->dstBpc = desc_dst->comp[0].depth;
1398  if (c->dstBpc < 8)
1399  c->dstBpc = 8;
1400  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1401  c->srcBpc = 16;
1402  if (c->dstBpc == 16)
1403  dst_stride <<= 1;
1404 
1405  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1406  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1407  c->chrDstW >= c->chrSrcW &&
1408  (srcW & 15) == 0;
1409  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1410 
1411  && (flags & SWS_FAST_BILINEAR)) {
1412  if (flags & SWS_PRINT_INFO)
1413  av_log(c, AV_LOG_INFO,
1414  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1415  }
1416  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1417  c->canMMXEXTBeUsed = 0;
1418  } else
1419  c->canMMXEXTBeUsed = 0;
1420 
1421  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1422  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1423 
1424  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1425  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1426  * correct scaling.
1427  * n-2 is the last chrominance sample available.
1428  * This is not perfect, but no one should notice the difference, the more
1429  * correct variant would be like the vertical one, but that would require
1430  * some special code for the first and last pixel */
1431  if (flags & SWS_FAST_BILINEAR) {
1432  if (c->canMMXEXTBeUsed) {
1433  c->lumXInc += 20;
1434  c->chrXInc += 20;
1435  }
1436  // we don't use the x86 asm scaler if MMX is available
1437  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1438  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1439  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1440  }
1441  }
1442 
1443  // hardcoded for now
1444  c->gamma_value = 2.2;
1445  tmpFmt = AV_PIX_FMT_RGBA64LE;
1446 
1447 
1448  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1449  SwsContext *c2;
1450  c->cascaded_context[0] = NULL;
1451 
1453  srcW, srcH, tmpFmt, 64);
1454  if (ret < 0)
1455  return ret;
1456 
1457  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1458  srcW, srcH, tmpFmt,
1459  flags, NULL, NULL, c->param);
1460  if (!c->cascaded_context[0]) {
1461  return -1;
1462  }
1463 
1464  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1465  dstW, dstH, tmpFmt,
1466  flags, srcFilter, dstFilter, c->param);
1467 
1468  if (!c->cascaded_context[1])
1469  return -1;
1470 
1471  c2 = c->cascaded_context[1];
1472  c2->is_internal_gamma = 1;
1473  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1474  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1475  if (!c2->gamma || !c2->inv_gamma)
1476  return AVERROR(ENOMEM);
1477 
1478  // is_internal_flag is set after creating the context
1479  // to properly create the gamma convert FilterDescriptor
1480  // we have to re-initialize it
1481  ff_free_filters(c2);
1482  if (ff_init_filters(c2) < 0) {
1483  sws_freeContext(c2);
1484  return -1;
1485  }
1486 
1487  c->cascaded_context[2] = NULL;
1488  if (dstFormat != tmpFmt) {
1490  dstW, dstH, tmpFmt, 64);
1491  if (ret < 0)
1492  return ret;
1493 
1494  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1495  dstW, dstH, dstFormat,
1496  flags, NULL, NULL, c->param);
1497  if (!c->cascaded_context[2])
1498  return -1;
1499  }
1500  return 0;
1501  }
1502 
1503  if (isBayer(srcFormat)) {
1504  if (!unscaled ||
1505  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1506  enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1507 
1509  srcW, srcH, tmpFormat, 64);
1510  if (ret < 0)
1511  return ret;
1512 
1513  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1514  srcW, srcH, tmpFormat,
1515  flags, srcFilter, NULL, c->param);
1516  if (!c->cascaded_context[0])
1517  return -1;
1518 
1519  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1520  dstW, dstH, dstFormat,
1521  flags, NULL, dstFilter, c->param);
1522  if (!c->cascaded_context[1])
1523  return -1;
1524  return 0;
1525  }
1526  }
1527 
1528  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1529  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1530 
1531  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
1532  if (!unscaled ||
1533  dstFormat != tmpFormat ||
1534  usesHFilter || usesVFilter ||
1535  c->srcRange != c->dstRange
1536  ) {
1537  c->cascaded_mainindex = 1;
1539  srcW, srcH, tmpFormat, 64);
1540  if (ret < 0)
1541  return ret;
1542 
1543  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1544  srcW, srcH, tmpFormat,
1545  flags, c->param);
1546  if (!c->cascaded_context[0])
1547  return -1;
1549  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1550  if (ret < 0)
1551  return ret;
1552 
1553  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1554  dstW, dstH, dstFormat,
1555  flags, c->param);
1556  if (!c->cascaded_context[1])
1557  return -1;
1558 
1559  c->cascaded_context[1]->srcRange = c->srcRange;
1560  c->cascaded_context[1]->dstRange = c->dstRange;
1561  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1562  if (ret < 0)
1563  return ret;
1564 
1565  return 0;
1566  }
1567  }
1568 
1569 #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
1570 
1571  /* precalculate horizontal scaler filter coefficients */
1572  {
1573 #if HAVE_MMXEXT_INLINE
1574 // can't downscale !!!
1575  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1577  NULL, NULL, 8);
1579  NULL, NULL, NULL, 4);
1580 
1581 #if USE_MMAP
1583  PROT_READ | PROT_WRITE,
1584  MAP_PRIVATE | MAP_ANONYMOUS,
1585  -1, 0);
1587  PROT_READ | PROT_WRITE,
1588  MAP_PRIVATE | MAP_ANONYMOUS,
1589  -1, 0);
1590 #elif HAVE_VIRTUALALLOC
1591  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1593  MEM_COMMIT,
1594  PAGE_EXECUTE_READWRITE);
1595  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1597  MEM_COMMIT,
1598  PAGE_EXECUTE_READWRITE);
1599 #else
1602 #endif
1603 
1604 #ifdef MAP_ANONYMOUS
1605  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1606 #else
1608 #endif
1609  {
1610  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1611  return AVERROR(ENOMEM);
1612  }
1613 
1614  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1615  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1616  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1617  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1618 
1620  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1622  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1623 
1624 #if USE_MMAP
1625  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1626  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1627  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1628  goto fail;
1629  }
1630 #endif
1631  } else
1632 #endif /* HAVE_MMXEXT_INLINE */
1633  {
1634  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1635  PPC_ALTIVEC(cpu_flags) ? 8 :
1636  have_neon(cpu_flags) ? 8 : 1;
1637 
1638  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1639  &c->hLumFilterSize, c->lumXInc,
1640  srcW, dstW, filterAlign, 1 << 14,
1641  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1642  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1643  c->param,
1644  get_local_pos(c, 0, 0, 0),
1645  get_local_pos(c, 0, 0, 0))) < 0)
1646  goto fail;
1647  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1648  &c->hChrFilterSize, c->chrXInc,
1649  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1650  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1651  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1652  c->param,
1654  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1655  goto fail;
1656  }
1657  } // initialize horizontal stuff
1658 
1659  /* precalculate vertical scaler filter coefficients */
1660  {
1661  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1662  PPC_ALTIVEC(cpu_flags) ? 8 :
1663  have_neon(cpu_flags) ? 2 : 1;
1664 
1665  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1666  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1667  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1668  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1669  c->param,
1670  get_local_pos(c, 0, 0, 1),
1671  get_local_pos(c, 0, 0, 1))) < 0)
1672  goto fail;
1673  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1674  c->chrYInc, c->chrSrcH, c->chrDstH,
1675  filterAlign, (1 << 12),
1676  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1677  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1678  c->param,
1680  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1681 
1682  goto fail;
1683 
1684 #if HAVE_ALTIVEC
1685  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1686  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1687 
1688  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1689  int j;
1690  short *p = (short *)&c->vYCoeffsBank[i];
1691  for (j = 0; j < 8; j++)
1692  p[j] = c->vLumFilter[i];
1693  }
1694 
1695  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1696  int j;
1697  short *p = (short *)&c->vCCoeffsBank[i];
1698  for (j = 0; j < 8; j++)
1699  p[j] = c->vChrFilter[i];
1700  }
1701 #endif
1702  }
1703 
1704  for (i = 0; i < 4; i++)
1705  FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1706 
1707  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1708 
1709  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1710  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1711  c->uv_offx2 = dst_stride + 16;
1712 
1713  av_assert0(c->chrDstH <= dstH);
1714 
1715  if (flags & SWS_PRINT_INFO) {
1716  const char *scaler = NULL, *cpucaps;
1717 
1718  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1719  if (flags & scale_algorithms[i].flag) {
1720  scaler = scale_algorithms[i].description;
1721  break;
1722  }
1723  }
1724  if (!scaler)
1725  scaler = "ehh flags invalid?!";
1726  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1727  scaler,
1728  av_get_pix_fmt_name(srcFormat),
1729 #ifdef DITHER1XBPP
1730  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1731  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1732  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1733  "dithered " : "",
1734 #else
1735  "",
1736 #endif
1737  av_get_pix_fmt_name(dstFormat));
1738 
1739  if (INLINE_MMXEXT(cpu_flags))
1740  cpucaps = "MMXEXT";
1741  else if (INLINE_AMD3DNOW(cpu_flags))
1742  cpucaps = "3DNOW";
1743  else if (INLINE_MMX(cpu_flags))
1744  cpucaps = "MMX";
1745  else if (PPC_ALTIVEC(cpu_flags))
1746  cpucaps = "AltiVec";
1747  else
1748  cpucaps = "C";
1749 
1750  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1751 
1752  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1753  av_log(c, AV_LOG_DEBUG,
1754  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1755  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1756  av_log(c, AV_LOG_DEBUG,
1757  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1758  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1759  c->chrXInc, c->chrYInc);
1760  }
1761 
1762  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1763  if (unscaled && !usesHFilter && !usesVFilter &&
1765  isALPHA(srcFormat) &&
1766  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1767  alphaless_fmt(srcFormat) == dstFormat
1768  ) {
1770 
1771  if (flags & SWS_PRINT_INFO)
1772  av_log(c, AV_LOG_INFO,
1773  "using alpha blendaway %s -> %s special converter\n",
1774  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1775  return 0;
1776  }
1777 
1778  /* unscaled special cases */
1779  if (unscaled && !usesHFilter && !usesVFilter &&
1780  (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
1782 
1783  if (c->swscale) {
1784  if (flags & SWS_PRINT_INFO)
1785  av_log(c, AV_LOG_INFO,
1786  "using unscaled %s -> %s special converter\n",
1787  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1788  return 0;
1789  }
1790  }
1791 
1792  c->swscale = ff_getSwsFunc(c);
1793  return ff_init_filters(c);
1794 fail: // FIXME replace things by appropriate error codes
1795  if (ret == RETCODE_USE_CASCADE) {
1796  int tmpW = sqrt(srcW * (int64_t)dstW);
1797  int tmpH = sqrt(srcH * (int64_t)dstH);
1798  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1799 
1800  if (isALPHA(srcFormat))
1801  tmpFormat = AV_PIX_FMT_YUVA420P;
1802 
1803  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1804  return AVERROR(EINVAL);
1805 
1807  tmpW, tmpH, tmpFormat, 64);
1808  if (ret < 0)
1809  return ret;
1810 
1811  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1812  tmpW, tmpH, tmpFormat,
1813  flags, srcFilter, NULL, c->param);
1814  if (!c->cascaded_context[0])
1815  return -1;
1816 
1817  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1818  dstW, dstH, dstFormat,
1819  flags, NULL, dstFilter, c->param);
1820  if (!c->cascaded_context[1])
1821  return -1;
1822  return 0;
1823  }
1824  return -1;
1825 }
1826 
1827 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1828  int dstW, int dstH, enum AVPixelFormat dstFormat,
1829  int flags, const double *param)
1830 {
1831  SwsContext *c;
1832 
1833  if (!(c = sws_alloc_context()))
1834  return NULL;
1835 
1836  c->flags = flags;
1837  c->srcW = srcW;
1838  c->srcH = srcH;
1839  c->dstW = dstW;
1840  c->dstH = dstH;
1841  c->srcFormat = srcFormat;
1842  c->dstFormat = dstFormat;
1843 
1844  if (param) {
1845  c->param[0] = param[0];
1846  c->param[1] = param[1];
1847  }
1848 
1849  return c;
1850 }
1851 
1852 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1853  int dstW, int dstH, enum AVPixelFormat dstFormat,
1854  int flags, SwsFilter *srcFilter,
1855  SwsFilter *dstFilter, const double *param)
1856 {
1857  SwsContext *c;
1858 
1859  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1860  dstW, dstH, dstFormat,
1861  flags, param);
1862  if (!c)
1863  return NULL;
1864 
1865  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1866  sws_freeContext(c);
1867  return NULL;
1868  }
1869 
1870  return c;
1871 }
1872 
1873 static int isnan_vec(SwsVector *a)
1874 {
1875  int i;
1876  for (i=0; i<a->length; i++)
1877  if (isnan(a->coeff[i]))
1878  return 1;
1879  return 0;
1880 }
1881 
1882 static void makenan_vec(SwsVector *a)
1883 {
1884  int i;
1885  for (i=0; i<a->length; i++)
1886  a->coeff[i] = NAN;
1887 }
1888 
1889 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1890  float lumaSharpen, float chromaSharpen,
1891  float chromaHShift, float chromaVShift,
1892  int verbose)
1893 {
1894  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1895  if (!filter)
1896  return NULL;
1897 
1898  if (lumaGBlur != 0.0) {
1899  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1900  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1901  } else {
1902  filter->lumH = sws_getIdentityVec();
1903  filter->lumV = sws_getIdentityVec();
1904  }
1905 
1906  if (chromaGBlur != 0.0) {
1907  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1908  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1909  } else {
1910  filter->chrH = sws_getIdentityVec();
1911  filter->chrV = sws_getIdentityVec();
1912  }
1913 
1914  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1915  goto fail;
1916 
1917  if (chromaSharpen != 0.0) {
1918  SwsVector *id = sws_getIdentityVec();
1919  if (!id)
1920  goto fail;
1921  sws_scaleVec(filter->chrH, -chromaSharpen);
1922  sws_scaleVec(filter->chrV, -chromaSharpen);
1923  sws_addVec(filter->chrH, id);
1924  sws_addVec(filter->chrV, id);
1925  sws_freeVec(id);
1926  }
1927 
1928  if (lumaSharpen != 0.0) {
1929  SwsVector *id = sws_getIdentityVec();
1930  if (!id)
1931  goto fail;
1932  sws_scaleVec(filter->lumH, -lumaSharpen);
1933  sws_scaleVec(filter->lumV, -lumaSharpen);
1934  sws_addVec(filter->lumH, id);
1935  sws_addVec(filter->lumV, id);
1936  sws_freeVec(id);
1937  }
1938 
1939  if (chromaHShift != 0.0)
1940  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1941 
1942  if (chromaVShift != 0.0)
1943  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1944 
1945  sws_normalizeVec(filter->chrH, 1.0);
1946  sws_normalizeVec(filter->chrV, 1.0);
1947  sws_normalizeVec(filter->lumH, 1.0);
1948  sws_normalizeVec(filter->lumV, 1.0);
1949 
1950  if (isnan_vec(filter->chrH) ||
1951  isnan_vec(filter->chrV) ||
1952  isnan_vec(filter->lumH) ||
1953  isnan_vec(filter->lumV))
1954  goto fail;
1955 
1956  if (verbose)
1957  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1958  if (verbose)
1959  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1960 
1961  return filter;
1962 
1963 fail:
1964  sws_freeVec(filter->lumH);
1965  sws_freeVec(filter->lumV);
1966  sws_freeVec(filter->chrH);
1967  sws_freeVec(filter->chrV);
1968  av_freep(&filter);
1969  return NULL;
1970 }
1971 
1973 {
1974  SwsVector *vec;
1975 
1976  if(length <= 0 || length > INT_MAX/ sizeof(double))
1977  return NULL;
1978 
1979  vec = av_malloc(sizeof(SwsVector));
1980  if (!vec)
1981  return NULL;
1982  vec->length = length;
1983  vec->coeff = av_malloc(sizeof(double) * length);
1984  if (!vec->coeff)
1985  av_freep(&vec);
1986  return vec;
1987 }
1988 
1989 SwsVector *sws_getGaussianVec(double variance, double quality)
1990 {
1991  const int length = (int)(variance * quality + 0.5) | 1;
1992  int i;
1993  double middle = (length - 1) * 0.5;
1994  SwsVector *vec;
1995 
1996  if(variance < 0 || quality < 0)
1997  return NULL;
1998 
1999  vec = sws_allocVec(length);
2000 
2001  if (!vec)
2002  return NULL;
2003 
2004  for (i = 0; i < length; i++) {
2005  double dist = i - middle;
2006  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2007  sqrt(2 * variance * M_PI);
2008  }
2009 
2010  sws_normalizeVec(vec, 1.0);
2011 
2012  return vec;
2013 }
2014 
2015 /**
2016  * Allocate and return a vector with length coefficients, all
2017  * with the same value c.
2018  */
2019 #if !FF_API_SWS_VECTOR
2020 static
2021 #endif
2023 {
2024  int i;
2025  SwsVector *vec = sws_allocVec(length);
2026 
2027  if (!vec)
2028  return NULL;
2029 
2030  for (i = 0; i < length; i++)
2031  vec->coeff[i] = c;
2032 
2033  return vec;
2034 }
2035 
2036 /**
2037  * Allocate and return a vector with just one coefficient, with
2038  * value 1.0.
2039  */
2040 #if !FF_API_SWS_VECTOR
2041 static
2042 #endif
2044 {
2045  return sws_getConstVec(1.0, 1);
2046 }
2047 
2048 static double sws_dcVec(SwsVector *a)
2049 {
2050  int i;
2051  double sum = 0;
2052 
2053  for (i = 0; i < a->length; i++)
2054  sum += a->coeff[i];
2055 
2056  return sum;
2057 }
2058 
2059 void sws_scaleVec(SwsVector *a, double scalar)
2060 {
2061  int i;
2062 
2063  for (i = 0; i < a->length; i++)
2064  a->coeff[i] *= scalar;
2065 }
2066 
2068 {
2069  sws_scaleVec(a, height / sws_dcVec(a));
2070 }
2071 
2072 #if FF_API_SWS_VECTOR
2074 {
2075  int length = a->length + b->length - 1;
2076  int i, j;
2077  SwsVector *vec = sws_getConstVec(0.0, length);
2078 
2079  if (!vec)
2080  return NULL;
2081 
2082  for (i = 0; i < a->length; i++) {
2083  for (j = 0; j < b->length; j++) {
2084  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2085  }
2086  }
2087 
2088  return vec;
2089 }
2090 #endif
2091 
2093 {
2094  int length = FFMAX(a->length, b->length);
2095  int i;
2096  SwsVector *vec = sws_getConstVec(0.0, length);
2097 
2098  if (!vec)
2099  return NULL;
2100 
2101  for (i = 0; i < a->length; i++)
2102  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2103  for (i = 0; i < b->length; i++)
2104  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2105 
2106  return vec;
2107 }
2108 
2109 #if FF_API_SWS_VECTOR
2111 {
2112  int length = FFMAX(a->length, b->length);
2113  int i;
2114  SwsVector *vec = sws_getConstVec(0.0, length);
2115 
2116  if (!vec)
2117  return NULL;
2118 
2119  for (i = 0; i < a->length; i++)
2120  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2121  for (i = 0; i < b->length; i++)
2122  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2123 
2124  return vec;
2125 }
2126 #endif
2127 
2128 /* shift left / or right if "shift" is negative */
2130 {
2131  int length = a->length + FFABS(shift) * 2;
2132  int i;
2133  SwsVector *vec = sws_getConstVec(0.0, length);
2134 
2135  if (!vec)
2136  return NULL;
2137 
2138  for (i = 0; i < a->length; i++) {
2139  vec->coeff[i + (length - 1) / 2 -
2140  (a->length - 1) / 2 - shift] = a->coeff[i];
2141  }
2142 
2143  return vec;
2144 }
2145 
2146 #if !FF_API_SWS_VECTOR
2147 static
2148 #endif
2150 {
2151  SwsVector *shifted = sws_getShiftedVec(a, shift);
2152  if (!shifted) {
2153  makenan_vec(a);
2154  return;
2155  }
2156  av_free(a->coeff);
2157  a->coeff = shifted->coeff;
2158  a->length = shifted->length;
2159  av_free(shifted);
2160 }
2161 
2162 #if !FF_API_SWS_VECTOR
2163 static
2164 #endif
2166 {
2167  SwsVector *sum = sws_sumVec(a, b);
2168  if (!sum) {
2169  makenan_vec(a);
2170  return;
2171  }
2172  av_free(a->coeff);
2173  a->coeff = sum->coeff;
2174  a->length = sum->length;
2175  av_free(sum);
2176 }
2177 
2178 #if FF_API_SWS_VECTOR
2180 {
2181  SwsVector *diff = sws_diffVec(a, b);
2182  if (!diff) {
2183  makenan_vec(a);
2184  return;
2185  }
2186  av_free(a->coeff);
2187  a->coeff = diff->coeff;
2188  a->length = diff->length;
2189  av_free(diff);
2190 }
2191 
2193 {
2194  SwsVector *conv = sws_getConvVec(a, b);
2195  if (!conv) {
2196  makenan_vec(a);
2197  return;
2198  }
2199  av_free(a->coeff);
2200  a->coeff = conv->coeff;
2201  a->length = conv->length;
2202  av_free(conv);
2203 }
2204 
2206 {
2207  SwsVector *vec = sws_allocVec(a->length);
2208 
2209  if (!vec)
2210  return NULL;
2211 
2212  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2213 
2214  return vec;
2215 }
2216 #endif
2217 
2218 /**
2219  * Print with av_log() a textual representation of the vector a
2220  * if log_level <= av_log_level.
2221  */
2222 #if !FF_API_SWS_VECTOR
2223 static
2224 #endif
2225 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2226 {
2227  int i;
2228  double max = 0;
2229  double min = 0;
2230  double range;
2231 
2232  for (i = 0; i < a->length; i++)
2233  if (a->coeff[i] > max)
2234  max = a->coeff[i];
2235 
2236  for (i = 0; i < a->length; i++)
2237  if (a->coeff[i] < min)
2238  min = a->coeff[i];
2239 
2240  range = max - min;
2241 
2242  for (i = 0; i < a->length; i++) {
2243  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2244  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2245  for (; x > 0; x--)
2246  av_log(log_ctx, log_level, " ");
2247  av_log(log_ctx, log_level, "|\n");
2248  }
2249 }
2250 
2252 {
2253  if (!a)
2254  return;
2255  av_freep(&a->coeff);
2256  a->length = 0;
2257  av_free(a);
2258 }
2259 
2261 {
2262  if (!filter)
2263  return;
2264 
2265  sws_freeVec(filter->lumH);
2266  sws_freeVec(filter->lumV);
2267  sws_freeVec(filter->chrH);
2268  sws_freeVec(filter->chrV);
2269  av_free(filter);
2270 }
2271 
2273 {
2274  int i;
2275  if (!c)
2276  return;
2277 
2278  for (i = 0; i < 4; i++)
2279  av_freep(&c->dither_error[i]);
2280 
2281  av_freep(&c->vLumFilter);
2282  av_freep(&c->vChrFilter);
2283  av_freep(&c->hLumFilter);
2284  av_freep(&c->hChrFilter);
2285 #if HAVE_ALTIVEC
2286  av_freep(&c->vYCoeffsBank);
2287  av_freep(&c->vCCoeffsBank);
2288 #endif
2289 
2290  av_freep(&c->vLumFilterPos);
2291  av_freep(&c->vChrFilterPos);
2292  av_freep(&c->hLumFilterPos);
2293  av_freep(&c->hChrFilterPos);
2294 
2295 #if HAVE_MMX_INLINE
2296 #if USE_MMAP
2297  if (c->lumMmxextFilterCode)
2299  if (c->chrMmxextFilterCode)
2301 #elif HAVE_VIRTUALALLOC
2302  if (c->lumMmxextFilterCode)
2303  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2304  if (c->chrMmxextFilterCode)
2305  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2306 #else
2309 #endif
2312 #endif /* HAVE_MMX_INLINE */
2313 
2314  av_freep(&c->yuvTable);
2316 
2320  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2321  av_freep(&c->cascaded_tmp[0]);
2322  av_freep(&c->cascaded1_tmp[0]);
2323 
2324  av_freep(&c->gamma);
2325  av_freep(&c->inv_gamma);
2326 
2327  ff_free_filters(c);
2328 
2329  av_free(c);
2330 }
2331 
2332 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2333  int srcH, enum AVPixelFormat srcFormat,
2334  int dstW, int dstH,
2335  enum AVPixelFormat dstFormat, int flags,
2336  SwsFilter *srcFilter,
2337  SwsFilter *dstFilter,
2338  const double *param)
2339 {
2340  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2342  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2343  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2344 
2345  if (!param)
2346  param = default_param;
2347 
2348  if (context &&
2349  (context->srcW != srcW ||
2350  context->srcH != srcH ||
2351  context->srcFormat != srcFormat ||
2352  context->dstW != dstW ||
2353  context->dstH != dstH ||
2354  context->dstFormat != dstFormat ||
2355  context->flags != flags ||
2356  context->param[0] != param[0] ||
2357  context->param[1] != param[1])) {
2358 
2359  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2360  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2361  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2362  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2363  sws_freeContext(context);
2364  context = NULL;
2365  }
2366 
2367  if (!context) {
2368  if (!(context = sws_alloc_context()))
2369  return NULL;
2370  context->srcW = srcW;
2371  context->srcH = srcH;
2372  context->srcFormat = srcFormat;
2373  context->dstW = dstW;
2374  context->dstH = dstH;
2375  context->dstFormat = dstFormat;
2376  context->flags = flags;
2377  context->param[0] = param[0];
2378  context->param[1] = param[1];
2379 
2380  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2381  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2382  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2383  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2384 
2385  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2386  sws_freeContext(context);
2387  return NULL;
2388  }
2389  }
2390  return context;
2391 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:82
SwsVector * chrV
Definition: swscale.h:119
uint8_t is_supported_out
Definition: utils.c:94
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:305
#define NULL
Definition: coverity.c:32
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:265
static const FormatEntry format_entries[AV_PIX_FMT_NB]
Definition: utils.c:98
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:177
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:289
const char * s
Definition: avisynth_c.h:768
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:266
static enum AVPixelFormat pix_fmt
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2092
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
static int shift(int a, int b)
Definition: sonic.c:82
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1029
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:259
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:70
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2332
int chrSrcH
Height of source chroma planes.
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:161
#define SWS_X
Definition: swscale.h:61
int ff_free_filters(SwsContext *c)
Definition: slice.c:377
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
#define RV_IDX
#define SWS_BICUBIC
Definition: swscale.h:60
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:716
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:263
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:170
#define BV_IDX
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:120
#define C
8 bits gray, 8 bits alpha
Definition: pixfmt.h:154
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:220
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
const char * fmt
Definition: avisynth_c.h:769
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:67
misc image utilities
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
SwsVector * lumV
Definition: swscale.h:117
int16_t * rgbgamma
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:64
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:85
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:290
SwsAlphaBlend alphablend
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:981
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:192
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:173
int acc
Definition: yuv2rgb.c:546
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2284
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:1989
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:264
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples */
Definition: pixfmt.h:276
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1293
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples */
Definition: pixfmt.h:277
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:765
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:180
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:219
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:116
#define SWS_BICUBLIN
Definition: swscale.h:64
int16_t * rgbgammainv
const char * b
Definition: vf_curves.c:113
int flag
Definition: cpu.c:34
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:277
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:367
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:284
#define GV_IDX
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
int av_log2(unsigned v)
Definition: intmath.c:26
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:346
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:201
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
Convenience header that includes libavutil's core.
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:999
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:271
static int isnan_vec(SwsVector *a)
Definition: utils.c:1873
int16_t * xyzgammainv
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:119
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:71
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:269
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:167
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:151
static atomic_int cpu_flags
Definition: cpu.c:48
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:222
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:253
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples */
Definition: pixfmt.h:274
#define RGB_GAMMA
#define SWS_PRINT_INFO
Definition: swscale.h:75
Y , 12bpp, little-endian.
Definition: pixfmt.h:310
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2429
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:268
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:139
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:88
Macro definitions for various function/variable attributes.
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:114
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:86
#define SWS_BILINEAR
Definition: swscale.h:59
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:191
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2192
#define RU_IDX
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:230
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:202
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1073
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:102
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
ptrdiff_t uv_off
offset (in pixels) between u and v planes
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
int length
number of coefficients in the vector
Definition: swscale.h:111
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1145
#define SWS_LANCZOS
Definition: swscale.h:67
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:252
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:73
AVOptions.
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:111
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2205
int vChrFilterSize
Vertical filter size for chroma pixels.
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:282
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:283
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:217
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:150
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:265
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:79
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, uint8_t clip)
Definition: cfhd.c:80
int cascaded_tmpStride[4]
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:113
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:95
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:203
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:2022
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:290
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:186
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
Definition: pixfmt.h:101
static int flags
Definition: log.c:57
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1852
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:75
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:206
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:342
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int16_t rgb2xyz_matrix[3][4]
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:364
Y , 10bpp, little-endian.
Definition: pixfmt.h:312
external API header
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale.c:51
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:292
uint16_t * inv_gamma
#define A(x)
Definition: vp56_arith.h:28
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:278
#define FFALIGN(x, a)
Definition: macros.h:48
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
#define av_log(a,...)
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2129
uint64_t vRounder
#define ROUNDED_DIV(a, b)
Definition: common.h:56
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
int * dither_error[4]
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:168
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1889
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:182
#define INLINE_MMX(flags)
Definition: cpu.h:85
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:176
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:188
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
16 bits gray, 16 bits alpha (big-endian)
Definition: pixfmt.h:226
like NV12, with 16bpp per component, big-endian
Definition: pixfmt.h:315
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:144
#define AVERROR(e)
Definition: error.h:43
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:592
const char * description
human-readable description
Definition: utils.c:301
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2360
static const struct endianess table[]
#define PPC_ALTIVEC(flags)
Definition: cpu.h:26
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:87
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:96
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2179
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2225
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:194
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:172
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:560
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:90
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:337
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:262
GLsizei GLsizei * length
Definition: opengl_enc.c:115
like NV12, with 16bpp per component, little-endian
Definition: pixfmt.h:314
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:142
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:354
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
Definition: pixfmt.h:299
#define SWS_CS_DEFAULT
Definition: swscale.h:95
#define X86_MMX(flags)
Definition: cpu.h:31
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:195
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:93
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2059
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:116
#define fail()
Definition: checkasm.h:88
int8_t exp
Definition: eval.c:65
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:160
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:94
uint8_t * cascaded1_tmp[4]
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2067
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:196
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2332
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:66
#define RETCODE_USE_CASCADE
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1087
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2260
int hChrFilterSize
Horizontal filter size for chroma pixels.
int16_t * xyzgamma
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:1972
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:349
as above, but U and V bytes are swapped
Definition: pixfmt.h:91
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:301
#define RGB2YUV_SHIFT
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:304
#define APCK_SIZE
#define have_neon(flags)
Definition: cpu.h:27
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:370
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:335
#define FFMIN(a, b)
Definition: common.h:96
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:89
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:74
#define SWS_GAUSS
Definition: swscale.h:65
SwsVector * chrH
Definition: swscale.h:118
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:83
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
Definition: vf_geq.c:46
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:133
int32_t
#define RY_IDX
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2149
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2272
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:200
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:222
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:192
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:65
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:257
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:212
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:169
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:534
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1827
unsigned swscale_version(void)
Definition: utils.c:75
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
Definition: pixfmt.h:298
double gamma_value
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:846
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:350
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:178
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:159
#define DITHER1XBPP
static void error(const char *err)
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:118
uint8_t * cascaded_tmp[4]
#define FF_ARRAY_ELEMS(a)
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:305
int cascaded1_tmpStride[4]
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:302
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:362
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define isGray(x)
Definition: swscale.c:40
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:344
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:877
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:84
double * coeff
pointer to the list of coefficients
Definition: swscale.h:110
int flag
flag associated to the algorithm
Definition: utils.c:300
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:140
int dstColorspaceTable[4]
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:319
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
const AVClass * av_class
info on struct for av_log
int16_t xyz2rgb_matrix[3][4]
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:189
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
#define DITHER32_INT
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:281
void sws_freeVec(SwsVector *a)
Definition: utils.c:2251
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:184
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:29
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:285
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:204
int chrDstH
Height of destination chroma planes.
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:63
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:291
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:271
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:85
Replacements for frequently missing libm functions.
#define SWS_AREA
Definition: swscale.h:63
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:351
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:68
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:205
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2110
static const char * format
Definition: movenc.c:47
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:67
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:207
#define W(a, i, v)
Definition: jpegls.h:122
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
Y , 16bpp, big-endian.
Definition: pixfmt.h:98
#define isnan(x)
Definition: libm.h:340
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:83
byte swapping routines
static void handle_formats(SwsContext *c)
Definition: utils.c:1049
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:258
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:254
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:270
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:190
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:348
const VDPAUPixFmtMap * map
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:121
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:89
#define SWS_POINT
Definition: swscale.h:62
int ff_init_filters(SwsContext *c)
Definition: slice.c:249
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:279
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1059
#define GY_IDX
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:343
#define SWS_SPLINE
Definition: swscale.h:68
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:368
#define SWS_SINC
Definition: swscale.h:66
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:199
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:352
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:115
#define SWS_BITEXACT
Definition: swscale.h:84
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:280
Y , 10bpp, big-endian.
Definition: pixfmt.h:311
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:153
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:174
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:143
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1040
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:152
Definition: vc1_parser.c:48
SwsDither dither
uint8_t is_supported_in
Definition: utils.c:93
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:72
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2165
#define INLINE_MMXEXT(flags)
Definition: cpu.h:86
int
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2048
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:62
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:261
Y , 8bpp.
Definition: pixfmt.h:70
double param[2]
Input parameters for scaling algorithms that need them.
#define exp2(x)
Definition: libm.h:288
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:71
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:229
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:134
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:183
static double c[64]
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:110
#define AV_WL16(p, v)
Definition: intreadwrite.h:417
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:141
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:76
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples */
Definition: pixfmt.h:275
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:87
static const uint64_t c2
Definition: murmur3.c:50
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:69
#define XYZ_GAMMA
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:197
struct SwsContext * cascaded_context[3]
#define SWS_PARAM_DEFAULT
Definition: swscale.h:73
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:81
uint16_t * gamma
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
#define MAX_FILTER_SIZE
static av_always_inline int diff(const uint32_t a, const uint32_t b)
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:211
#define av_free(p)
int size_factor
size factor used when initing the filters
Definition: utils.c:302
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:267
#define NAN
Definition: math.h:28
int srcFormatBpp
Number of bits per pixel of the source pixel format.
const AVClass ff_sws_context_class
Definition: options.c:87
Y , 16bpp, little-endian.
Definition: pixfmt.h:99
uint8_t is_supported_endianness
Definition: utils.c:95
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:272
#define lrint
Definition: tablegen.h:53
16 bits gray, 16 bits alpha (little-endian)
Definition: pixfmt.h:227
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:259
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2043
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:198
Y , 12bpp, big-endian.
Definition: pixfmt.h:309
static int height
Definition: utils.c:158
int32_t input_rgb2yuv_table[16+40 *4]
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:120
number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of...
Definition: pixfmt.h:317
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
#define av_freep(p)
#define GU_IDX
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:100
#define M_PI
Definition: mathematics.h:52
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:187
static void makenan_vec(SwsVector *a)
Definition: utils.c:1882
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define av_malloc_array(a, b)
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:152
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2248
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:193
#define BY_IDX
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
int depth
Number of bits in the component.
Definition: pixdesc.h:58
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:231
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:251
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:83
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:810
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:256
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:363
#define BU_IDX
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:175
for(j=16;j >0;--j)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:260
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:143
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:185
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2073
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:218
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:293
#define V
Definition: avdct.c:30
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:171
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86