FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_SYS_MMAN_H
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
136  [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
137  [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
138  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
139  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
140  [AV_PIX_FMT_YUV440P] = { 1, 1 },
141  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
142  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
143  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
144  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
145  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
146  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
147  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
148  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
149  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
151  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
152  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
153  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
154  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
155  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
156  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
157  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
158  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
159  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
163  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
164  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
165  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
166  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
167  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
168  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
169  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
170  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
171  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
172  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
173  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
174  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
175  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
176  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
177  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
178  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
179  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
180  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
181  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
182  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
183  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
185  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
186  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
187  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
188  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
189  [AV_PIX_FMT_YA8] = { 1, 1 },
190  [AV_PIX_FMT_YA16BE] = { 1, 0 },
191  [AV_PIX_FMT_YA16LE] = { 1, 0 },
192  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
193  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
194  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
195  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
196  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
197  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
198  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
199  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
200  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
216  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
217  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
218  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
219  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
220  [AV_PIX_FMT_GBRP] = { 1, 1 },
221  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
222  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
223  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
224  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
225  [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
228  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
229  [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
231  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
232  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
233  [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
234  [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
235  [AV_PIX_FMT_GBRAP] = { 1, 1 },
236  [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
237  [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
238  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
239  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
240  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
241  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
242  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
243  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
244  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
245  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
246  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
247  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
248  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
249  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
250  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
251  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
252  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
253  [AV_PIX_FMT_P010LE] = { 1, 1 },
254  [AV_PIX_FMT_P010BE] = { 1, 1 },
255  [AV_PIX_FMT_P016LE] = { 1, 0 },
256  [AV_PIX_FMT_P016BE] = { 1, 0 },
257 };
258 
260 {
261  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
262  format_entries[pix_fmt].is_supported_in : 0;
263 }
264 
266 {
267  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
268  format_entries[pix_fmt].is_supported_out : 0;
269 }
270 
272 {
273  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
274  format_entries[pix_fmt].is_supported_endianness : 0;
275 }
276 
277 static double getSplineCoeff(double a, double b, double c, double d,
278  double dist)
279 {
280  if (dist <= 1.0)
281  return ((d * dist + c) * dist + b) * dist + a;
282  else
283  return getSplineCoeff(0.0,
284  b + 2.0 * c + 3.0 * d,
285  c + 3.0 * d,
286  -b - 3.0 * c - 6.0 * d,
287  dist - 1.0);
288 }
289 
290 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
291 {
292  if (pos == -1 || pos <= -513) {
293  pos = (128 << chr_subsample) - 128;
294  }
295  pos += 128; // relative to ideal left edge
296  return pos >> chr_subsample;
297 }
298 
299 typedef struct {
300  int flag; ///< flag associated to the algorithm
301  const char *description; ///< human-readable description
302  int size_factor; ///< size factor used when initing the filters
304 
306  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
307  { SWS_BICUBIC, "bicubic", 4 },
308  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
309  { SWS_BILINEAR, "bilinear", 2 },
310  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
311  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
312  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
313  { SWS_POINT, "nearest neighbor / point", -1 },
314  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
315  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
316  { SWS_X, "experimental", 8 },
317 };
318 
319 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
320  int *outFilterSize, int xInc, int srcW,
321  int dstW, int filterAlign, int one,
322  int flags, int cpu_flags,
323  SwsVector *srcFilter, SwsVector *dstFilter,
324  double param[2], int srcPos, int dstPos)
325 {
326  int i;
327  int filterSize;
328  int filter2Size;
329  int minFilterSize;
330  int64_t *filter = NULL;
331  int64_t *filter2 = NULL;
332  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
333  int ret = -1;
334 
335  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
336 
337  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
338  FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
339 
340  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
341  int i;
342  filterSize = 1;
344  dstW, sizeof(*filter) * filterSize, fail);
345 
346  for (i = 0; i < dstW; i++) {
347  filter[i * filterSize] = fone;
348  (*filterPos)[i] = i;
349  }
350  } else if (flags & SWS_POINT) { // lame looking point sampling mode
351  int i;
352  int64_t xDstInSrc;
353  filterSize = 1;
355  dstW, sizeof(*filter) * filterSize, fail);
356 
357  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
358  for (i = 0; i < dstW; i++) {
359  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
360 
361  (*filterPos)[i] = xx;
362  filter[i] = fone;
363  xDstInSrc += xInc;
364  }
365  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
366  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
367  int i;
368  int64_t xDstInSrc;
369  filterSize = 2;
371  dstW, sizeof(*filter) * filterSize, fail);
372 
373  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
374  for (i = 0; i < dstW; i++) {
375  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
376  int j;
377 
378  (*filterPos)[i] = xx;
379  // bilinear upscale / linear interpolate / area averaging
380  for (j = 0; j < filterSize; j++) {
381  int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
382  if (coeff < 0)
383  coeff = 0;
384  filter[i * filterSize + j] = coeff;
385  xx++;
386  }
387  xDstInSrc += xInc;
388  }
389  } else {
390  int64_t xDstInSrc;
391  int sizeFactor = -1;
392 
393  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
394  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
395  sizeFactor = scale_algorithms[i].size_factor;
396  break;
397  }
398  }
399  if (flags & SWS_LANCZOS)
400  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
401  av_assert0(sizeFactor > 0);
402 
403  if (xInc <= 1 << 16)
404  filterSize = 1 + sizeFactor; // upscale
405  else
406  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
407 
408  filterSize = FFMIN(filterSize, srcW - 2);
409  filterSize = FFMAX(filterSize, 1);
410 
412  dstW, sizeof(*filter) * filterSize, fail);
413 
414  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
415  for (i = 0; i < dstW; i++) {
416  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
417  int j;
418  (*filterPos)[i] = xx;
419  for (j = 0; j < filterSize; j++) {
420  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
421  double floatd;
422  int64_t coeff;
423 
424  if (xInc > 1 << 16)
425  d = d * dstW / srcW;
426  floatd = d * (1.0 / (1 << 30));
427 
428  if (flags & SWS_BICUBIC) {
429  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
430  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
431 
432  if (d >= 1LL << 31) {
433  coeff = 0.0;
434  } else {
435  int64_t dd = (d * d) >> 30;
436  int64_t ddd = (dd * d) >> 30;
437 
438  if (d < 1LL << 30)
439  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
440  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
441  (6 * (1 << 24) - 2 * B) * (1 << 30);
442  else
443  coeff = (-B - 6 * C) * ddd +
444  (6 * B + 30 * C) * dd +
445  (-12 * B - 48 * C) * d +
446  (8 * B + 24 * C) * (1 << 30);
447  }
448  coeff /= (1LL<<54)/fone;
449  } else if (flags & SWS_X) {
450  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
451  double c;
452 
453  if (floatd < 1.0)
454  c = cos(floatd * M_PI);
455  else
456  c = -1.0;
457  if (c < 0.0)
458  c = -pow(-c, A);
459  else
460  c = pow(c, A);
461  coeff = (c * 0.5 + 0.5) * fone;
462  } else if (flags & SWS_AREA) {
463  int64_t d2 = d - (1 << 29);
464  if (d2 * xInc < -(1LL << (29 + 16)))
465  coeff = 1.0 * (1LL << (30 + 16));
466  else if (d2 * xInc < (1LL << (29 + 16)))
467  coeff = -d2 * xInc + (1LL << (29 + 16));
468  else
469  coeff = 0.0;
470  coeff *= fone >> (30 + 16);
471  } else if (flags & SWS_GAUSS) {
472  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
473  coeff = exp2(-p * floatd * floatd) * fone;
474  } else if (flags & SWS_SINC) {
475  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
476  } else if (flags & SWS_LANCZOS) {
477  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
478  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
479  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
480  if (floatd > p)
481  coeff = 0;
482  } else if (flags & SWS_BILINEAR) {
483  coeff = (1 << 30) - d;
484  if (coeff < 0)
485  coeff = 0;
486  coeff *= fone >> 30;
487  } else if (flags & SWS_SPLINE) {
488  double p = -2.196152422706632;
489  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
490  } else {
491  av_assert0(0);
492  }
493 
494  filter[i * filterSize + j] = coeff;
495  xx++;
496  }
497  xDstInSrc += 2 * xInc;
498  }
499  }
500 
501  /* apply src & dst Filter to filter -> filter2
502  * av_free(filter);
503  */
504  av_assert0(filterSize > 0);
505  filter2Size = filterSize;
506  if (srcFilter)
507  filter2Size += srcFilter->length - 1;
508  if (dstFilter)
509  filter2Size += dstFilter->length - 1;
510  av_assert0(filter2Size > 0);
511  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
512 
513  for (i = 0; i < dstW; i++) {
514  int j, k;
515 
516  if (srcFilter) {
517  for (k = 0; k < srcFilter->length; k++) {
518  for (j = 0; j < filterSize; j++)
519  filter2[i * filter2Size + k + j] +=
520  srcFilter->coeff[k] * filter[i * filterSize + j];
521  }
522  } else {
523  for (j = 0; j < filterSize; j++)
524  filter2[i * filter2Size + j] = filter[i * filterSize + j];
525  }
526  // FIXME dstFilter
527 
528  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
529  }
530  av_freep(&filter);
531 
532  /* try to reduce the filter-size (step1 find size and shift left) */
533  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
534  minFilterSize = 0;
535  for (i = dstW - 1; i >= 0; i--) {
536  int min = filter2Size;
537  int j;
538  int64_t cutOff = 0.0;
539 
540  /* get rid of near zero elements on the left by shifting left */
541  for (j = 0; j < filter2Size; j++) {
542  int k;
543  cutOff += FFABS(filter2[i * filter2Size]);
544 
545  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
546  break;
547 
548  /* preserve monotonicity because the core can't handle the
549  * filter otherwise */
550  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
551  break;
552 
553  // move filter coefficients left
554  for (k = 1; k < filter2Size; k++)
555  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
556  filter2[i * filter2Size + k - 1] = 0;
557  (*filterPos)[i]++;
558  }
559 
560  cutOff = 0;
561  /* count near zeros on the right */
562  for (j = filter2Size - 1; j > 0; j--) {
563  cutOff += FFABS(filter2[i * filter2Size + j]);
564 
565  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
566  break;
567  min--;
568  }
569 
570  if (min > minFilterSize)
571  minFilterSize = min;
572  }
573 
574  if (PPC_ALTIVEC(cpu_flags)) {
575  // we can handle the special case 4, so we don't want to go the full 8
576  if (minFilterSize < 5)
577  filterAlign = 4;
578 
579  /* We really don't want to waste our time doing useless computation, so
580  * fall back on the scalar C code for very small filters.
581  * Vectorizing is worth it only if you have a decent-sized vector. */
582  if (minFilterSize < 3)
583  filterAlign = 1;
584  }
585 
586  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
587  // special case for unscaled vertical filtering
588  if (minFilterSize == 1 && filterAlign == 2)
589  filterAlign = 1;
590  }
591 
592  av_assert0(minFilterSize > 0);
593  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
594  av_assert0(filterSize > 0);
595  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
596  if (!filter)
597  goto fail;
598  if (filterSize >= MAX_FILTER_SIZE * 16 /
599  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
600  ret = RETCODE_USE_CASCADE;
601  goto fail;
602  }
603  *outFilterSize = filterSize;
604 
605  if (flags & SWS_PRINT_INFO)
607  "SwScaler: reducing / aligning filtersize %d -> %d\n",
608  filter2Size, filterSize);
609  /* try to reduce the filter-size (step2 reduce it) */
610  for (i = 0; i < dstW; i++) {
611  int j;
612 
613  for (j = 0; j < filterSize; j++) {
614  if (j >= filter2Size)
615  filter[i * filterSize + j] = 0;
616  else
617  filter[i * filterSize + j] = filter2[i * filter2Size + j];
618  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
619  filter[i * filterSize + j] = 0;
620  }
621  }
622 
623  // FIXME try to align filterPos if possible
624 
625  // fix borders
626  for (i = 0; i < dstW; i++) {
627  int j;
628  if ((*filterPos)[i] < 0) {
629  // move filter coefficients left to compensate for filterPos
630  for (j = 1; j < filterSize; j++) {
631  int left = FFMAX(j + (*filterPos)[i], 0);
632  filter[i * filterSize + left] += filter[i * filterSize + j];
633  filter[i * filterSize + j] = 0;
634  }
635  (*filterPos)[i]= 0;
636  }
637 
638  if ((*filterPos)[i] + filterSize > srcW) {
639  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
640  int64_t acc = 0;
641 
642  for (j = filterSize - 1; j >= 0; j--) {
643  if ((*filterPos)[i] + j >= srcW) {
644  acc += filter[i * filterSize + j];
645  filter[i * filterSize + j] = 0;
646  }
647  }
648  for (j = filterSize - 1; j >= 0; j--) {
649  if (j < shift) {
650  filter[i * filterSize + j] = 0;
651  } else {
652  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
653  }
654  }
655 
656  (*filterPos)[i]-= shift;
657  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
658  }
659  av_assert0((*filterPos)[i] >= 0);
660  av_assert0((*filterPos)[i] < srcW);
661  if ((*filterPos)[i] + filterSize > srcW) {
662  for (j = 0; j < filterSize; j++) {
663  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
664  }
665  }
666  }
667 
668  // Note the +1 is for the MMX scaler which reads over the end
669  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
670  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
671  (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
672 
673  /* normalize & store in outFilter */
674  for (i = 0; i < dstW; i++) {
675  int j;
676  int64_t error = 0;
677  int64_t sum = 0;
678 
679  for (j = 0; j < filterSize; j++) {
680  sum += filter[i * filterSize + j];
681  }
682  sum = (sum + one / 2) / one;
683  if (!sum) {
684  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
685  sum = 1;
686  }
687  for (j = 0; j < *outFilterSize; j++) {
688  int64_t v = filter[i * filterSize + j] + error;
689  int intV = ROUNDED_DIV(v, sum);
690  (*outFilter)[i * (*outFilterSize) + j] = intV;
691  error = v - intV * sum;
692  }
693  }
694 
695  (*filterPos)[dstW + 0] =
696  (*filterPos)[dstW + 1] =
697  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
698  * read over the end */
699  for (i = 0; i < *outFilterSize; i++) {
700  int k = (dstW - 1) * (*outFilterSize) + i;
701  (*outFilter)[k + 1 * (*outFilterSize)] =
702  (*outFilter)[k + 2 * (*outFilterSize)] =
703  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
704  }
705 
706  ret = 0;
707 
708 fail:
709  if(ret < 0)
710  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
711  av_free(filter);
712  av_free(filter2);
713  return ret;
714 }
715 
716 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
717 {
718  int64_t W, V, Z, Cy, Cu, Cv;
719  int64_t vr = table[0];
720  int64_t ub = table[1];
721  int64_t ug = -table[2];
722  int64_t vg = -table[3];
723  int64_t ONE = 65536;
724  int64_t cy = ONE;
726  int i;
727  static const int8_t map[] = {
728  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
729  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
730  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
731  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
732  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
733  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
734  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
735  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
736  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
737  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
738  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
739  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
742  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
743  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
746  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
747  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
750  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
751  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
752  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
753  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
754  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
755  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
756  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
757  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
758  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
759  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
760  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
761  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
762  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
763  };
764 
765  dstRange = 0; //FIXME range = 1 is handled elsewhere
766 
767  if (!dstRange) {
768  cy = cy * 255 / 219;
769  } else {
770  vr = vr * 224 / 255;
771  ub = ub * 224 / 255;
772  ug = ug * 224 / 255;
773  vg = vg * 224 / 255;
774  }
775  W = ROUNDED_DIV(ONE*ONE*ug, ub);
776  V = ROUNDED_DIV(ONE*ONE*vg, vr);
777  Z = ONE*ONE-W-V;
778 
779  Cy = ROUNDED_DIV(cy*Z, ONE);
780  Cu = ROUNDED_DIV(ub*Z, ONE);
781  Cv = ROUNDED_DIV(vr*Z, ONE);
782 
783  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
784  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
785  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
786 
787  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
788  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
789  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
790 
791  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
792  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
793  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
794 
795  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
796  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
797  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
798  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
799  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
800  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
801  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
802  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
803  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
804  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
805  }
806  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
807  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
808 }
809 
810 static void fill_xyztables(struct SwsContext *c)
811 {
812  int i;
813  double xyzgamma = XYZ_GAMMA;
814  double rgbgamma = 1.0 / RGB_GAMMA;
815  double xyzgammainv = 1.0 / XYZ_GAMMA;
816  double rgbgammainv = RGB_GAMMA;
817  static const int16_t xyz2rgb_matrix[3][4] = {
818  {13270, -6295, -2041},
819  {-3969, 7682, 170},
820  { 228, -835, 4329} };
821  static const int16_t rgb2xyz_matrix[3][4] = {
822  {1689, 1464, 739},
823  { 871, 2929, 296},
824  { 79, 488, 3891} };
825  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
826 
827  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
828  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
829  c->xyzgamma = xyzgamma_tab;
830  c->rgbgamma = rgbgamma_tab;
831  c->xyzgammainv = xyzgammainv_tab;
832  c->rgbgammainv = rgbgammainv_tab;
833 
834  if (rgbgamma_tab[4095])
835  return;
836 
837  /* set gamma vectors */
838  for (i = 0; i < 4096; i++) {
839  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
840  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
841  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
842  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
843  }
844 }
845 
846 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
847  int srcRange, const int table[4], int dstRange,
848  int brightness, int contrast, int saturation)
849 {
850  const AVPixFmtDescriptor *desc_dst;
851  const AVPixFmtDescriptor *desc_src;
852  int need_reinit = 0;
853 
854  handle_formats(c);
855  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
856  desc_src = av_pix_fmt_desc_get(c->srcFormat);
857 
858  if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
859  dstRange = 0;
860  if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
861  srcRange = 0;
862 
863  if (c->srcRange != srcRange ||
864  c->dstRange != dstRange ||
865  c->brightness != brightness ||
866  c->contrast != contrast ||
867  c->saturation != saturation ||
868  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
869  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
870  )
871  need_reinit = 1;
872 
873  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
874  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
875 
876 
877 
878  c->brightness = brightness;
879  c->contrast = contrast;
880  c->saturation = saturation;
881  c->srcRange = srcRange;
882  c->dstRange = dstRange;
883 
884  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
885  //and what we have in ticket 2939 looks better with this check
886  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
888 
889  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
890  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
891 
893  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
894 
895  if (!need_reinit)
896  return 0;
897 
898  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
899  if (!c->cascaded_context[0] &&
900  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
901  c->srcW && c->srcH && c->dstW && c->dstH) {
902  enum AVPixelFormat tmp_format;
903  int tmp_width, tmp_height;
904  int srcW = c->srcW;
905  int srcH = c->srcH;
906  int dstW = c->dstW;
907  int dstH = c->dstH;
908  int ret;
909  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
910 
911  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
912  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
913  tmp_format = AV_PIX_FMT_BGRA64;
914  } else {
915  tmp_format = AV_PIX_FMT_BGR48;
916  }
917  } else {
918  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
919  tmp_format = AV_PIX_FMT_BGRA;
920  } else {
921  tmp_format = AV_PIX_FMT_BGR24;
922  }
923  }
924 
925  if (srcW*srcH > dstW*dstH) {
926  tmp_width = dstW;
927  tmp_height = dstH;
928  } else {
929  tmp_width = srcW;
930  tmp_height = srcH;
931  }
932 
934  tmp_width, tmp_height, tmp_format, 64);
935  if (ret < 0)
936  return ret;
937 
938  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
939  tmp_width, tmp_height, tmp_format,
940  c->flags, c->param);
941  if (!c->cascaded_context[0])
942  return -1;
943 
945  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
946  if (ret < 0)
947  return ret;
948  //we set both src and dst depending on that the RGB side will be ignored
950  srcRange, table, dstRange,
951  brightness, contrast, saturation);
952 
953  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
954  dstW, dstH, c->dstFormat,
955  c->flags, NULL, NULL, c->param);
956  if (!c->cascaded_context[1])
957  return -1;
959  srcRange, table, dstRange,
960  0, 1 << 16, 1 << 16);
961  return 0;
962  }
963  return -1;
964  }
965 
966  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
967  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
968  contrast, saturation);
969  // FIXME factorize
970 
971  if (ARCH_PPC)
972  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
973  contrast, saturation);
974  }
975 
976  fill_rgb2yuv_table(c, table, dstRange);
977 
978  return 0;
979 }
980 
981 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
982  int *srcRange, int **table, int *dstRange,
983  int *brightness, int *contrast, int *saturation)
984 {
985  if (!c )
986  return -1;
987 
988  *inv_table = c->srcColorspaceTable;
989  *table = c->dstColorspaceTable;
990  *srcRange = c->srcRange;
991  *dstRange = c->dstRange;
992  *brightness = c->brightness;
993  *contrast = c->contrast;
994  *saturation = c->saturation;
995 
996  return 0;
997 }
998 
1000 {
1001  switch (*format) {
1002  case AV_PIX_FMT_YUVJ420P:
1003  *format = AV_PIX_FMT_YUV420P;
1004  return 1;
1005  case AV_PIX_FMT_YUVJ411P:
1006  *format = AV_PIX_FMT_YUV411P;
1007  return 1;
1008  case AV_PIX_FMT_YUVJ422P:
1009  *format = AV_PIX_FMT_YUV422P;
1010  return 1;
1011  case AV_PIX_FMT_YUVJ444P:
1012  *format = AV_PIX_FMT_YUV444P;
1013  return 1;
1014  case AV_PIX_FMT_YUVJ440P:
1015  *format = AV_PIX_FMT_YUV440P;
1016  return 1;
1017  case AV_PIX_FMT_GRAY8:
1018  case AV_PIX_FMT_YA8:
1019  case AV_PIX_FMT_GRAY10LE:
1020  case AV_PIX_FMT_GRAY10BE:
1021  case AV_PIX_FMT_GRAY12LE:
1022  case AV_PIX_FMT_GRAY12BE:
1023  case AV_PIX_FMT_GRAY16LE:
1024  case AV_PIX_FMT_GRAY16BE:
1025  case AV_PIX_FMT_YA16BE:
1026  case AV_PIX_FMT_YA16LE:
1027  return 1;
1028  default:
1029  return 0;
1030  }
1031 }
1032 
1034 {
1035  switch (*format) {
1036  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1037  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1038  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1039  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1040  default: return 0;
1041  }
1042 }
1043 
1045 {
1046  switch (*format) {
1047  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1048  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1049  default: return 0;
1050  }
1051 }
1052 
1054 {
1055  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1056  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1057  c->srcXYZ |= handle_xyz(&c->srcFormat);
1058  c->dstXYZ |= handle_xyz(&c->dstFormat);
1059  if (c->srcXYZ || c->dstXYZ)
1060  fill_xyztables(c);
1061 }
1062 
1064 {
1065  SwsContext *c = av_mallocz(sizeof(SwsContext));
1066 
1067  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1068 
1069  if (c) {
1072  }
1073 
1074  return c;
1075 }
1076 
1077 static uint16_t * alloc_gamma_tbl(double e)
1078 {
1079  int i = 0;
1080  uint16_t * tbl;
1081  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1082  if (!tbl)
1083  return NULL;
1084 
1085  for (i = 0; i < 65536; ++i) {
1086  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1087  }
1088  return tbl;
1089 }
1090 
1092 {
1093  switch(fmt) {
1094  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1095  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1096  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1097  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1098  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1099 
1103 
1104  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1105 
1108 
1111 
1114 
1119 
1120  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1121  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1122 
1141 
1142 // case AV_PIX_FMT_AYUV64LE:
1143 // case AV_PIX_FMT_AYUV64BE:
1144 // case AV_PIX_FMT_PAL8:
1145  default: return AV_PIX_FMT_NONE;
1146  }
1147 }
1148 
1150  SwsFilter *dstFilter)
1151 {
1152  int i;
1153  int usesVFilter, usesHFilter;
1154  int unscaled;
1155  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1156  int srcW = c->srcW;
1157  int srcH = c->srcH;
1158  int dstW = c->dstW;
1159  int dstH = c->dstH;
1160  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1161  int flags, cpu_flags;
1162  enum AVPixelFormat srcFormat = c->srcFormat;
1163  enum AVPixelFormat dstFormat = c->dstFormat;
1164  const AVPixFmtDescriptor *desc_src;
1165  const AVPixFmtDescriptor *desc_dst;
1166  int ret = 0;
1167  enum AVPixelFormat tmpFmt;
1168 
1169  cpu_flags = av_get_cpu_flags();
1170  flags = c->flags;
1171  emms_c();
1172  if (!rgb15to16)
1174 
1175  unscaled = (srcW == dstW && srcH == dstH);
1176 
1177  c->srcRange |= handle_jpeg(&c->srcFormat);
1178  c->dstRange |= handle_jpeg(&c->dstFormat);
1179 
1180  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1181  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1182 
1183  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1184  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1185  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1186  c->dstRange, 0, 1 << 16, 1 << 16);
1187 
1188  handle_formats(c);
1189  srcFormat = c->srcFormat;
1190  dstFormat = c->dstFormat;
1191  desc_src = av_pix_fmt_desc_get(srcFormat);
1192  desc_dst = av_pix_fmt_desc_get(dstFormat);
1193 
1194  // If the source has no alpha then disable alpha blendaway
1195  if (c->src0Alpha)
1197 
1198  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1199  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1200  if (!sws_isSupportedInput(srcFormat)) {
1201  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1202  av_get_pix_fmt_name(srcFormat));
1203  return AVERROR(EINVAL);
1204  }
1205  if (!sws_isSupportedOutput(dstFormat)) {
1206  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1207  av_get_pix_fmt_name(dstFormat));
1208  return AVERROR(EINVAL);
1209  }
1210  }
1211  av_assert2(desc_src && desc_dst);
1212 
1213  i = flags & (SWS_POINT |
1214  SWS_AREA |
1215  SWS_BILINEAR |
1217  SWS_BICUBIC |
1218  SWS_X |
1219  SWS_GAUSS |
1220  SWS_LANCZOS |
1221  SWS_SINC |
1222  SWS_SPLINE |
1223  SWS_BICUBLIN);
1224 
1225  /* provide a default scaler if not set by caller */
1226  if (!i) {
1227  if (dstW < srcW && dstH < srcH)
1228  flags |= SWS_BICUBIC;
1229  else if (dstW > srcW && dstH > srcH)
1230  flags |= SWS_BICUBIC;
1231  else
1232  flags |= SWS_BICUBIC;
1233  c->flags = flags;
1234  } else if (i & (i - 1)) {
1235  av_log(c, AV_LOG_ERROR,
1236  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1237  return AVERROR(EINVAL);
1238  }
1239  /* sanity check */
1240  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1241  /* FIXME check if these are enough and try to lower them after
1242  * fixing the relevant parts of the code */
1243  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1244  srcW, srcH, dstW, dstH);
1245  return AVERROR(EINVAL);
1246  }
1247  if (flags & SWS_FAST_BILINEAR) {
1248  if (srcW < 8 || dstW < 8) {
1249  flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1250  c->flags = flags;
1251  }
1252  }
1253 
1254  if (!dstFilter)
1255  dstFilter = &dummyFilter;
1256  if (!srcFilter)
1257  srcFilter = &dummyFilter;
1258 
1259  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1260  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1261  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1262  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1263  c->vRounder = 4 * 0x0001000100010001ULL;
1264 
1265  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1266  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1267  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1268  (dstFilter->chrV && dstFilter->chrV->length > 1);
1269  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1270  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1271  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1272  (dstFilter->chrH && dstFilter->chrH->length > 1);
1273 
1276 
1277  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1278  if (dstW&1) {
1279  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1280  flags |= SWS_FULL_CHR_H_INT;
1281  c->flags = flags;
1282  }
1283 
1284  if ( c->chrSrcHSubSample == 0
1285  && c->chrSrcVSubSample == 0
1286  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1287  && !(c->flags & SWS_FAST_BILINEAR)
1288  ) {
1289  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1290  flags |= SWS_FULL_CHR_H_INT;
1291  c->flags = flags;
1292  }
1293  }
1294 
1295  if (c->dither == SWS_DITHER_AUTO) {
1296  if (flags & SWS_ERROR_DIFFUSION)
1297  c->dither = SWS_DITHER_ED;
1298  }
1299 
1300  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1301  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1302  dstFormat == AV_PIX_FMT_BGR8 ||
1303  dstFormat == AV_PIX_FMT_RGB8) {
1304  if (c->dither == SWS_DITHER_AUTO)
1306  if (!(flags & SWS_FULL_CHR_H_INT)) {
1308  av_log(c, AV_LOG_DEBUG,
1309  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1310  av_get_pix_fmt_name(dstFormat));
1311  flags |= SWS_FULL_CHR_H_INT;
1312  c->flags = flags;
1313  }
1314  }
1315  if (flags & SWS_FULL_CHR_H_INT) {
1316  if (c->dither == SWS_DITHER_BAYER) {
1317  av_log(c, AV_LOG_DEBUG,
1318  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1319  av_get_pix_fmt_name(dstFormat));
1320  c->dither = SWS_DITHER_ED;
1321  }
1322  }
1323  }
1324  if (isPlanarRGB(dstFormat)) {
1325  if (!(flags & SWS_FULL_CHR_H_INT)) {
1326  av_log(c, AV_LOG_DEBUG,
1327  "%s output is not supported with half chroma resolution, switching to full\n",
1328  av_get_pix_fmt_name(dstFormat));
1329  flags |= SWS_FULL_CHR_H_INT;
1330  c->flags = flags;
1331  }
1332  }
1333 
1334  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1335  * chroma interpolation */
1336  if (flags & SWS_FULL_CHR_H_INT &&
1337  isAnyRGB(dstFormat) &&
1338  !isPlanarRGB(dstFormat) &&
1339  dstFormat != AV_PIX_FMT_RGBA64LE &&
1340  dstFormat != AV_PIX_FMT_RGBA64BE &&
1341  dstFormat != AV_PIX_FMT_BGRA64LE &&
1342  dstFormat != AV_PIX_FMT_BGRA64BE &&
1343  dstFormat != AV_PIX_FMT_RGB48LE &&
1344  dstFormat != AV_PIX_FMT_RGB48BE &&
1345  dstFormat != AV_PIX_FMT_BGR48LE &&
1346  dstFormat != AV_PIX_FMT_BGR48BE &&
1347  dstFormat != AV_PIX_FMT_RGBA &&
1348  dstFormat != AV_PIX_FMT_ARGB &&
1349  dstFormat != AV_PIX_FMT_BGRA &&
1350  dstFormat != AV_PIX_FMT_ABGR &&
1351  dstFormat != AV_PIX_FMT_RGB24 &&
1352  dstFormat != AV_PIX_FMT_BGR24 &&
1353  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1354  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1355  dstFormat != AV_PIX_FMT_BGR8 &&
1356  dstFormat != AV_PIX_FMT_RGB8
1357  ) {
1359  "full chroma interpolation for destination format '%s' not yet implemented\n",
1360  av_get_pix_fmt_name(dstFormat));
1361  flags &= ~SWS_FULL_CHR_H_INT;
1362  c->flags = flags;
1363  }
1364  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1365  c->chrDstHSubSample = 1;
1366 
1367  // drop some chroma lines if the user wants it
1368  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1370  c->chrSrcVSubSample += c->vChrDrop;
1371 
1372  /* drop every other pixel for chroma calculation unless user
1373  * wants full chroma */
1374  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1375  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1376  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1377  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1378  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1379  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1380  srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
1381  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1382  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1383  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1384  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1385  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1386  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1387  (flags & SWS_FAST_BILINEAR)))
1388  c->chrSrcHSubSample = 1;
1389 
1390  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1391  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1392  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1393  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1394  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1395 
1396  FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1397 
1398  c->srcBpc = desc_src->comp[0].depth;
1399  if (c->srcBpc < 8)
1400  c->srcBpc = 8;
1401  c->dstBpc = desc_dst->comp[0].depth;
1402  if (c->dstBpc < 8)
1403  c->dstBpc = 8;
1404  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1405  c->srcBpc = 16;
1406  if (c->dstBpc == 16)
1407  dst_stride <<= 1;
1408 
1409  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1410  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1411  c->chrDstW >= c->chrSrcW &&
1412  (srcW & 15) == 0;
1413  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1414 
1415  && (flags & SWS_FAST_BILINEAR)) {
1416  if (flags & SWS_PRINT_INFO)
1417  av_log(c, AV_LOG_INFO,
1418  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1419  }
1420  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1421  c->canMMXEXTBeUsed = 0;
1422  } else
1423  c->canMMXEXTBeUsed = 0;
1424 
1425  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1426  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1427 
1428  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1429  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1430  * correct scaling.
1431  * n-2 is the last chrominance sample available.
1432  * This is not perfect, but no one should notice the difference, the more
1433  * correct variant would be like the vertical one, but that would require
1434  * some special code for the first and last pixel */
1435  if (flags & SWS_FAST_BILINEAR) {
1436  if (c->canMMXEXTBeUsed) {
1437  c->lumXInc += 20;
1438  c->chrXInc += 20;
1439  }
1440  // we don't use the x86 asm scaler if MMX is available
1441  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1442  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1443  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1444  }
1445  }
1446 
1447  // hardcoded for now
1448  c->gamma_value = 2.2;
1449  tmpFmt = AV_PIX_FMT_RGBA64LE;
1450 
1451 
1452  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1453  SwsContext *c2;
1454  c->cascaded_context[0] = NULL;
1455 
1457  srcW, srcH, tmpFmt, 64);
1458  if (ret < 0)
1459  return ret;
1460 
1461  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1462  srcW, srcH, tmpFmt,
1463  flags, NULL, NULL, c->param);
1464  if (!c->cascaded_context[0]) {
1465  return -1;
1466  }
1467 
1468  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1469  dstW, dstH, tmpFmt,
1470  flags, srcFilter, dstFilter, c->param);
1471 
1472  if (!c->cascaded_context[1])
1473  return -1;
1474 
1475  c2 = c->cascaded_context[1];
1476  c2->is_internal_gamma = 1;
1477  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1478  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1479  if (!c2->gamma || !c2->inv_gamma)
1480  return AVERROR(ENOMEM);
1481 
1482  // is_internal_flag is set after creating the context
1483  // to properly create the gamma convert FilterDescriptor
1484  // we have to re-initialize it
1485  ff_free_filters(c2);
1486  if (ff_init_filters(c2) < 0) {
1487  sws_freeContext(c2);
1488  return -1;
1489  }
1490 
1491  c->cascaded_context[2] = NULL;
1492  if (dstFormat != tmpFmt) {
1494  dstW, dstH, tmpFmt, 64);
1495  if (ret < 0)
1496  return ret;
1497 
1498  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1499  dstW, dstH, dstFormat,
1500  flags, NULL, NULL, c->param);
1501  if (!c->cascaded_context[2])
1502  return -1;
1503  }
1504  return 0;
1505  }
1506 
1507  if (isBayer(srcFormat)) {
1508  if (!unscaled ||
1509  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1510  enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1511 
1513  srcW, srcH, tmpFormat, 64);
1514  if (ret < 0)
1515  return ret;
1516 
1517  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1518  srcW, srcH, tmpFormat,
1519  flags, srcFilter, NULL, c->param);
1520  if (!c->cascaded_context[0])
1521  return -1;
1522 
1523  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1524  dstW, dstH, dstFormat,
1525  flags, NULL, dstFilter, c->param);
1526  if (!c->cascaded_context[1])
1527  return -1;
1528  return 0;
1529  }
1530  }
1531 
1532  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1533  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1534 
1535  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
1536  if (!unscaled ||
1537  dstFormat != tmpFormat ||
1538  usesHFilter || usesVFilter ||
1539  c->srcRange != c->dstRange
1540  ) {
1541  c->cascaded_mainindex = 1;
1543  srcW, srcH, tmpFormat, 64);
1544  if (ret < 0)
1545  return ret;
1546 
1547  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1548  srcW, srcH, tmpFormat,
1549  flags, c->param);
1550  if (!c->cascaded_context[0])
1551  return -1;
1553  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1554  if (ret < 0)
1555  return ret;
1556 
1557  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1558  dstW, dstH, dstFormat,
1559  flags, c->param);
1560  if (!c->cascaded_context[1])
1561  return -1;
1562 
1563  c->cascaded_context[1]->srcRange = c->srcRange;
1564  c->cascaded_context[1]->dstRange = c->dstRange;
1565  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1566  if (ret < 0)
1567  return ret;
1568 
1569  return 0;
1570  }
1571  }
1572 
1573 #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
1574 
1575  /* precalculate horizontal scaler filter coefficients */
1576  {
1577 #if HAVE_MMXEXT_INLINE
1578 // can't downscale !!!
1579  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1581  NULL, NULL, 8);
1583  NULL, NULL, NULL, 4);
1584 
1585 #if USE_MMAP
1587  PROT_READ | PROT_WRITE,
1588  MAP_PRIVATE | MAP_ANONYMOUS,
1589  -1, 0);
1591  PROT_READ | PROT_WRITE,
1592  MAP_PRIVATE | MAP_ANONYMOUS,
1593  -1, 0);
1594 #elif HAVE_VIRTUALALLOC
1595  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1597  MEM_COMMIT,
1598  PAGE_EXECUTE_READWRITE);
1599  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1601  MEM_COMMIT,
1602  PAGE_EXECUTE_READWRITE);
1603 #else
1606 #endif
1607 
1608 #ifdef MAP_ANONYMOUS
1609  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1610 #else
1612 #endif
1613  {
1614  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1615  return AVERROR(ENOMEM);
1616  }
1617 
1618  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1619  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1620  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1621  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1622 
1624  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1626  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1627 
1628 #if USE_MMAP
1629  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1630  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1631  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1632  goto fail;
1633  }
1634 #endif
1635  } else
1636 #endif /* HAVE_MMXEXT_INLINE */
1637  {
1638  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1639  PPC_ALTIVEC(cpu_flags) ? 8 :
1640  have_neon(cpu_flags) ? 8 : 1;
1641 
1642  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1643  &c->hLumFilterSize, c->lumXInc,
1644  srcW, dstW, filterAlign, 1 << 14,
1645  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1646  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1647  c->param,
1648  get_local_pos(c, 0, 0, 0),
1649  get_local_pos(c, 0, 0, 0))) < 0)
1650  goto fail;
1651  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1652  &c->hChrFilterSize, c->chrXInc,
1653  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1654  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1655  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1656  c->param,
1658  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1659  goto fail;
1660  }
1661  } // initialize horizontal stuff
1662 
1663  /* precalculate vertical scaler filter coefficients */
1664  {
1665  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1666  PPC_ALTIVEC(cpu_flags) ? 8 :
1667  have_neon(cpu_flags) ? 2 : 1;
1668 
1669  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1670  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1671  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1672  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1673  c->param,
1674  get_local_pos(c, 0, 0, 1),
1675  get_local_pos(c, 0, 0, 1))) < 0)
1676  goto fail;
1677  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1678  c->chrYInc, c->chrSrcH, c->chrDstH,
1679  filterAlign, (1 << 12),
1680  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1681  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1682  c->param,
1684  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1685 
1686  goto fail;
1687 
1688 #if HAVE_ALTIVEC
1689  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1690  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1691 
1692  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1693  int j;
1694  short *p = (short *)&c->vYCoeffsBank[i];
1695  for (j = 0; j < 8; j++)
1696  p[j] = c->vLumFilter[i];
1697  }
1698 
1699  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1700  int j;
1701  short *p = (short *)&c->vCCoeffsBank[i];
1702  for (j = 0; j < 8; j++)
1703  p[j] = c->vChrFilter[i];
1704  }
1705 #endif
1706  }
1707 
1708  for (i = 0; i < 4; i++)
1709  FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1710 
1711  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1712 
1713  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1714  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1715  c->uv_offx2 = dst_stride + 16;
1716 
1717  av_assert0(c->chrDstH <= dstH);
1718 
1719  if (flags & SWS_PRINT_INFO) {
1720  const char *scaler = NULL, *cpucaps;
1721 
1722  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1723  if (flags & scale_algorithms[i].flag) {
1724  scaler = scale_algorithms[i].description;
1725  break;
1726  }
1727  }
1728  if (!scaler)
1729  scaler = "ehh flags invalid?!";
1730  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1731  scaler,
1732  av_get_pix_fmt_name(srcFormat),
1733 #ifdef DITHER1XBPP
1734  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1735  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1736  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1737  "dithered " : "",
1738 #else
1739  "",
1740 #endif
1741  av_get_pix_fmt_name(dstFormat));
1742 
1743  if (INLINE_MMXEXT(cpu_flags))
1744  cpucaps = "MMXEXT";
1745  else if (INLINE_AMD3DNOW(cpu_flags))
1746  cpucaps = "3DNOW";
1747  else if (INLINE_MMX(cpu_flags))
1748  cpucaps = "MMX";
1749  else if (PPC_ALTIVEC(cpu_flags))
1750  cpucaps = "AltiVec";
1751  else
1752  cpucaps = "C";
1753 
1754  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1755 
1756  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1757  av_log(c, AV_LOG_DEBUG,
1758  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1759  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1760  av_log(c, AV_LOG_DEBUG,
1761  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1762  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1763  c->chrXInc, c->chrYInc);
1764  }
1765 
1766  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1767  if (unscaled && !usesHFilter && !usesVFilter &&
1769  isALPHA(srcFormat) &&
1770  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1771  alphaless_fmt(srcFormat) == dstFormat
1772  ) {
1774 
1775  if (flags & SWS_PRINT_INFO)
1776  av_log(c, AV_LOG_INFO,
1777  "using alpha blendaway %s -> %s special converter\n",
1778  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1779  return 0;
1780  }
1781 
1782  /* unscaled special cases */
1783  if (unscaled && !usesHFilter && !usesVFilter &&
1784  (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
1786 
1787  if (c->swscale) {
1788  if (flags & SWS_PRINT_INFO)
1789  av_log(c, AV_LOG_INFO,
1790  "using unscaled %s -> %s special converter\n",
1791  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1792  return 0;
1793  }
1794  }
1795 
1796  c->swscale = ff_getSwsFunc(c);
1797  return ff_init_filters(c);
1798 fail: // FIXME replace things by appropriate error codes
1799  if (ret == RETCODE_USE_CASCADE) {
1800  int tmpW = sqrt(srcW * (int64_t)dstW);
1801  int tmpH = sqrt(srcH * (int64_t)dstH);
1802  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1803 
1804  if (isALPHA(srcFormat))
1805  tmpFormat = AV_PIX_FMT_YUVA420P;
1806 
1807  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1808  return AVERROR(EINVAL);
1809 
1811  tmpW, tmpH, tmpFormat, 64);
1812  if (ret < 0)
1813  return ret;
1814 
1815  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1816  tmpW, tmpH, tmpFormat,
1817  flags, srcFilter, NULL, c->param);
1818  if (!c->cascaded_context[0])
1819  return -1;
1820 
1821  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1822  dstW, dstH, dstFormat,
1823  flags, NULL, dstFilter, c->param);
1824  if (!c->cascaded_context[1])
1825  return -1;
1826  return 0;
1827  }
1828  return -1;
1829 }
1830 
1831 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1832  int dstW, int dstH, enum AVPixelFormat dstFormat,
1833  int flags, const double *param)
1834 {
1835  SwsContext *c;
1836 
1837  if (!(c = sws_alloc_context()))
1838  return NULL;
1839 
1840  c->flags = flags;
1841  c->srcW = srcW;
1842  c->srcH = srcH;
1843  c->dstW = dstW;
1844  c->dstH = dstH;
1845  c->srcFormat = srcFormat;
1846  c->dstFormat = dstFormat;
1847 
1848  if (param) {
1849  c->param[0] = param[0];
1850  c->param[1] = param[1];
1851  }
1852 
1853  return c;
1854 }
1855 
1856 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1857  int dstW, int dstH, enum AVPixelFormat dstFormat,
1858  int flags, SwsFilter *srcFilter,
1859  SwsFilter *dstFilter, const double *param)
1860 {
1861  SwsContext *c;
1862 
1863  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1864  dstW, dstH, dstFormat,
1865  flags, param);
1866  if (!c)
1867  return NULL;
1868 
1869  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1870  sws_freeContext(c);
1871  return NULL;
1872  }
1873 
1874  return c;
1875 }
1876 
1877 static int isnan_vec(SwsVector *a)
1878 {
1879  int i;
1880  for (i=0; i<a->length; i++)
1881  if (isnan(a->coeff[i]))
1882  return 1;
1883  return 0;
1884 }
1885 
1886 static void makenan_vec(SwsVector *a)
1887 {
1888  int i;
1889  for (i=0; i<a->length; i++)
1890  a->coeff[i] = NAN;
1891 }
1892 
1893 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1894  float lumaSharpen, float chromaSharpen,
1895  float chromaHShift, float chromaVShift,
1896  int verbose)
1897 {
1898  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1899  if (!filter)
1900  return NULL;
1901 
1902  if (lumaGBlur != 0.0) {
1903  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1904  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1905  } else {
1906  filter->lumH = sws_getIdentityVec();
1907  filter->lumV = sws_getIdentityVec();
1908  }
1909 
1910  if (chromaGBlur != 0.0) {
1911  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1912  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1913  } else {
1914  filter->chrH = sws_getIdentityVec();
1915  filter->chrV = sws_getIdentityVec();
1916  }
1917 
1918  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1919  goto fail;
1920 
1921  if (chromaSharpen != 0.0) {
1922  SwsVector *id = sws_getIdentityVec();
1923  if (!id)
1924  goto fail;
1925  sws_scaleVec(filter->chrH, -chromaSharpen);
1926  sws_scaleVec(filter->chrV, -chromaSharpen);
1927  sws_addVec(filter->chrH, id);
1928  sws_addVec(filter->chrV, id);
1929  sws_freeVec(id);
1930  }
1931 
1932  if (lumaSharpen != 0.0) {
1933  SwsVector *id = sws_getIdentityVec();
1934  if (!id)
1935  goto fail;
1936  sws_scaleVec(filter->lumH, -lumaSharpen);
1937  sws_scaleVec(filter->lumV, -lumaSharpen);
1938  sws_addVec(filter->lumH, id);
1939  sws_addVec(filter->lumV, id);
1940  sws_freeVec(id);
1941  }
1942 
1943  if (chromaHShift != 0.0)
1944  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1945 
1946  if (chromaVShift != 0.0)
1947  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1948 
1949  sws_normalizeVec(filter->chrH, 1.0);
1950  sws_normalizeVec(filter->chrV, 1.0);
1951  sws_normalizeVec(filter->lumH, 1.0);
1952  sws_normalizeVec(filter->lumV, 1.0);
1953 
1954  if (isnan_vec(filter->chrH) ||
1955  isnan_vec(filter->chrV) ||
1956  isnan_vec(filter->lumH) ||
1957  isnan_vec(filter->lumV))
1958  goto fail;
1959 
1960  if (verbose)
1961  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1962  if (verbose)
1963  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1964 
1965  return filter;
1966 
1967 fail:
1968  sws_freeVec(filter->lumH);
1969  sws_freeVec(filter->lumV);
1970  sws_freeVec(filter->chrH);
1971  sws_freeVec(filter->chrV);
1972  av_freep(&filter);
1973  return NULL;
1974 }
1975 
1977 {
1978  SwsVector *vec;
1979 
1980  if(length <= 0 || length > INT_MAX/ sizeof(double))
1981  return NULL;
1982 
1983  vec = av_malloc(sizeof(SwsVector));
1984  if (!vec)
1985  return NULL;
1986  vec->length = length;
1987  vec->coeff = av_malloc(sizeof(double) * length);
1988  if (!vec->coeff)
1989  av_freep(&vec);
1990  return vec;
1991 }
1992 
1993 SwsVector *sws_getGaussianVec(double variance, double quality)
1994 {
1995  const int length = (int)(variance * quality + 0.5) | 1;
1996  int i;
1997  double middle = (length - 1) * 0.5;
1998  SwsVector *vec;
1999 
2000  if(variance < 0 || quality < 0)
2001  return NULL;
2002 
2003  vec = sws_allocVec(length);
2004 
2005  if (!vec)
2006  return NULL;
2007 
2008  for (i = 0; i < length; i++) {
2009  double dist = i - middle;
2010  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2011  sqrt(2 * variance * M_PI);
2012  }
2013 
2014  sws_normalizeVec(vec, 1.0);
2015 
2016  return vec;
2017 }
2018 
2019 /**
2020  * Allocate and return a vector with length coefficients, all
2021  * with the same value c.
2022  */
2023 #if !FF_API_SWS_VECTOR
2024 static
2025 #endif
2027 {
2028  int i;
2029  SwsVector *vec = sws_allocVec(length);
2030 
2031  if (!vec)
2032  return NULL;
2033 
2034  for (i = 0; i < length; i++)
2035  vec->coeff[i] = c;
2036 
2037  return vec;
2038 }
2039 
2040 /**
2041  * Allocate and return a vector with just one coefficient, with
2042  * value 1.0.
2043  */
2044 #if !FF_API_SWS_VECTOR
2045 static
2046 #endif
2048 {
2049  return sws_getConstVec(1.0, 1);
2050 }
2051 
2052 static double sws_dcVec(SwsVector *a)
2053 {
2054  int i;
2055  double sum = 0;
2056 
2057  for (i = 0; i < a->length; i++)
2058  sum += a->coeff[i];
2059 
2060  return sum;
2061 }
2062 
2063 void sws_scaleVec(SwsVector *a, double scalar)
2064 {
2065  int i;
2066 
2067  for (i = 0; i < a->length; i++)
2068  a->coeff[i] *= scalar;
2069 }
2070 
2072 {
2073  sws_scaleVec(a, height / sws_dcVec(a));
2074 }
2075 
2076 #if FF_API_SWS_VECTOR
2078 {
2079  int length = a->length + b->length - 1;
2080  int i, j;
2081  SwsVector *vec = sws_getConstVec(0.0, length);
2082 
2083  if (!vec)
2084  return NULL;
2085 
2086  for (i = 0; i < a->length; i++) {
2087  for (j = 0; j < b->length; j++) {
2088  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2089  }
2090  }
2091 
2092  return vec;
2093 }
2094 #endif
2095 
2097 {
2098  int length = FFMAX(a->length, b->length);
2099  int i;
2100  SwsVector *vec = sws_getConstVec(0.0, length);
2101 
2102  if (!vec)
2103  return NULL;
2104 
2105  for (i = 0; i < a->length; i++)
2106  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2107  for (i = 0; i < b->length; i++)
2108  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2109 
2110  return vec;
2111 }
2112 
2113 #if FF_API_SWS_VECTOR
2115 {
2116  int length = FFMAX(a->length, b->length);
2117  int i;
2118  SwsVector *vec = sws_getConstVec(0.0, length);
2119 
2120  if (!vec)
2121  return NULL;
2122 
2123  for (i = 0; i < a->length; i++)
2124  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2125  for (i = 0; i < b->length; i++)
2126  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2127 
2128  return vec;
2129 }
2130 #endif
2131 
2132 /* shift left / or right if "shift" is negative */
2134 {
2135  int length = a->length + FFABS(shift) * 2;
2136  int i;
2137  SwsVector *vec = sws_getConstVec(0.0, length);
2138 
2139  if (!vec)
2140  return NULL;
2141 
2142  for (i = 0; i < a->length; i++) {
2143  vec->coeff[i + (length - 1) / 2 -
2144  (a->length - 1) / 2 - shift] = a->coeff[i];
2145  }
2146 
2147  return vec;
2148 }
2149 
2150 #if !FF_API_SWS_VECTOR
2151 static
2152 #endif
2154 {
2155  SwsVector *shifted = sws_getShiftedVec(a, shift);
2156  if (!shifted) {
2157  makenan_vec(a);
2158  return;
2159  }
2160  av_free(a->coeff);
2161  a->coeff = shifted->coeff;
2162  a->length = shifted->length;
2163  av_free(shifted);
2164 }
2165 
2166 #if !FF_API_SWS_VECTOR
2167 static
2168 #endif
2170 {
2171  SwsVector *sum = sws_sumVec(a, b);
2172  if (!sum) {
2173  makenan_vec(a);
2174  return;
2175  }
2176  av_free(a->coeff);
2177  a->coeff = sum->coeff;
2178  a->length = sum->length;
2179  av_free(sum);
2180 }
2181 
2182 #if FF_API_SWS_VECTOR
2184 {
2185  SwsVector *diff = sws_diffVec(a, b);
2186  if (!diff) {
2187  makenan_vec(a);
2188  return;
2189  }
2190  av_free(a->coeff);
2191  a->coeff = diff->coeff;
2192  a->length = diff->length;
2193  av_free(diff);
2194 }
2195 
2197 {
2198  SwsVector *conv = sws_getConvVec(a, b);
2199  if (!conv) {
2200  makenan_vec(a);
2201  return;
2202  }
2203  av_free(a->coeff);
2204  a->coeff = conv->coeff;
2205  a->length = conv->length;
2206  av_free(conv);
2207 }
2208 
2210 {
2211  SwsVector *vec = sws_allocVec(a->length);
2212 
2213  if (!vec)
2214  return NULL;
2215 
2216  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2217 
2218  return vec;
2219 }
2220 #endif
2221 
2222 /**
2223  * Print with av_log() a textual representation of the vector a
2224  * if log_level <= av_log_level.
2225  */
2226 #if !FF_API_SWS_VECTOR
2227 static
2228 #endif
2229 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2230 {
2231  int i;
2232  double max = 0;
2233  double min = 0;
2234  double range;
2235 
2236  for (i = 0; i < a->length; i++)
2237  if (a->coeff[i] > max)
2238  max = a->coeff[i];
2239 
2240  for (i = 0; i < a->length; i++)
2241  if (a->coeff[i] < min)
2242  min = a->coeff[i];
2243 
2244  range = max - min;
2245 
2246  for (i = 0; i < a->length; i++) {
2247  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2248  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2249  for (; x > 0; x--)
2250  av_log(log_ctx, log_level, " ");
2251  av_log(log_ctx, log_level, "|\n");
2252  }
2253 }
2254 
2256 {
2257  if (!a)
2258  return;
2259  av_freep(&a->coeff);
2260  a->length = 0;
2261  av_free(a);
2262 }
2263 
2265 {
2266  if (!filter)
2267  return;
2268 
2269  sws_freeVec(filter->lumH);
2270  sws_freeVec(filter->lumV);
2271  sws_freeVec(filter->chrH);
2272  sws_freeVec(filter->chrV);
2273  av_free(filter);
2274 }
2275 
2277 {
2278  int i;
2279  if (!c)
2280  return;
2281 
2282  for (i = 0; i < 4; i++)
2283  av_freep(&c->dither_error[i]);
2284 
2285  av_freep(&c->vLumFilter);
2286  av_freep(&c->vChrFilter);
2287  av_freep(&c->hLumFilter);
2288  av_freep(&c->hChrFilter);
2289 #if HAVE_ALTIVEC
2290  av_freep(&c->vYCoeffsBank);
2291  av_freep(&c->vCCoeffsBank);
2292 #endif
2293 
2294  av_freep(&c->vLumFilterPos);
2295  av_freep(&c->vChrFilterPos);
2296  av_freep(&c->hLumFilterPos);
2297  av_freep(&c->hChrFilterPos);
2298 
2299 #if HAVE_MMX_INLINE
2300 #if USE_MMAP
2301  if (c->lumMmxextFilterCode)
2303  if (c->chrMmxextFilterCode)
2305 #elif HAVE_VIRTUALALLOC
2306  if (c->lumMmxextFilterCode)
2307  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2308  if (c->chrMmxextFilterCode)
2309  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2310 #else
2313 #endif
2316 #endif /* HAVE_MMX_INLINE */
2317 
2318  av_freep(&c->yuvTable);
2320 
2324  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2325  av_freep(&c->cascaded_tmp[0]);
2326  av_freep(&c->cascaded1_tmp[0]);
2327 
2328  av_freep(&c->gamma);
2329  av_freep(&c->inv_gamma);
2330 
2331  ff_free_filters(c);
2332 
2333  av_free(c);
2334 }
2335 
2336 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2337  int srcH, enum AVPixelFormat srcFormat,
2338  int dstW, int dstH,
2339  enum AVPixelFormat dstFormat, int flags,
2340  SwsFilter *srcFilter,
2341  SwsFilter *dstFilter,
2342  const double *param)
2343 {
2344  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2346  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2347  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2348 
2349  if (!param)
2350  param = default_param;
2351 
2352  if (context &&
2353  (context->srcW != srcW ||
2354  context->srcH != srcH ||
2355  context->srcFormat != srcFormat ||
2356  context->dstW != dstW ||
2357  context->dstH != dstH ||
2358  context->dstFormat != dstFormat ||
2359  context->flags != flags ||
2360  context->param[0] != param[0] ||
2361  context->param[1] != param[1])) {
2362 
2363  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2364  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2365  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2366  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2367  sws_freeContext(context);
2368  context = NULL;
2369  }
2370 
2371  if (!context) {
2372  if (!(context = sws_alloc_context()))
2373  return NULL;
2374  context->srcW = srcW;
2375  context->srcH = srcH;
2376  context->srcFormat = srcFormat;
2377  context->dstW = dstW;
2378  context->dstH = dstH;
2379  context->dstFormat = dstFormat;
2380  context->flags = flags;
2381  context->param[0] = param[0];
2382  context->param[1] = param[1];
2383 
2384  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2385  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2386  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2387  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2388 
2389  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2390  sws_freeContext(context);
2391  return NULL;
2392  }
2393  }
2394  return context;
2395 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:82
SwsVector * chrV
Definition: swscale.h:119
uint8_t is_supported_out
Definition: utils.c:94
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:305
#define NULL
Definition: coverity.c:32
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:265
static const FormatEntry format_entries[AV_PIX_FMT_NB]
Definition: utils.c:98
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:177
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:289
const char * s
Definition: avisynth_c.h:768
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:266
static enum AVPixelFormat pix_fmt
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2096
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
static int shift(int a, int b)
Definition: sonic.c:82
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1033
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:259
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:70
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2333
int chrSrcH
Height of source chroma planes.
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:160
#define SWS_X
Definition: swscale.h:61
int ff_free_filters(SwsContext *c)
Definition: slice.c:377
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
#define RV_IDX
#define SWS_BICUBIC
Definition: swscale.h:60
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:716
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:263
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:170
#define BV_IDX
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:120
#define C
8 bits gray, 8 bits alpha
Definition: pixfmt.h:154
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:220
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
const char * fmt
Definition: avisynth_c.h:769
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:67
misc image utilities
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
SwsVector * lumV
Definition: swscale.h:117
int16_t * rgbgamma
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:64
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:85
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:290
SwsAlphaBlend alphablend
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:981
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:192
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:173
int acc
Definition: yuv2rgb.c:546
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2285
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:1993
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:264
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples */
Definition: pixfmt.h:276
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1291
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples */
Definition: pixfmt.h:277
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:765
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:180
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:219
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:116
#define SWS_BICUBLIN
Definition: swscale.h:64
int16_t * rgbgammainv
const char * b
Definition: vf_curves.c:113
int flag
Definition: cpu.c:34
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:277
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:367
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:284
#define GV_IDX
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
int av_log2(unsigned v)
Definition: intmath.c:26
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:346
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:201
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
Convenience header that includes libavutil's core.
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:999
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:271
static int isnan_vec(SwsVector *a)
Definition: utils.c:1877
int16_t * xyzgammainv
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:119
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:71
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:269
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:167
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:151
static atomic_int cpu_flags
Definition: cpu.c:48
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:222
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:253
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples */
Definition: pixfmt.h:274
#define RGB_GAMMA
#define SWS_PRINT_INFO
Definition: swscale.h:75
Y , 12bpp, little-endian.
Definition: pixfmt.h:310
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2430
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:268
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:139
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:88
Macro definitions for various function/variable attributes.
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:114
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:86
#define SWS_BILINEAR
Definition: swscale.h:59
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:191
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2196
#define RU_IDX
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:230
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:202
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1077
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:102
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
ptrdiff_t uv_off
offset (in pixels) between u and v planes
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
int length
number of coefficients in the vector
Definition: swscale.h:111
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1149
#define SWS_LANCZOS
Definition: swscale.h:67
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:252
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:73
AVOptions.
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:111
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2209
int vChrFilterSize
Vertical filter size for chroma pixels.
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:282
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:283
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:217
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:150
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:265
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:79
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, uint8_t clip)
Definition: cfhd.c:80
int cascaded_tmpStride[4]
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:113
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:95
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:203
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:2026
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:290
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:186
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
Definition: pixfmt.h:101
static int flags
Definition: log.c:57
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1856
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:75
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:206
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:342
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int16_t rgb2xyz_matrix[3][4]
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:364
Y , 10bpp, little-endian.
Definition: pixfmt.h:312
external API header
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale.c:51
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:292
uint16_t * inv_gamma
#define A(x)
Definition: vp56_arith.h:28
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:278
#define FFALIGN(x, a)
Definition: macros.h:48
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
#define av_log(a,...)
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2133
uint64_t vRounder
#define ROUNDED_DIV(a, b)
Definition: common.h:56
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
int * dither_error[4]
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:168
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1893
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:182
#define INLINE_MMX(flags)
Definition: cpu.h:85
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:176
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:188
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
16 bits gray, 16 bits alpha (big-endian)
Definition: pixfmt.h:226
like NV12, with 16bpp per component, big-endian
Definition: pixfmt.h:315
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:144
#define AVERROR(e)
Definition: error.h:43
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:592
const char * description
human-readable description
Definition: utils.c:301
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2361
static const struct endianess table[]
#define PPC_ALTIVEC(flags)
Definition: cpu.h:26
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:87
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:96
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2183
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2229
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:194
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:172
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:558
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:90
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:337
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:262
GLsizei GLsizei * length
Definition: opengl_enc.c:115
like NV12, with 16bpp per component, little-endian
Definition: pixfmt.h:314
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:142
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:354
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
Definition: pixfmt.h:299
#define SWS_CS_DEFAULT
Definition: swscale.h:95
#define X86_MMX(flags)
Definition: cpu.h:31
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:195
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:93
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2063
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:116
#define fail()
Definition: checkasm.h:90
int8_t exp
Definition: eval.c:65
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:160
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:94
uint8_t * cascaded1_tmp[4]
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2071
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:196
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2336
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:66
#define RETCODE_USE_CASCADE
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1091
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2264
int hChrFilterSize
Horizontal filter size for chroma pixels.
int16_t * xyzgamma
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:1976
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:349
as above, but U and V bytes are swapped
Definition: pixfmt.h:91
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:301
#define RGB2YUV_SHIFT
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:304
#define APCK_SIZE
#define have_neon(flags)
Definition: cpu.h:27
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:370
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:335
#define FFMIN(a, b)
Definition: common.h:96
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:89
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:74
#define SWS_GAUSS
Definition: swscale.h:65
SwsVector * chrH
Definition: swscale.h:118
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:83
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:133
int32_t
Definition: vf_geq.c:46
#define RY_IDX
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2153
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2276
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:200
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:222
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:192
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:65
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:257
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:212
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:169
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:534
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1831
unsigned swscale_version(void)
Definition: utils.c:75
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
Definition: pixfmt.h:298
double gamma_value
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:846
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:350
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:178
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:159
#define DITHER1XBPP
static void error(const char *err)
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:118
uint8_t * cascaded_tmp[4]
#define FF_ARRAY_ELEMS(a)
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:305
int cascaded1_tmpStride[4]
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:302
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:362
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define isGray(x)
Definition: swscale.c:40
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:344
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:875
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:84
double * coeff
pointer to the list of coefficients
Definition: swscale.h:110
int flag
flag associated to the algorithm
Definition: utils.c:300
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:140
int dstColorspaceTable[4]
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:319
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
const AVClass * av_class
info on struct for av_log
int16_t xyz2rgb_matrix[3][4]
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:189
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
#define DITHER32_INT
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:281
void sws_freeVec(SwsVector *a)
Definition: utils.c:2255
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:184
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:29
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:285
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:204
int chrDstH
Height of destination chroma planes.
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:63
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:291
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:271
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:85
Replacements for frequently missing libm functions.
#define SWS_AREA
Definition: swscale.h:63
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:351
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:68
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:205
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2114
static const char * format
Definition: movenc.c:47
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:67
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:207
#define W(a, i, v)
Definition: jpegls.h:122
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
Y , 16bpp, big-endian.
Definition: pixfmt.h:98
#define isnan(x)
Definition: libm.h:340
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:83
byte swapping routines
static void handle_formats(SwsContext *c)
Definition: utils.c:1053
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:258
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:254
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:270
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:190
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:348
const VDPAUPixFmtMap * map
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:121
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:89
#define SWS_POINT
Definition: swscale.h:62
int ff_init_filters(SwsContext *c)
Definition: slice.c:249
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:279
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1063
#define GY_IDX
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:343
#define SWS_SPLINE
Definition: swscale.h:68
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:368
#define SWS_SINC
Definition: swscale.h:66
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:199
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:352
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:115
#define SWS_BITEXACT
Definition: swscale.h:84
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:280
Y , 10bpp, big-endian.
Definition: pixfmt.h:311
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:153
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:174
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:143
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1044
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:151
Definition: vc1_parser.c:48
SwsDither dither
uint8_t is_supported_in
Definition: utils.c:93
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:72
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2169
#define INLINE_MMXEXT(flags)
Definition: cpu.h:86
int
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2052
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:62
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:261
Y , 8bpp.
Definition: pixfmt.h:70
double param[2]
Input parameters for scaling algorithms that need them.
#define exp2(x)
Definition: libm.h:288
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:71
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:229
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:133
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:183
static double c[64]
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:110
#define AV_WL16(p, v)
Definition: intreadwrite.h:417
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:141
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:76
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples */
Definition: pixfmt.h:275
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:87
static const uint64_t c2
Definition: murmur3.c:50
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:69
#define XYZ_GAMMA
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:197
struct SwsContext * cascaded_context[3]
#define SWS_PARAM_DEFAULT
Definition: swscale.h:73
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:81
uint16_t * gamma
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
#define MAX_FILTER_SIZE
static av_always_inline int diff(const uint32_t a, const uint32_t b)
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:211
#define av_free(p)
int size_factor
size factor used when initing the filters
Definition: utils.c:302
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:267
#define NAN
Definition: math.h:28
int srcFormatBpp
Number of bits per pixel of the source pixel format.
const AVClass ff_sws_context_class
Definition: options.c:87
Y , 16bpp, little-endian.
Definition: pixfmt.h:99
uint8_t is_supported_endianness
Definition: utils.c:95
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:272
#define lrint
Definition: tablegen.h:53
16 bits gray, 16 bits alpha (little-endian)
Definition: pixfmt.h:227
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:259
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2047
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:198
Y , 12bpp, big-endian.
Definition: pixfmt.h:309
static int height
Definition: utils.c:158
int32_t input_rgb2yuv_table[16+40 *4]
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:120
number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of...
Definition: pixfmt.h:317
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
#define av_freep(p)
#define GU_IDX
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:100
#define M_PI
Definition: mathematics.h:52
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:187
static void makenan_vec(SwsVector *a)
Definition: utils.c:1886
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define av_malloc_array(a, b)
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:152
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2249
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:193
#define BY_IDX
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
int depth
Number of bits in the component.
Definition: pixdesc.h:58
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:231
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:251
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:83
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:810
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:256
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:363
#define BU_IDX
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:175
for(j=16;j >0;--j)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:260
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:142
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:185
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2077
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:218
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:293
#define V
Definition: avdct.c:30
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:171
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86