FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
swscale.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include <inttypes.h>
22 #include <math.h>
23 #include <stdio.h>
24 #include <string.h>
25 
26 #include "libavutil/avassert.h"
27 #include "libavutil/avutil.h"
28 #include "libavutil/bswap.h"
29 #include "libavutil/cpu.h"
30 #include "libavutil/intreadwrite.h"
31 #include "libavutil/mathematics.h"
32 #include "libavutil/pixdesc.h"
33 #include "config.h"
34 #include "rgb2rgb.h"
35 #include "swscale_internal.h"
36 #include "swscale.h"
37 
39  { 36, 68, 60, 92, 34, 66, 58, 90, },
40  { 100, 4, 124, 28, 98, 2, 122, 26, },
41  { 52, 84, 44, 76, 50, 82, 42, 74, },
42  { 116, 20, 108, 12, 114, 18, 106, 10, },
43  { 32, 64, 56, 88, 38, 70, 62, 94, },
44  { 96, 0, 120, 24, 102, 6, 126, 30, },
45  { 48, 80, 40, 72, 54, 86, 46, 78, },
46  { 112, 16, 104, 8, 118, 22, 110, 14, },
47  { 36, 68, 60, 92, 34, 66, 58, 90, },
48 };
49 
50 DECLARE_ALIGNED(8, static const uint8_t, sws_pb_64)[8] = {
51  64, 64, 64, 64, 64, 64, 64, 64
52 };
53 
54 static av_always_inline void fillPlane(uint8_t *plane, int stride, int width,
55  int height, int y, uint8_t val)
56 {
57  int i;
58  uint8_t *ptr = plane + stride * y;
59  for (i = 0; i < height; i++) {
60  memset(ptr, val, width);
61  ptr += stride;
62  }
63 }
64 
65 static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW,
66  const uint8_t *_src, const int16_t *filter,
67  const int32_t *filterPos, int filterSize)
68 {
70  int i;
71  int32_t *dst = (int32_t *) _dst;
72  const uint16_t *src = (const uint16_t *) _src;
73  int bits = desc->comp[0].depth_minus1;
74  int sh = bits - 4;
75 
76  if((isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8) && desc->comp[0].depth_minus1<15)
77  sh= 9;
78 
79  for (i = 0; i < dstW; i++) {
80  int j;
81  int srcPos = filterPos[i];
82  int val = 0;
83 
84  for (j = 0; j < filterSize; j++) {
85  val += src[srcPos + j] * filter[filterSize * i + j];
86  }
87  // filter=14 bit, input=16 bit, output=30 bit, >> 11 makes 19 bit
88  dst[i] = FFMIN(val >> sh, (1 << 19) - 1);
89  }
90 }
91 
92 static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW,
93  const uint8_t *_src, const int16_t *filter,
94  const int32_t *filterPos, int filterSize)
95 {
97  int i;
98  const uint16_t *src = (const uint16_t *) _src;
99  int sh = desc->comp[0].depth_minus1;
100 
101  if(sh<15)
102  sh= isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8 ? 13 : desc->comp[0].depth_minus1;
103 
104  for (i = 0; i < dstW; i++) {
105  int j;
106  int srcPos = filterPos[i];
107  int val = 0;
108 
109  for (j = 0; j < filterSize; j++) {
110  val += src[srcPos + j] * filter[filterSize * i + j];
111  }
112  // filter=14 bit, input=16 bit, output=30 bit, >> 15 makes 15 bit
113  dst[i] = FFMIN(val >> sh, (1 << 15) - 1);
114  }
115 }
116 
117 // bilinear / bicubic scaling
118 static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW,
119  const uint8_t *src, const int16_t *filter,
120  const int32_t *filterPos, int filterSize)
121 {
122  int i;
123  for (i = 0; i < dstW; i++) {
124  int j;
125  int srcPos = filterPos[i];
126  int val = 0;
127  for (j = 0; j < filterSize; j++) {
128  val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
129  }
130  dst[i] = FFMIN(val >> 7, (1 << 15) - 1); // the cubic equation does overflow ...
131  }
132 }
133 
134 static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW,
135  const uint8_t *src, const int16_t *filter,
136  const int32_t *filterPos, int filterSize)
137 {
138  int i;
139  int32_t *dst = (int32_t *) _dst;
140  for (i = 0; i < dstW; i++) {
141  int j;
142  int srcPos = filterPos[i];
143  int val = 0;
144  for (j = 0; j < filterSize; j++) {
145  val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
146  }
147  dst[i] = FFMIN(val >> 3, (1 << 19) - 1); // the cubic equation does overflow ...
148  }
149 }
150 
151 // FIXME all pal and rgb srcFormats could do this conversion as well
152 // FIXME all scalers more complex than bilinear could do half of this transform
153 static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
154 {
155  int i;
156  for (i = 0; i < width; i++) {
157  dstU[i] = (FFMIN(dstU[i], 30775) * 4663 - 9289992) >> 12; // -264
158  dstV[i] = (FFMIN(dstV[i], 30775) * 4663 - 9289992) >> 12; // -264
159  }
160 }
161 
162 static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
163 {
164  int i;
165  for (i = 0; i < width; i++) {
166  dstU[i] = (dstU[i] * 1799 + 4081085) >> 11; // 1469
167  dstV[i] = (dstV[i] * 1799 + 4081085) >> 11; // 1469
168  }
169 }
170 
171 static void lumRangeToJpeg_c(int16_t *dst, int width)
172 {
173  int i;
174  for (i = 0; i < width; i++)
175  dst[i] = (FFMIN(dst[i], 30189) * 19077 - 39057361) >> 14;
176 }
177 
178 static void lumRangeFromJpeg_c(int16_t *dst, int width)
179 {
180  int i;
181  for (i = 0; i < width; i++)
182  dst[i] = (dst[i] * 14071 + 33561947) >> 14;
183 }
184 
185 static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
186 {
187  int i;
188  int32_t *dstU = (int32_t *) _dstU;
189  int32_t *dstV = (int32_t *) _dstV;
190  for (i = 0; i < width; i++) {
191  dstU[i] = (FFMIN(dstU[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
192  dstV[i] = (FFMIN(dstV[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
193  }
194 }
195 
196 static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
197 {
198  int i;
199  int32_t *dstU = (int32_t *) _dstU;
200  int32_t *dstV = (int32_t *) _dstV;
201  for (i = 0; i < width; i++) {
202  dstU[i] = (dstU[i] * 1799 + (4081085 << 4)) >> 11; // 1469
203  dstV[i] = (dstV[i] * 1799 + (4081085 << 4)) >> 11; // 1469
204  }
205 }
206 
207 static void lumRangeToJpeg16_c(int16_t *_dst, int width)
208 {
209  int i;
210  int32_t *dst = (int32_t *) _dst;
211  for (i = 0; i < width; i++) {
212  dst[i] = ((int)(FFMIN(dst[i], 30189 << 4) * 4769U - (39057361 << 2))) >> 12;
213  }
214 }
215 
216 static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
217 {
218  int i;
219  int32_t *dst = (int32_t *) _dst;
220  for (i = 0; i < width; i++)
221  dst[i] = (dst[i]*(14071/4) + (33561947<<4)/4)>>12;
222 }
223 
224 // *** horizontal scale Y line to temp buffer
225 static av_always_inline void hyscale(SwsContext *c, int16_t *dst, int dstWidth,
226  const uint8_t *src_in[4],
227  int srcW, int xInc,
228  const int16_t *hLumFilter,
229  const int32_t *hLumFilterPos,
230  int hLumFilterSize,
232  uint32_t *pal, int isAlpha)
233 {
234  void (*toYV12)(uint8_t *, const uint8_t *, const uint8_t *, const uint8_t *, int, uint32_t *) =
235  isAlpha ? c->alpToYV12 : c->lumToYV12;
236  void (*convertRange)(int16_t *, int) = isAlpha ? NULL : c->lumConvertRange;
237  const uint8_t *src = src_in[isAlpha ? 3 : 0];
238 
239  if (toYV12) {
240  toYV12(formatConvBuffer, src, src_in[1], src_in[2], srcW, pal);
242  } else if (c->readLumPlanar && !isAlpha) {
243  c->readLumPlanar(formatConvBuffer, src_in, srcW, c->input_rgb2yuv_table);
245  } else if (c->readAlpPlanar && isAlpha) {
246  c->readAlpPlanar(formatConvBuffer, src_in, srcW, NULL);
248  }
249 
250  if (!c->hyscale_fast) {
251  c->hyScale(c, dst, dstWidth, src, hLumFilter,
252  hLumFilterPos, hLumFilterSize);
253  } else { // fast bilinear upscale / crap downscale
254  c->hyscale_fast(c, dst, dstWidth, src, srcW, xInc);
255  }
256 
257  if (convertRange)
258  convertRange(dst, dstWidth);
259 }
260 
261 static av_always_inline void hcscale(SwsContext *c, int16_t *dst1,
262  int16_t *dst2, int dstWidth,
263  const uint8_t *src_in[4],
264  int srcW, int xInc,
265  const int16_t *hChrFilter,
266  const int32_t *hChrFilterPos,
267  int hChrFilterSize,
268  uint8_t *formatConvBuffer, uint32_t *pal)
269 {
270  const uint8_t *src1 = src_in[1], *src2 = src_in[2];
271  if (c->chrToYV12) {
272  uint8_t *buf2 = formatConvBuffer +
273  FFALIGN(srcW*2+78, 16);
274  c->chrToYV12(formatConvBuffer, buf2, src_in[0], src1, src2, srcW, pal);
275  src1= formatConvBuffer;
276  src2= buf2;
277  } else if (c->readChrPlanar) {
278  uint8_t *buf2 = formatConvBuffer +
279  FFALIGN(srcW*2+78, 16);
280  c->readChrPlanar(formatConvBuffer, buf2, src_in, srcW, c->input_rgb2yuv_table);
281  src1 = formatConvBuffer;
282  src2 = buf2;
283  }
284 
285  if (!c->hcscale_fast) {
286  c->hcScale(c, dst1, dstWidth, src1, hChrFilter, hChrFilterPos, hChrFilterSize);
287  c->hcScale(c, dst2, dstWidth, src2, hChrFilter, hChrFilterPos, hChrFilterSize);
288  } else { // fast bilinear upscale / crap downscale
289  c->hcscale_fast(c, dst1, dst2, dstWidth, src1, src2, srcW, xInc);
290  }
291 
292  if (c->chrConvertRange)
293  c->chrConvertRange(dst1, dst2, dstWidth);
294 }
295 
296 #define DEBUG_SWSCALE_BUFFERS 0
297 #define DEBUG_BUFFERS(...) \
298  if (DEBUG_SWSCALE_BUFFERS) \
299  av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
300 
301 static int swscale(SwsContext *c, const uint8_t *src[],
302  int srcStride[], int srcSliceY,
303  int srcSliceH, uint8_t *dst[], int dstStride[])
304 {
305  /* load a few things into local vars to make the code more readable?
306  * and faster */
307  const int srcW = c->srcW;
308  const int dstW = c->dstW;
309  const int dstH = c->dstH;
310  const int chrDstW = c->chrDstW;
311  const int chrSrcW = c->chrSrcW;
312  const int lumXInc = c->lumXInc;
313  const int chrXInc = c->chrXInc;
314  const enum AVPixelFormat dstFormat = c->dstFormat;
315  const int flags = c->flags;
320  int16_t *hLumFilter = c->hLumFilter;
321  int16_t *hChrFilter = c->hChrFilter;
324  const int vLumFilterSize = c->vLumFilterSize;
325  const int vChrFilterSize = c->vChrFilterSize;
326  const int hLumFilterSize = c->hLumFilterSize;
327  const int hChrFilterSize = c->hChrFilterSize;
328  int16_t **lumPixBuf = c->lumPixBuf;
329  int16_t **chrUPixBuf = c->chrUPixBuf;
330  int16_t **chrVPixBuf = c->chrVPixBuf;
331  int16_t **alpPixBuf = c->alpPixBuf;
332  const int vLumBufSize = c->vLumBufSize;
333  const int vChrBufSize = c->vChrBufSize;
335  uint32_t *pal = c->pal_yuv;
343  const int chrSrcSliceY = srcSliceY >> c->chrSrcVSubSample;
344  const int chrSrcSliceH = FF_CEIL_RSHIFT(srcSliceH, c->chrSrcVSubSample);
345  int should_dither = is9_OR_10BPS(c->srcFormat) ||
346  is16BPS(c->srcFormat);
347  int lastDstY;
348 
349  /* vars which will change and which we need to store back in the context */
350  int dstY = c->dstY;
351  int lumBufIndex = c->lumBufIndex;
352  int chrBufIndex = c->chrBufIndex;
353  int lastInLumBuf = c->lastInLumBuf;
354  int lastInChrBuf = c->lastInChrBuf;
355 
356  if (!usePal(c->srcFormat)) {
357  pal = c->input_rgb2yuv_table;
358  }
359 
360  if (isPacked(c->srcFormat)) {
361  src[0] =
362  src[1] =
363  src[2] =
364  src[3] = src[0];
365  srcStride[0] =
366  srcStride[1] =
367  srcStride[2] =
368  srcStride[3] = srcStride[0];
369  }
370  srcStride[1] <<= c->vChrDrop;
371  srcStride[2] <<= c->vChrDrop;
372 
373  DEBUG_BUFFERS("swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
374  src[0], srcStride[0], src[1], srcStride[1],
375  src[2], srcStride[2], src[3], srcStride[3],
376  dst[0], dstStride[0], dst[1], dstStride[1],
377  dst[2], dstStride[2], dst[3], dstStride[3]);
378  DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
379  srcSliceY, srcSliceH, dstY, dstH);
380  DEBUG_BUFFERS("vLumFilterSize: %d vLumBufSize: %d vChrFilterSize: %d vChrBufSize: %d\n",
381  vLumFilterSize, vLumBufSize, vChrFilterSize, vChrBufSize);
382 
383  if (dstStride[0]&15 || dstStride[1]&15 ||
384  dstStride[2]&15 || dstStride[3]&15) {
385  static int warnedAlready = 0; // FIXME maybe move this into the context
386  if (flags & SWS_PRINT_INFO && !warnedAlready) {
388  "Warning: dstStride is not aligned!\n"
389  " ->cannot do aligned memory accesses anymore\n");
390  warnedAlready = 1;
391  }
392  }
393 
394  if ( (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15
395  || (uintptr_t)src[0]&15 || (uintptr_t)src[1]&15 || (uintptr_t)src[2]&15
396  || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
397  || srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15
398  ) {
399  static int warnedAlready=0;
400  int cpu_flags = av_get_cpu_flags();
401  if (HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) && !warnedAlready){
402  av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speedloss\n");
403  warnedAlready=1;
404  }
405  }
406 
407  /* Note the user might start scaling the picture in the middle so this
408  * will not get executed. This is not really intended but works
409  * currently, so people might do it. */
410  if (srcSliceY == 0) {
411  lumBufIndex = -1;
412  chrBufIndex = -1;
413  dstY = 0;
414  lastInLumBuf = -1;
415  lastInChrBuf = -1;
416  }
417 
418  if (!should_dither) {
419  c->chrDither8 = c->lumDither8 = sws_pb_64;
420  }
421  lastDstY = dstY;
422 
423  for (; dstY < dstH; dstY++) {
424  const int chrDstY = dstY >> c->chrDstVSubSample;
425  uint8_t *dest[4] = {
426  dst[0] + dstStride[0] * dstY,
427  dst[1] + dstStride[1] * chrDstY,
428  dst[2] + dstStride[2] * chrDstY,
429  (CONFIG_SWSCALE_ALPHA && alpPixBuf) ? dst[3] + dstStride[3] * dstY : NULL,
430  };
432 
433  // First line needed as input
434  const int firstLumSrcY = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
435  const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), dstH - 1)]);
436  // First line needed as input
437  const int firstChrSrcY = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
438 
439  // Last line needed as input
440  int lastLumSrcY = FFMIN(c->srcH, firstLumSrcY + vLumFilterSize) - 1;
441  int lastLumSrcY2 = FFMIN(c->srcH, firstLumSrcY2 + vLumFilterSize) - 1;
442  int lastChrSrcY = FFMIN(c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
443  int enough_lines;
444 
445  // handle holes (FAST_BILINEAR & weird filters)
446  if (firstLumSrcY > lastInLumBuf)
447  lastInLumBuf = firstLumSrcY - 1;
448  if (firstChrSrcY > lastInChrBuf)
449  lastInChrBuf = firstChrSrcY - 1;
450  av_assert0(firstLumSrcY >= lastInLumBuf - vLumBufSize + 1);
451  av_assert0(firstChrSrcY >= lastInChrBuf - vChrBufSize + 1);
452 
453  DEBUG_BUFFERS("dstY: %d\n", dstY);
454  DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
455  firstLumSrcY, lastLumSrcY, lastInLumBuf);
456  DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
457  firstChrSrcY, lastChrSrcY, lastInChrBuf);
458 
459  // Do we have enough lines in this slice to output the dstY line
460  enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&
461  lastChrSrcY < FF_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample);
462 
463  if (!enough_lines) {
464  lastLumSrcY = srcSliceY + srcSliceH - 1;
465  lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
466  DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
467  lastLumSrcY, lastChrSrcY);
468  }
469 
470  // Do horizontal scaling
471  while (lastInLumBuf < lastLumSrcY) {
472  const uint8_t *src1[4] = {
473  src[0] + (lastInLumBuf + 1 - srcSliceY) * srcStride[0],
474  src[1] + (lastInLumBuf + 1 - srcSliceY) * srcStride[1],
475  src[2] + (lastInLumBuf + 1 - srcSliceY) * srcStride[2],
476  src[3] + (lastInLumBuf + 1 - srcSliceY) * srcStride[3],
477  };
478  lumBufIndex++;
479  av_assert0(lumBufIndex < 2 * vLumBufSize);
480  av_assert0(lastInLumBuf + 1 - srcSliceY < srcSliceH);
481  av_assert0(lastInLumBuf + 1 - srcSliceY >= 0);
482  hyscale(c, lumPixBuf[lumBufIndex], dstW, src1, srcW, lumXInc,
483  hLumFilter, hLumFilterPos, hLumFilterSize,
484  formatConvBuffer, pal, 0);
485  if (CONFIG_SWSCALE_ALPHA && alpPixBuf)
486  hyscale(c, alpPixBuf[lumBufIndex], dstW, src1, srcW,
487  lumXInc, hLumFilter, hLumFilterPos, hLumFilterSize,
488  formatConvBuffer, pal, 1);
489  lastInLumBuf++;
490  DEBUG_BUFFERS("\t\tlumBufIndex %d: lastInLumBuf: %d\n",
491  lumBufIndex, lastInLumBuf);
492  }
493  while (lastInChrBuf < lastChrSrcY) {
494  const uint8_t *src1[4] = {
495  src[0] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[0],
496  src[1] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[1],
497  src[2] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[2],
498  src[3] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[3],
499  };
500  chrBufIndex++;
501  av_assert0(chrBufIndex < 2 * vChrBufSize);
502  av_assert0(lastInChrBuf + 1 - chrSrcSliceY < (chrSrcSliceH));
503  av_assert0(lastInChrBuf + 1 - chrSrcSliceY >= 0);
504  // FIXME replace parameters through context struct (some at least)
505 
506  if (c->needs_hcscale)
507  hcscale(c, chrUPixBuf[chrBufIndex], chrVPixBuf[chrBufIndex],
508  chrDstW, src1, chrSrcW, chrXInc,
509  hChrFilter, hChrFilterPos, hChrFilterSize,
510  formatConvBuffer, pal);
511  lastInChrBuf++;
512  DEBUG_BUFFERS("\t\tchrBufIndex %d: lastInChrBuf: %d\n",
513  chrBufIndex, lastInChrBuf);
514  }
515  // wrap buf index around to stay inside the ring buffer
516  if (lumBufIndex >= vLumBufSize)
517  lumBufIndex -= vLumBufSize;
518  if (chrBufIndex >= vChrBufSize)
519  chrBufIndex -= vChrBufSize;
520  if (!enough_lines)
521  break; // we can't output a dstY line so let's try with the next slice
522 
523 #if HAVE_MMX_INLINE
524  updateMMXDitherTables(c, dstY, lumBufIndex, chrBufIndex,
525  lastInLumBuf, lastInChrBuf);
526 #endif
527  if (should_dither) {
528  c->chrDither8 = ff_dither_8x8_128[chrDstY & 7];
529  c->lumDither8 = ff_dither_8x8_128[dstY & 7];
530  }
531  if (dstY >= dstH - 2) {
532  /* hmm looks like we can't use MMX here without overwriting
533  * this array's tail */
534  ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX,
535  &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
536  use_mmx_vfilter= 0;
537  }
538 
539  {
540  const int16_t **lumSrcPtr = (const int16_t **)(void*) lumPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize;
541  const int16_t **chrUSrcPtr = (const int16_t **)(void*) chrUPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
542  const int16_t **chrVSrcPtr = (const int16_t **)(void*) chrVPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
543  const int16_t **alpSrcPtr = (CONFIG_SWSCALE_ALPHA && alpPixBuf) ?
544  (const int16_t **)(void*) alpPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize : NULL;
545  int16_t *vLumFilter = c->vLumFilter;
546  int16_t *vChrFilter = c->vChrFilter;
547 
548  if (isPlanarYUV(dstFormat) ||
549  (isGray(dstFormat) && !isALPHA(dstFormat))) { // YV12 like
550  const int chrSkipMask = (1 << c->chrDstVSubSample) - 1;
551 
552  vLumFilter += dstY * vLumFilterSize;
553  vChrFilter += chrDstY * vChrFilterSize;
554 
555 // av_assert0(use_mmx_vfilter != (
556 // yuv2planeX == yuv2planeX_10BE_c
557 // || yuv2planeX == yuv2planeX_10LE_c
558 // || yuv2planeX == yuv2planeX_9BE_c
559 // || yuv2planeX == yuv2planeX_9LE_c
560 // || yuv2planeX == yuv2planeX_16BE_c
561 // || yuv2planeX == yuv2planeX_16LE_c
562 // || yuv2planeX == yuv2planeX_8_c) || !ARCH_X86);
563 
564  if(use_mmx_vfilter){
565  vLumFilter= (int16_t *)c->lumMmxFilter;
566  vChrFilter= (int16_t *)c->chrMmxFilter;
567  }
568 
569  if (vLumFilterSize == 1) {
570  yuv2plane1(lumSrcPtr[0], dest[0], dstW, c->lumDither8, 0);
571  } else {
572  yuv2planeX(vLumFilter, vLumFilterSize,
573  lumSrcPtr, dest[0],
574  dstW, c->lumDither8, 0);
575  }
576 
577  if (!((dstY & chrSkipMask) || isGray(dstFormat))) {
578  if (yuv2nv12cX) {
579  yuv2nv12cX(c, vChrFilter,
580  vChrFilterSize, chrUSrcPtr, chrVSrcPtr,
581  dest[1], chrDstW);
582  } else if (vChrFilterSize == 1) {
583  yuv2plane1(chrUSrcPtr[0], dest[1], chrDstW, c->chrDither8, 0);
584  yuv2plane1(chrVSrcPtr[0], dest[2], chrDstW, c->chrDither8, 3);
585  } else {
586  yuv2planeX(vChrFilter,
587  vChrFilterSize, chrUSrcPtr, dest[1],
588  chrDstW, c->chrDither8, 0);
589  yuv2planeX(vChrFilter,
590  vChrFilterSize, chrVSrcPtr, dest[2],
591  chrDstW, c->chrDither8, use_mmx_vfilter ? (c->uv_offx2 >> 1) : 3);
592  }
593  }
594 
595  if (CONFIG_SWSCALE_ALPHA && alpPixBuf) {
596  if(use_mmx_vfilter){
597  vLumFilter= (int16_t *)c->alpMmxFilter;
598  }
599  if (vLumFilterSize == 1) {
600  yuv2plane1(alpSrcPtr[0], dest[3], dstW,
601  c->lumDither8, 0);
602  } else {
603  yuv2planeX(vLumFilter,
604  vLumFilterSize, alpSrcPtr, dest[3],
605  dstW, c->lumDither8, 0);
606  }
607  }
608  } else if (yuv2packedX) {
609  av_assert1(lumSrcPtr + vLumFilterSize - 1 < (const int16_t **)lumPixBuf + vLumBufSize * 2);
610  av_assert1(chrUSrcPtr + vChrFilterSize - 1 < (const int16_t **)chrUPixBuf + vChrBufSize * 2);
611  if (c->yuv2packed1 && vLumFilterSize == 1 &&
612  vChrFilterSize <= 2) { // unscaled RGB
613  int chrAlpha = vChrFilterSize == 1 ? 0 : vChrFilter[2 * dstY + 1];
614  yuv2packed1(c, *lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
615  alpPixBuf ? *alpSrcPtr : NULL,
616  dest[0], dstW, chrAlpha, dstY);
617  } else if (c->yuv2packed2 && vLumFilterSize == 2 &&
618  vChrFilterSize == 2) { // bilinear upscale RGB
619  int lumAlpha = vLumFilter[2 * dstY + 1];
620  int chrAlpha = vChrFilter[2 * dstY + 1];
621  lumMmxFilter[2] =
622  lumMmxFilter[3] = vLumFilter[2 * dstY] * 0x10001;
623  chrMmxFilter[2] =
624  chrMmxFilter[3] = vChrFilter[2 * chrDstY] * 0x10001;
625  yuv2packed2(c, lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
626  alpPixBuf ? alpSrcPtr : NULL,
627  dest[0], dstW, lumAlpha, chrAlpha, dstY);
628  } else { // general RGB
629  yuv2packedX(c, vLumFilter + dstY * vLumFilterSize,
630  lumSrcPtr, vLumFilterSize,
631  vChrFilter + dstY * vChrFilterSize,
632  chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
633  alpSrcPtr, dest[0], dstW, dstY);
634  }
635  } else {
636  av_assert1(!yuv2packed1 && !yuv2packed2);
637  yuv2anyX(c, vLumFilter + dstY * vLumFilterSize,
638  lumSrcPtr, vLumFilterSize,
639  vChrFilter + dstY * vChrFilterSize,
640  chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
641  alpSrcPtr, dest, dstW, dstY);
642  }
643  }
644  }
645  if (isPlanar(dstFormat) && isALPHA(dstFormat) && !alpPixBuf) {
646  int length = dstW;
647  int height = dstY - lastDstY;
648 
649  if (is16BPS(dstFormat) || isNBPS(dstFormat)) {
650  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat);
651  fillPlane16(dst[3], dstStride[3], length, height, lastDstY,
652  1, desc->comp[3].depth_minus1,
653  isBE(dstFormat));
654  } else
655  fillPlane(dst[3], dstStride[3], length, height, lastDstY, 255);
656  }
657 
658 #if HAVE_MMXEXT_INLINE
660  __asm__ volatile ("sfence" ::: "memory");
661 #endif
662  emms_c();
663 
664  /* store changed local vars back in the context */
665  c->dstY = dstY;
670 
671  return dstY - lastDstY;
672 }
673 
675 {
676  c->lumConvertRange = NULL;
677  c->chrConvertRange = NULL;
678  if (c->srcRange != c->dstRange && !isAnyRGB(c->dstFormat)) {
679  if (c->dstBpc <= 14) {
680  if (c->srcRange) {
683  } else {
686  }
687  } else {
688  if (c->srcRange) {
691  } else {
694  }
695  }
696  }
697 }
698 
700 {
702 
704  &c->yuv2nv12cX, &c->yuv2packed1,
705  &c->yuv2packed2, &c->yuv2packedX, &c->yuv2anyX);
706 
708 
709 
710  if (c->srcBpc == 8) {
711  if (c->dstBpc <= 14) {
712  c->hyScale = c->hcScale = hScale8To15_c;
713  if (c->flags & SWS_FAST_BILINEAR) {
716  }
717  } else {
718  c->hyScale = c->hcScale = hScale8To19_c;
719  }
720  } else {
721  c->hyScale = c->hcScale = c->dstBpc > 14 ? hScale16To19_c
722  : hScale16To15_c;
723  }
724 
726 
727  if (!(isGray(srcFormat) || isGray(c->dstFormat) ||
728  srcFormat == AV_PIX_FMT_MONOBLACK || srcFormat == AV_PIX_FMT_MONOWHITE))
729  c->needs_hcscale = 1;
730 }
731 
733 {
734  sws_init_swscale(c);
735 
736  if (ARCH_PPC)
738  if (ARCH_X86)
740 
741  return swscale;
742 }
743 
744 static void reset_ptr(const uint8_t *src[], int format)
745 {
746  if (!isALPHA(format))
747  src[3] = NULL;
748  if (!isPlanar(format)) {
749  src[3] = src[2] = NULL;
750 
751  if (!usePal(format))
752  src[1] = NULL;
753  }
754 }
755 
756 static int check_image_pointers(const uint8_t * const data[4], enum AVPixelFormat pix_fmt,
757  const int linesizes[4])
758 {
759  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
760  int i;
761 
762  for (i = 0; i < 4; i++) {
763  int plane = desc->comp[i].plane;
764  if (!data[plane] || !linesizes[plane])
765  return 0;
766  }
767 
768  return 1;
769 }
770 
771 static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst,
772  const uint16_t *src, int stride, int h)
773 {
774  int xp,yp;
776 
777  for (yp=0; yp<h; yp++) {
778  for (xp=0; xp+2<stride; xp+=3) {
779  int x, y, z, r, g, b;
780 
781  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
782  x = AV_RB16(src + xp + 0);
783  y = AV_RB16(src + xp + 1);
784  z = AV_RB16(src + xp + 2);
785  } else {
786  x = AV_RL16(src + xp + 0);
787  y = AV_RL16(src + xp + 1);
788  z = AV_RL16(src + xp + 2);
789  }
790 
791  x = c->xyzgamma[x>>4];
792  y = c->xyzgamma[y>>4];
793  z = c->xyzgamma[z>>4];
794 
795  // convert from XYZlinear to sRGBlinear
796  r = c->xyz2rgb_matrix[0][0] * x +
797  c->xyz2rgb_matrix[0][1] * y +
798  c->xyz2rgb_matrix[0][2] * z >> 12;
799  g = c->xyz2rgb_matrix[1][0] * x +
800  c->xyz2rgb_matrix[1][1] * y +
801  c->xyz2rgb_matrix[1][2] * z >> 12;
802  b = c->xyz2rgb_matrix[2][0] * x +
803  c->xyz2rgb_matrix[2][1] * y +
804  c->xyz2rgb_matrix[2][2] * z >> 12;
805 
806  // limit values to 12-bit depth
807  r = av_clip(r, 0, 4095);
808  g = av_clip(g, 0, 4095);
809  b = av_clip(b, 0, 4095);
810 
811  // convert from sRGBlinear to RGB and scale from 12bit to 16bit
812  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
813  AV_WB16(dst + xp + 0, c->rgbgamma[r] << 4);
814  AV_WB16(dst + xp + 1, c->rgbgamma[g] << 4);
815  AV_WB16(dst + xp + 2, c->rgbgamma[b] << 4);
816  } else {
817  AV_WL16(dst + xp + 0, c->rgbgamma[r] << 4);
818  AV_WL16(dst + xp + 1, c->rgbgamma[g] << 4);
819  AV_WL16(dst + xp + 2, c->rgbgamma[b] << 4);
820  }
821  }
822  src += stride;
823  dst += stride;
824  }
825 }
826 
827 static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst,
828  const uint16_t *src, int stride, int h)
829 {
830  int xp,yp;
832 
833  for (yp=0; yp<h; yp++) {
834  for (xp=0; xp+2<stride; xp+=3) {
835  int x, y, z, r, g, b;
836 
837  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
838  r = AV_RB16(src + xp + 0);
839  g = AV_RB16(src + xp + 1);
840  b = AV_RB16(src + xp + 2);
841  } else {
842  r = AV_RL16(src + xp + 0);
843  g = AV_RL16(src + xp + 1);
844  b = AV_RL16(src + xp + 2);
845  }
846 
847  r = c->rgbgammainv[r>>4];
848  g = c->rgbgammainv[g>>4];
849  b = c->rgbgammainv[b>>4];
850 
851  // convert from sRGBlinear to XYZlinear
852  x = c->rgb2xyz_matrix[0][0] * r +
853  c->rgb2xyz_matrix[0][1] * g +
854  c->rgb2xyz_matrix[0][2] * b >> 12;
855  y = c->rgb2xyz_matrix[1][0] * r +
856  c->rgb2xyz_matrix[1][1] * g +
857  c->rgb2xyz_matrix[1][2] * b >> 12;
858  z = c->rgb2xyz_matrix[2][0] * r +
859  c->rgb2xyz_matrix[2][1] * g +
860  c->rgb2xyz_matrix[2][2] * b >> 12;
861 
862  // limit values to 12-bit depth
863  x = av_clip(x, 0, 4095);
864  y = av_clip(y, 0, 4095);
865  z = av_clip(z, 0, 4095);
866 
867  // convert from XYZlinear to X'Y'Z' and scale from 12bit to 16bit
868  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
869  AV_WB16(dst + xp + 0, c->xyzgammainv[x] << 4);
870  AV_WB16(dst + xp + 1, c->xyzgammainv[y] << 4);
871  AV_WB16(dst + xp + 2, c->xyzgammainv[z] << 4);
872  } else {
873  AV_WL16(dst + xp + 0, c->xyzgammainv[x] << 4);
874  AV_WL16(dst + xp + 1, c->xyzgammainv[y] << 4);
875  AV_WL16(dst + xp + 2, c->xyzgammainv[z] << 4);
876  }
877  }
878  src += stride;
879  dst += stride;
880  }
881 }
882 
883 /**
884  * swscale wrapper, so we don't need to export the SwsContext.
885  * Assumes planar YUV to be in YUV order instead of YVU.
886  */
887 int attribute_align_arg sws_scale(struct SwsContext *c,
888  const uint8_t * const srcSlice[],
889  const int srcStride[], int srcSliceY,
890  int srcSliceH, uint8_t *const dst[],
891  const int dstStride[])
892 {
893  int i, ret;
894  const uint8_t *src2[4];
895  uint8_t *dst2[4];
896  uint8_t *rgb0_tmp = NULL;
897 
898  if (!srcStride || !dstStride || !dst || !srcSlice) {
899  av_log(c, AV_LOG_ERROR, "One of the input parameters to sws_scale() is NULL, please check the calling code\n");
900  return 0;
901  }
902  memcpy(src2, srcSlice, sizeof(src2));
903  memcpy(dst2, dst, sizeof(dst2));
904 
905  // do not mess up sliceDir if we have a "trailing" 0-size slice
906  if (srcSliceH == 0)
907  return 0;
908 
909  if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {
910  av_log(c, AV_LOG_ERROR, "bad src image pointers\n");
911  return 0;
912  }
913  if (!check_image_pointers((const uint8_t* const*)dst, c->dstFormat, dstStride)) {
914  av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");
915  return 0;
916  }
917 
918  if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
919  av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
920  return 0;
921  }
922  if (c->sliceDir == 0) {
923  if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
924  }
925 
926  if (usePal(c->srcFormat)) {
927  for (i = 0; i < 256; i++) {
928  int r, g, b, y, u, v, a = 0xff;
929  if (c->srcFormat == AV_PIX_FMT_PAL8) {
930  uint32_t p = ((const uint32_t *)(srcSlice[1]))[i];
931  a = (p >> 24) & 0xFF;
932  r = (p >> 16) & 0xFF;
933  g = (p >> 8) & 0xFF;
934  b = p & 0xFF;
935  } else if (c->srcFormat == AV_PIX_FMT_RGB8) {
936  r = ( i >> 5 ) * 36;
937  g = ((i >> 2) & 7) * 36;
938  b = ( i & 3) * 85;
939  } else if (c->srcFormat == AV_PIX_FMT_BGR8) {
940  b = ( i >> 6 ) * 85;
941  g = ((i >> 3) & 7) * 36;
942  r = ( i & 7) * 36;
943  } else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) {
944  r = ( i >> 3 ) * 255;
945  g = ((i >> 1) & 3) * 85;
946  b = ( i & 1) * 255;
947  } else if (c->srcFormat == AV_PIX_FMT_GRAY8 || c->srcFormat == AV_PIX_FMT_GRAY8A) {
948  r = g = b = i;
949  } else {
951  b = ( i >> 3 ) * 255;
952  g = ((i >> 1) & 3) * 85;
953  r = ( i & 1) * 255;
954  }
955 #define RGB2YUV_SHIFT 15
956 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
957 #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
958 #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
959 #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
960 #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
961 #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
962 #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
963 #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
964 #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
965 
966  y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
967  u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
968  v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
969  c->pal_yuv[i]= y + (u<<8) + (v<<16) + ((unsigned)a<<24);
970 
971  switch (c->dstFormat) {
972  case AV_PIX_FMT_BGR32:
973 #if !HAVE_BIGENDIAN
974  case AV_PIX_FMT_RGB24:
975 #endif
976  c->pal_rgb[i]= r + (g<<8) + (b<<16) + ((unsigned)a<<24);
977  break;
978  case AV_PIX_FMT_BGR32_1:
979 #if HAVE_BIGENDIAN
980  case AV_PIX_FMT_BGR24:
981 #endif
982  c->pal_rgb[i]= a + (r<<8) + (g<<16) + ((unsigned)b<<24);
983  break;
984  case AV_PIX_FMT_RGB32_1:
985 #if HAVE_BIGENDIAN
986  case AV_PIX_FMT_RGB24:
987 #endif
988  c->pal_rgb[i]= a + (b<<8) + (g<<16) + ((unsigned)r<<24);
989  break;
990  case AV_PIX_FMT_RGB32:
991 #if !HAVE_BIGENDIAN
992  case AV_PIX_FMT_BGR24:
993 #endif
994  default:
995  c->pal_rgb[i]= b + (g<<8) + (r<<16) + ((unsigned)a<<24);
996  }
997  }
998  }
999 
1000  if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) {
1001  uint8_t *base;
1002  int x,y;
1003  rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
1004  if (!rgb0_tmp)
1005  return AVERROR(ENOMEM);
1006 
1007  base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
1008  for (y=0; y<srcSliceH; y++){
1009  memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW);
1010  for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) {
1011  base[ srcStride[0]*y + x] = 0xFF;
1012  }
1013  }
1014  src2[0] = base;
1015  }
1016 
1017  if (c->srcXYZ && !(c->dstXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
1018  uint8_t *base;
1019  rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
1020  if (!rgb0_tmp)
1021  return AVERROR(ENOMEM);
1022 
1023  base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
1024 
1025  xyz12Torgb48(c, (uint16_t*)base, (const uint16_t*)src2[0], srcStride[0]/2, srcSliceH);
1026  src2[0] = base;
1027  }
1028 
1029  if (!srcSliceY && (c->flags & SWS_BITEXACT) && c->dither == SWS_DITHER_ED && c->dither_error[0])
1030  for (i = 0; i < 4; i++)
1031  memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (c->dstW+2));
1032 
1033 
1034  // copy strides, so they can safely be modified
1035  if (c->sliceDir == 1) {
1036  // slices go from top to bottom
1037  int srcStride2[4] = { srcStride[0], srcStride[1], srcStride[2],
1038  srcStride[3] };
1039  int dstStride2[4] = { dstStride[0], dstStride[1], dstStride[2],
1040  dstStride[3] };
1041 
1042  reset_ptr(src2, c->srcFormat);
1043  reset_ptr((void*)dst2, c->dstFormat);
1044 
1045  /* reset slice direction at end of frame */
1046  if (srcSliceY + srcSliceH == c->srcH)
1047  c->sliceDir = 0;
1048 
1049  ret = c->swscale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2,
1050  dstStride2);
1051  } else {
1052  // slices go from bottom to top => we flip the image internally
1053  int srcStride2[4] = { -srcStride[0], -srcStride[1], -srcStride[2],
1054  -srcStride[3] };
1055  int dstStride2[4] = { -dstStride[0], -dstStride[1], -dstStride[2],
1056  -dstStride[3] };
1057 
1058  src2[0] += (srcSliceH - 1) * srcStride[0];
1059  if (!usePal(c->srcFormat))
1060  src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];
1061  src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];
1062  src2[3] += (srcSliceH - 1) * srcStride[3];
1063  dst2[0] += ( c->dstH - 1) * dstStride[0];
1064  dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];
1065  dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];
1066  dst2[3] += ( c->dstH - 1) * dstStride[3];
1067 
1068  reset_ptr(src2, c->srcFormat);
1069  reset_ptr((void*)dst2, c->dstFormat);
1070 
1071  /* reset slice direction at end of frame */
1072  if (!srcSliceY)
1073  c->sliceDir = 0;
1074 
1075  ret = c->swscale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH,
1076  srcSliceH, dst2, dstStride2);
1077  }
1078 
1079 
1080  if (c->dstXYZ && !(c->srcXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
1081  /* replace on the same data */
1082  rgb48Toxyz12(c, (uint16_t*)dst2[0], (const uint16_t*)dst2[0], dstStride[0]/2, ret);
1083  }
1084 
1085  av_free(rgb0_tmp);
1086  return ret;
1087 }
1088