FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
swscale.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include <inttypes.h>
22 #include <math.h>
23 #include <stdio.h>
24 #include <string.h>
25 
26 #include "libavutil/avassert.h"
27 #include "libavutil/avutil.h"
28 #include "libavutil/bswap.h"
29 #include "libavutil/cpu.h"
30 #include "libavutil/intreadwrite.h"
31 #include "libavutil/mathematics.h"
32 #include "libavutil/pixdesc.h"
33 #include "config.h"
34 #include "rgb2rgb.h"
35 #include "swscale_internal.h"
36 #include "swscale.h"
37 
39  { 36, 68, 60, 92, 34, 66, 58, 90, },
40  { 100, 4, 124, 28, 98, 2, 122, 26, },
41  { 52, 84, 44, 76, 50, 82, 42, 74, },
42  { 116, 20, 108, 12, 114, 18, 106, 10, },
43  { 32, 64, 56, 88, 38, 70, 62, 94, },
44  { 96, 0, 120, 24, 102, 6, 126, 30, },
45  { 48, 80, 40, 72, 54, 86, 46, 78, },
46  { 112, 16, 104, 8, 118, 22, 110, 14, },
47  { 36, 68, 60, 92, 34, 66, 58, 90, },
48 };
49 
50 DECLARE_ALIGNED(8, static const uint8_t, sws_pb_64)[8] = {
51  64, 64, 64, 64, 64, 64, 64, 64
52 };
53 
54 static av_always_inline void fillPlane(uint8_t *plane, int stride, int width,
55  int height, int y, uint8_t val)
56 {
57  int i;
58  uint8_t *ptr = plane + stride * y;
59  for (i = 0; i < height; i++) {
60  memset(ptr, val, width);
61  ptr += stride;
62  }
63 }
64 
65 static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW,
66  const uint8_t *_src, const int16_t *filter,
67  const int32_t *filterPos, int filterSize)
68 {
70  int i;
71  int32_t *dst = (int32_t *) _dst;
72  const uint16_t *src = (const uint16_t *) _src;
73  int bits = desc->comp[0].depth_minus1;
74  int sh = bits - 4;
75 
76  if((isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8) && desc->comp[0].depth_minus1<15)
77  sh= 9;
78 
79  for (i = 0; i < dstW; i++) {
80  int j;
81  int srcPos = filterPos[i];
82  int val = 0;
83 
84  for (j = 0; j < filterSize; j++) {
85  val += src[srcPos + j] * filter[filterSize * i + j];
86  }
87  // filter=14 bit, input=16 bit, output=30 bit, >> 11 makes 19 bit
88  dst[i] = FFMIN(val >> sh, (1 << 19) - 1);
89  }
90 }
91 
92 static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW,
93  const uint8_t *_src, const int16_t *filter,
94  const int32_t *filterPos, int filterSize)
95 {
97  int i;
98  const uint16_t *src = (const uint16_t *) _src;
99  int sh = desc->comp[0].depth_minus1;
100 
101  if(sh<15)
102  sh= isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8 ? 13 : desc->comp[0].depth_minus1;
103 
104  for (i = 0; i < dstW; i++) {
105  int j;
106  int srcPos = filterPos[i];
107  int val = 0;
108 
109  for (j = 0; j < filterSize; j++) {
110  val += src[srcPos + j] * filter[filterSize * i + j];
111  }
112  // filter=14 bit, input=16 bit, output=30 bit, >> 15 makes 15 bit
113  dst[i] = FFMIN(val >> sh, (1 << 15) - 1);
114  }
115 }
116 
117 // bilinear / bicubic scaling
118 static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW,
119  const uint8_t *src, const int16_t *filter,
120  const int32_t *filterPos, int filterSize)
121 {
122  int i;
123  for (i = 0; i < dstW; i++) {
124  int j;
125  int srcPos = filterPos[i];
126  int val = 0;
127  for (j = 0; j < filterSize; j++) {
128  val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
129  }
130  dst[i] = FFMIN(val >> 7, (1 << 15) - 1); // the cubic equation does overflow ...
131  }
132 }
133 
134 static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW,
135  const uint8_t *src, const int16_t *filter,
136  const int32_t *filterPos, int filterSize)
137 {
138  int i;
139  int32_t *dst = (int32_t *) _dst;
140  for (i = 0; i < dstW; i++) {
141  int j;
142  int srcPos = filterPos[i];
143  int val = 0;
144  for (j = 0; j < filterSize; j++) {
145  val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
146  }
147  dst[i] = FFMIN(val >> 3, (1 << 19) - 1); // the cubic equation does overflow ...
148  }
149 }
150 
151 // FIXME all pal and rgb srcFormats could do this conversion as well
152 // FIXME all scalers more complex than bilinear could do half of this transform
153 static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
154 {
155  int i;
156  for (i = 0; i < width; i++) {
157  dstU[i] = (FFMIN(dstU[i], 30775) * 4663 - 9289992) >> 12; // -264
158  dstV[i] = (FFMIN(dstV[i], 30775) * 4663 - 9289992) >> 12; // -264
159  }
160 }
161 
162 static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
163 {
164  int i;
165  for (i = 0; i < width; i++) {
166  dstU[i] = (dstU[i] * 1799 + 4081085) >> 11; // 1469
167  dstV[i] = (dstV[i] * 1799 + 4081085) >> 11; // 1469
168  }
169 }
170 
171 static void lumRangeToJpeg_c(int16_t *dst, int width)
172 {
173  int i;
174  for (i = 0; i < width; i++)
175  dst[i] = (FFMIN(dst[i], 30189) * 19077 - 39057361) >> 14;
176 }
177 
178 static void lumRangeFromJpeg_c(int16_t *dst, int width)
179 {
180  int i;
181  for (i = 0; i < width; i++)
182  dst[i] = (dst[i] * 14071 + 33561947) >> 14;
183 }
184 
185 static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
186 {
187  int i;
188  int32_t *dstU = (int32_t *) _dstU;
189  int32_t *dstV = (int32_t *) _dstV;
190  for (i = 0; i < width; i++) {
191  dstU[i] = (FFMIN(dstU[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
192  dstV[i] = (FFMIN(dstV[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
193  }
194 }
195 
196 static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
197 {
198  int i;
199  int32_t *dstU = (int32_t *) _dstU;
200  int32_t *dstV = (int32_t *) _dstV;
201  for (i = 0; i < width; i++) {
202  dstU[i] = (dstU[i] * 1799 + (4081085 << 4)) >> 11; // 1469
203  dstV[i] = (dstV[i] * 1799 + (4081085 << 4)) >> 11; // 1469
204  }
205 }
206 
207 static void lumRangeToJpeg16_c(int16_t *_dst, int width)
208 {
209  int i;
210  int32_t *dst = (int32_t *) _dst;
211  for (i = 0; i < width; i++) {
212  dst[i] = ((int)(FFMIN(dst[i], 30189 << 4) * 4769U - (39057361 << 2))) >> 12;
213  }
214 }
215 
216 static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
217 {
218  int i;
219  int32_t *dst = (int32_t *) _dst;
220  for (i = 0; i < width; i++)
221  dst[i] = (dst[i]*(14071/4) + (33561947<<4)/4)>>12;
222 }
223 
224 static void hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth,
225  const uint8_t *src, int srcW, int xInc)
226 {
227  int i;
228  unsigned int xpos = 0;
229  for (i = 0; i < dstWidth; i++) {
230  register unsigned int xx = xpos >> 16;
231  register unsigned int xalpha = (xpos & 0xFFFF) >> 9;
232  dst[i] = (src[xx] << 7) + (src[xx + 1] - src[xx]) * xalpha;
233  xpos += xInc;
234  }
235  for (i=dstWidth-1; (i*xInc)>>16 >=srcW-1; i--)
236  dst[i] = src[srcW-1]*128;
237 }
238 
239 // *** horizontal scale Y line to temp buffer
240 static av_always_inline void hyscale(SwsContext *c, int16_t *dst, int dstWidth,
241  const uint8_t *src_in[4],
242  int srcW, int xInc,
243  const int16_t *hLumFilter,
244  const int32_t *hLumFilterPos,
245  int hLumFilterSize,
247  uint32_t *pal, int isAlpha)
248 {
249  void (*toYV12)(uint8_t *, const uint8_t *, const uint8_t *, const uint8_t *, int, uint32_t *) =
250  isAlpha ? c->alpToYV12 : c->lumToYV12;
251  void (*convertRange)(int16_t *, int) = isAlpha ? NULL : c->lumConvertRange;
252  const uint8_t *src = src_in[isAlpha ? 3 : 0];
253 
254  if (toYV12) {
255  toYV12(formatConvBuffer, src, src_in[1], src_in[2], srcW, pal);
257  } else if (c->readLumPlanar && !isAlpha) {
258  c->readLumPlanar(formatConvBuffer, src_in, srcW, c->input_rgb2yuv_table);
260  } else if (c->readAlpPlanar && isAlpha) {
261  c->readAlpPlanar(formatConvBuffer, src_in, srcW, NULL);
263  }
264 
265  if (!c->hyscale_fast) {
266  c->hyScale(c, dst, dstWidth, src, hLumFilter,
267  hLumFilterPos, hLumFilterSize);
268  } else { // fast bilinear upscale / crap downscale
269  c->hyscale_fast(c, dst, dstWidth, src, srcW, xInc);
270  }
271 
272  if (convertRange)
273  convertRange(dst, dstWidth);
274 }
275 
276 static void hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2,
277  int dstWidth, const uint8_t *src1,
278  const uint8_t *src2, int srcW, int xInc)
279 {
280  int i;
281  unsigned int xpos = 0;
282  for (i = 0; i < dstWidth; i++) {
283  register unsigned int xx = xpos >> 16;
284  register unsigned int xalpha = (xpos & 0xFFFF) >> 9;
285  dst1[i] = (src1[xx] * (xalpha ^ 127) + src1[xx + 1] * xalpha);
286  dst2[i] = (src2[xx] * (xalpha ^ 127) + src2[xx + 1] * xalpha);
287  xpos += xInc;
288  }
289  for (i=dstWidth-1; (i*xInc)>>16 >=srcW-1; i--) {
290  dst1[i] = src1[srcW-1]*128;
291  dst2[i] = src2[srcW-1]*128;
292  }
293 }
294 
295 static av_always_inline void hcscale(SwsContext *c, int16_t *dst1,
296  int16_t *dst2, int dstWidth,
297  const uint8_t *src_in[4],
298  int srcW, int xInc,
299  const int16_t *hChrFilter,
300  const int32_t *hChrFilterPos,
301  int hChrFilterSize,
302  uint8_t *formatConvBuffer, uint32_t *pal)
303 {
304  const uint8_t *src1 = src_in[1], *src2 = src_in[2];
305  if (c->chrToYV12) {
306  uint8_t *buf2 = formatConvBuffer +
307  FFALIGN(srcW*2+78, 16);
308  c->chrToYV12(formatConvBuffer, buf2, src_in[0], src1, src2, srcW, pal);
309  src1= formatConvBuffer;
310  src2= buf2;
311  } else if (c->readChrPlanar) {
312  uint8_t *buf2 = formatConvBuffer +
313  FFALIGN(srcW*2+78, 16);
314  c->readChrPlanar(formatConvBuffer, buf2, src_in, srcW, c->input_rgb2yuv_table);
315  src1 = formatConvBuffer;
316  src2 = buf2;
317  }
318 
319  if (!c->hcscale_fast) {
320  c->hcScale(c, dst1, dstWidth, src1, hChrFilter, hChrFilterPos, hChrFilterSize);
321  c->hcScale(c, dst2, dstWidth, src2, hChrFilter, hChrFilterPos, hChrFilterSize);
322  } else { // fast bilinear upscale / crap downscale
323  c->hcscale_fast(c, dst1, dst2, dstWidth, src1, src2, srcW, xInc);
324  }
325 
326  if (c->chrConvertRange)
327  c->chrConvertRange(dst1, dst2, dstWidth);
328 }
329 
330 #define DEBUG_SWSCALE_BUFFERS 0
331 #define DEBUG_BUFFERS(...) \
332  if (DEBUG_SWSCALE_BUFFERS) \
333  av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
334 
335 static int swscale(SwsContext *c, const uint8_t *src[],
336  int srcStride[], int srcSliceY,
337  int srcSliceH, uint8_t *dst[], int dstStride[])
338 {
339  /* load a few things into local vars to make the code more readable?
340  * and faster */
341  const int srcW = c->srcW;
342  const int dstW = c->dstW;
343  const int dstH = c->dstH;
344  const int chrDstW = c->chrDstW;
345  const int chrSrcW = c->chrSrcW;
346  const int lumXInc = c->lumXInc;
347  const int chrXInc = c->chrXInc;
348  const enum AVPixelFormat dstFormat = c->dstFormat;
349  const int flags = c->flags;
354  int16_t *hLumFilter = c->hLumFilter;
355  int16_t *hChrFilter = c->hChrFilter;
358  const int vLumFilterSize = c->vLumFilterSize;
359  const int vChrFilterSize = c->vChrFilterSize;
360  const int hLumFilterSize = c->hLumFilterSize;
361  const int hChrFilterSize = c->hChrFilterSize;
362  int16_t **lumPixBuf = c->lumPixBuf;
363  int16_t **chrUPixBuf = c->chrUPixBuf;
364  int16_t **chrVPixBuf = c->chrVPixBuf;
365  int16_t **alpPixBuf = c->alpPixBuf;
366  const int vLumBufSize = c->vLumBufSize;
367  const int vChrBufSize = c->vChrBufSize;
369  uint32_t *pal = c->pal_yuv;
377  const int chrSrcSliceY = srcSliceY >> c->chrSrcVSubSample;
378  const int chrSrcSliceH = FF_CEIL_RSHIFT(srcSliceH, c->chrSrcVSubSample);
379  int should_dither = is9_OR_10BPS(c->srcFormat) ||
380  is16BPS(c->srcFormat);
381  int lastDstY;
382 
383  /* vars which will change and which we need to store back in the context */
384  int dstY = c->dstY;
385  int lumBufIndex = c->lumBufIndex;
386  int chrBufIndex = c->chrBufIndex;
387  int lastInLumBuf = c->lastInLumBuf;
388  int lastInChrBuf = c->lastInChrBuf;
389 
390  if (!usePal(c->srcFormat)) {
391  pal = c->input_rgb2yuv_table;
392  }
393 
394  if (isPacked(c->srcFormat)) {
395  src[0] =
396  src[1] =
397  src[2] =
398  src[3] = src[0];
399  srcStride[0] =
400  srcStride[1] =
401  srcStride[2] =
402  srcStride[3] = srcStride[0];
403  }
404  srcStride[1] <<= c->vChrDrop;
405  srcStride[2] <<= c->vChrDrop;
406 
407  DEBUG_BUFFERS("swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
408  src[0], srcStride[0], src[1], srcStride[1],
409  src[2], srcStride[2], src[3], srcStride[3],
410  dst[0], dstStride[0], dst[1], dstStride[1],
411  dst[2], dstStride[2], dst[3], dstStride[3]);
412  DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
413  srcSliceY, srcSliceH, dstY, dstH);
414  DEBUG_BUFFERS("vLumFilterSize: %d vLumBufSize: %d vChrFilterSize: %d vChrBufSize: %d\n",
415  vLumFilterSize, vLumBufSize, vChrFilterSize, vChrBufSize);
416 
417  if (dstStride[0]%16 !=0 || dstStride[1]%16 !=0 ||
418  dstStride[2]%16 !=0 || dstStride[3]%16 != 0) {
419  static int warnedAlready = 0; // FIXME maybe move this into the context
420  if (flags & SWS_PRINT_INFO && !warnedAlready) {
422  "Warning: dstStride is not aligned!\n"
423  " ->cannot do aligned memory accesses anymore\n");
424  warnedAlready = 1;
425  }
426  }
427 
428  if ( (uintptr_t)dst[0]%16 || (uintptr_t)dst[1]%16 || (uintptr_t)dst[2]%16
429  || (uintptr_t)src[0]%16 || (uintptr_t)src[1]%16 || (uintptr_t)src[2]%16
430  || dstStride[0]%16 || dstStride[1]%16 || dstStride[2]%16 || dstStride[3]%16
431  || srcStride[0]%16 || srcStride[1]%16 || srcStride[2]%16 || srcStride[3]%16
432  ) {
433  static int warnedAlready=0;
434  int cpu_flags = av_get_cpu_flags();
435  if (HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) && !warnedAlready){
436  av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speedloss\n");
437  warnedAlready=1;
438  }
439  }
440 
441  /* Note the user might start scaling the picture in the middle so this
442  * will not get executed. This is not really intended but works
443  * currently, so people might do it. */
444  if (srcSliceY == 0) {
445  lumBufIndex = -1;
446  chrBufIndex = -1;
447  dstY = 0;
448  lastInLumBuf = -1;
449  lastInChrBuf = -1;
450  }
451 
452  if (!should_dither) {
453  c->chrDither8 = c->lumDither8 = sws_pb_64;
454  }
455  lastDstY = dstY;
456 
457  for (; dstY < dstH; dstY++) {
458  const int chrDstY = dstY >> c->chrDstVSubSample;
459  uint8_t *dest[4] = {
460  dst[0] + dstStride[0] * dstY,
461  dst[1] + dstStride[1] * chrDstY,
462  dst[2] + dstStride[2] * chrDstY,
463  (CONFIG_SWSCALE_ALPHA && alpPixBuf) ? dst[3] + dstStride[3] * dstY : NULL,
464  };
466 
467  // First line needed as input
468  const int firstLumSrcY = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
469  const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), dstH - 1)]);
470  // First line needed as input
471  const int firstChrSrcY = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
472 
473  // Last line needed as input
474  int lastLumSrcY = FFMIN(c->srcH, firstLumSrcY + vLumFilterSize) - 1;
475  int lastLumSrcY2 = FFMIN(c->srcH, firstLumSrcY2 + vLumFilterSize) - 1;
476  int lastChrSrcY = FFMIN(c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
477  int enough_lines;
478 
479  // handle holes (FAST_BILINEAR & weird filters)
480  if (firstLumSrcY > lastInLumBuf)
481  lastInLumBuf = firstLumSrcY - 1;
482  if (firstChrSrcY > lastInChrBuf)
483  lastInChrBuf = firstChrSrcY - 1;
484  av_assert0(firstLumSrcY >= lastInLumBuf - vLumBufSize + 1);
485  av_assert0(firstChrSrcY >= lastInChrBuf - vChrBufSize + 1);
486 
487  DEBUG_BUFFERS("dstY: %d\n", dstY);
488  DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
489  firstLumSrcY, lastLumSrcY, lastInLumBuf);
490  DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
491  firstChrSrcY, lastChrSrcY, lastInChrBuf);
492 
493  // Do we have enough lines in this slice to output the dstY line
494  enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&
495  lastChrSrcY < FF_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample);
496 
497  if (!enough_lines) {
498  lastLumSrcY = srcSliceY + srcSliceH - 1;
499  lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
500  DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
501  lastLumSrcY, lastChrSrcY);
502  }
503 
504  // Do horizontal scaling
505  while (lastInLumBuf < lastLumSrcY) {
506  const uint8_t *src1[4] = {
507  src[0] + (lastInLumBuf + 1 - srcSliceY) * srcStride[0],
508  src[1] + (lastInLumBuf + 1 - srcSliceY) * srcStride[1],
509  src[2] + (lastInLumBuf + 1 - srcSliceY) * srcStride[2],
510  src[3] + (lastInLumBuf + 1 - srcSliceY) * srcStride[3],
511  };
512  lumBufIndex++;
513  av_assert0(lumBufIndex < 2 * vLumBufSize);
514  av_assert0(lastInLumBuf + 1 - srcSliceY < srcSliceH);
515  av_assert0(lastInLumBuf + 1 - srcSliceY >= 0);
516  hyscale(c, lumPixBuf[lumBufIndex], dstW, src1, srcW, lumXInc,
517  hLumFilter, hLumFilterPos, hLumFilterSize,
518  formatConvBuffer, pal, 0);
519  if (CONFIG_SWSCALE_ALPHA && alpPixBuf)
520  hyscale(c, alpPixBuf[lumBufIndex], dstW, src1, srcW,
521  lumXInc, hLumFilter, hLumFilterPos, hLumFilterSize,
522  formatConvBuffer, pal, 1);
523  lastInLumBuf++;
524  DEBUG_BUFFERS("\t\tlumBufIndex %d: lastInLumBuf: %d\n",
525  lumBufIndex, lastInLumBuf);
526  }
527  while (lastInChrBuf < lastChrSrcY) {
528  const uint8_t *src1[4] = {
529  src[0] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[0],
530  src[1] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[1],
531  src[2] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[2],
532  src[3] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[3],
533  };
534  chrBufIndex++;
535  av_assert0(chrBufIndex < 2 * vChrBufSize);
536  av_assert0(lastInChrBuf + 1 - chrSrcSliceY < (chrSrcSliceH));
537  av_assert0(lastInChrBuf + 1 - chrSrcSliceY >= 0);
538  // FIXME replace parameters through context struct (some at least)
539 
540  if (c->needs_hcscale)
541  hcscale(c, chrUPixBuf[chrBufIndex], chrVPixBuf[chrBufIndex],
542  chrDstW, src1, chrSrcW, chrXInc,
543  hChrFilter, hChrFilterPos, hChrFilterSize,
544  formatConvBuffer, pal);
545  lastInChrBuf++;
546  DEBUG_BUFFERS("\t\tchrBufIndex %d: lastInChrBuf: %d\n",
547  chrBufIndex, lastInChrBuf);
548  }
549  // wrap buf index around to stay inside the ring buffer
550  if (lumBufIndex >= vLumBufSize)
551  lumBufIndex -= vLumBufSize;
552  if (chrBufIndex >= vChrBufSize)
553  chrBufIndex -= vChrBufSize;
554  if (!enough_lines)
555  break; // we can't output a dstY line so let's try with the next slice
556 
557 #if HAVE_MMX_INLINE
558  updateMMXDitherTables(c, dstY, lumBufIndex, chrBufIndex,
559  lastInLumBuf, lastInChrBuf);
560 #endif
561  if (should_dither) {
562  c->chrDither8 = ff_dither_8x8_128[chrDstY & 7];
563  c->lumDither8 = ff_dither_8x8_128[dstY & 7];
564  }
565  if (dstY >= dstH - 2) {
566  /* hmm looks like we can't use MMX here without overwriting
567  * this array's tail */
568  ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX,
569  &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
570  use_mmx_vfilter= 0;
571  }
572 
573  {
574  const int16_t **lumSrcPtr = (const int16_t **)(void*) lumPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize;
575  const int16_t **chrUSrcPtr = (const int16_t **)(void*) chrUPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
576  const int16_t **chrVSrcPtr = (const int16_t **)(void*) chrVPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
577  const int16_t **alpSrcPtr = (CONFIG_SWSCALE_ALPHA && alpPixBuf) ?
578  (const int16_t **)(void*) alpPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize : NULL;
579  int16_t *vLumFilter = c->vLumFilter;
580  int16_t *vChrFilter = c->vChrFilter;
581 
582  if (isPlanarYUV(dstFormat) ||
583  (isGray(dstFormat) && !isALPHA(dstFormat))) { // YV12 like
584  const int chrSkipMask = (1 << c->chrDstVSubSample) - 1;
585 
586  vLumFilter += dstY * vLumFilterSize;
587  vChrFilter += chrDstY * vChrFilterSize;
588 
589 // av_assert0(use_mmx_vfilter != (
590 // yuv2planeX == yuv2planeX_10BE_c
591 // || yuv2planeX == yuv2planeX_10LE_c
592 // || yuv2planeX == yuv2planeX_9BE_c
593 // || yuv2planeX == yuv2planeX_9LE_c
594 // || yuv2planeX == yuv2planeX_16BE_c
595 // || yuv2planeX == yuv2planeX_16LE_c
596 // || yuv2planeX == yuv2planeX_8_c) || !ARCH_X86);
597 
598  if(use_mmx_vfilter){
599  vLumFilter= (int16_t *)c->lumMmxFilter;
600  vChrFilter= (int16_t *)c->chrMmxFilter;
601  }
602 
603  if (vLumFilterSize == 1) {
604  yuv2plane1(lumSrcPtr[0], dest[0], dstW, c->lumDither8, 0);
605  } else {
606  yuv2planeX(vLumFilter, vLumFilterSize,
607  lumSrcPtr, dest[0],
608  dstW, c->lumDither8, 0);
609  }
610 
611  if (!((dstY & chrSkipMask) || isGray(dstFormat))) {
612  if (yuv2nv12cX) {
613  yuv2nv12cX(c, vChrFilter,
614  vChrFilterSize, chrUSrcPtr, chrVSrcPtr,
615  dest[1], chrDstW);
616  } else if (vChrFilterSize == 1) {
617  yuv2plane1(chrUSrcPtr[0], dest[1], chrDstW, c->chrDither8, 0);
618  yuv2plane1(chrVSrcPtr[0], dest[2], chrDstW, c->chrDither8, 3);
619  } else {
620  yuv2planeX(vChrFilter,
621  vChrFilterSize, chrUSrcPtr, dest[1],
622  chrDstW, c->chrDither8, 0);
623  yuv2planeX(vChrFilter,
624  vChrFilterSize, chrVSrcPtr, dest[2],
625  chrDstW, c->chrDither8, use_mmx_vfilter ? (c->uv_offx2 >> 1) : 3);
626  }
627  }
628 
629  if (CONFIG_SWSCALE_ALPHA && alpPixBuf) {
630  if(use_mmx_vfilter){
631  vLumFilter= (int16_t *)c->alpMmxFilter;
632  }
633  if (vLumFilterSize == 1) {
634  yuv2plane1(alpSrcPtr[0], dest[3], dstW,
635  c->lumDither8, 0);
636  } else {
637  yuv2planeX(vLumFilter,
638  vLumFilterSize, alpSrcPtr, dest[3],
639  dstW, c->lumDither8, 0);
640  }
641  }
642  } else if (yuv2packedX) {
643  av_assert1(lumSrcPtr + vLumFilterSize - 1 < (const int16_t **)lumPixBuf + vLumBufSize * 2);
644  av_assert1(chrUSrcPtr + vChrFilterSize - 1 < (const int16_t **)chrUPixBuf + vChrBufSize * 2);
645  if (c->yuv2packed1 && vLumFilterSize == 1 &&
646  vChrFilterSize <= 2) { // unscaled RGB
647  int chrAlpha = vChrFilterSize == 1 ? 0 : vChrFilter[2 * dstY + 1];
648  yuv2packed1(c, *lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
649  alpPixBuf ? *alpSrcPtr : NULL,
650  dest[0], dstW, chrAlpha, dstY);
651  } else if (c->yuv2packed2 && vLumFilterSize == 2 &&
652  vChrFilterSize == 2) { // bilinear upscale RGB
653  int lumAlpha = vLumFilter[2 * dstY + 1];
654  int chrAlpha = vChrFilter[2 * dstY + 1];
655  lumMmxFilter[2] =
656  lumMmxFilter[3] = vLumFilter[2 * dstY] * 0x10001;
657  chrMmxFilter[2] =
658  chrMmxFilter[3] = vChrFilter[2 * chrDstY] * 0x10001;
659  yuv2packed2(c, lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
660  alpPixBuf ? alpSrcPtr : NULL,
661  dest[0], dstW, lumAlpha, chrAlpha, dstY);
662  } else { // general RGB
663  yuv2packedX(c, vLumFilter + dstY * vLumFilterSize,
664  lumSrcPtr, vLumFilterSize,
665  vChrFilter + dstY * vChrFilterSize,
666  chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
667  alpSrcPtr, dest[0], dstW, dstY);
668  }
669  } else {
670  av_assert1(!yuv2packed1 && !yuv2packed2);
671  yuv2anyX(c, vLumFilter + dstY * vLumFilterSize,
672  lumSrcPtr, vLumFilterSize,
673  vChrFilter + dstY * vChrFilterSize,
674  chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
675  alpSrcPtr, dest, dstW, dstY);
676  }
677  }
678  }
679  if (isPlanar(dstFormat) && isALPHA(dstFormat) && !alpPixBuf) {
680  int length = dstW;
681  int height = dstY - lastDstY;
682 
683  if (is16BPS(dstFormat) || isNBPS(dstFormat)) {
684  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat);
685  fillPlane16(dst[3], dstStride[3], length, height, lastDstY,
686  1, desc->comp[3].depth_minus1,
687  isBE(dstFormat));
688  } else
689  fillPlane(dst[3], dstStride[3], length, height, lastDstY, 255);
690  }
691 
692 #if HAVE_MMXEXT_INLINE
694  __asm__ volatile ("sfence" ::: "memory");
695 #endif
696  emms_c();
697 
698  /* store changed local vars back in the context */
699  c->dstY = dstY;
704 
705  return dstY - lastDstY;
706 }
707 
709 {
710  c->lumConvertRange = NULL;
711  c->chrConvertRange = NULL;
712  if (c->srcRange != c->dstRange && !isAnyRGB(c->dstFormat)) {
713  if (c->dstBpc <= 14) {
714  if (c->srcRange) {
717  } else {
720  }
721  } else {
722  if (c->srcRange) {
725  } else {
728  }
729  }
730  }
731 }
732 
734 {
736 
738  &c->yuv2nv12cX, &c->yuv2packed1,
739  &c->yuv2packed2, &c->yuv2packedX, &c->yuv2anyX);
740 
742 
743 
744  if (c->srcBpc == 8) {
745  if (c->dstBpc <= 14) {
746  c->hyScale = c->hcScale = hScale8To15_c;
747  if (c->flags & SWS_FAST_BILINEAR) {
750  }
751  } else {
752  c->hyScale = c->hcScale = hScale8To19_c;
753  }
754  } else {
755  c->hyScale = c->hcScale = c->dstBpc > 14 ? hScale16To19_c
756  : hScale16To15_c;
757  }
758 
760 
761  if (!(isGray(srcFormat) || isGray(c->dstFormat) ||
762  srcFormat == AV_PIX_FMT_MONOBLACK || srcFormat == AV_PIX_FMT_MONOWHITE))
763  c->needs_hcscale = 1;
764 }
765 
767 {
768  sws_init_swscale(c);
769 
770  if (ARCH_PPC)
772  if (ARCH_X86)
774 
775  return swscale;
776 }
777 
778 static void reset_ptr(const uint8_t *src[], int format)
779 {
780  if (!isALPHA(format))
781  src[3] = NULL;
782  if (!isPlanar(format)) {
783  src[3] = src[2] = NULL;
784 
785  if (!usePal(format))
786  src[1] = NULL;
787  }
788 }
789 
790 static int check_image_pointers(const uint8_t * const data[4], enum AVPixelFormat pix_fmt,
791  const int linesizes[4])
792 {
793  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
794  int i;
795 
796  for (i = 0; i < 4; i++) {
797  int plane = desc->comp[i].plane;
798  if (!data[plane] || !linesizes[plane])
799  return 0;
800  }
801 
802  return 1;
803 }
804 
805 static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst,
806  const uint16_t *src, int stride, int h)
807 {
808  int xp,yp;
810 
811  for (yp=0; yp<h; yp++) {
812  for (xp=0; xp+2<stride; xp+=3) {
813  int x, y, z, r, g, b;
814 
815  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
816  x = AV_RB16(src + xp + 0);
817  y = AV_RB16(src + xp + 1);
818  z = AV_RB16(src + xp + 2);
819  } else {
820  x = AV_RL16(src + xp + 0);
821  y = AV_RL16(src + xp + 1);
822  z = AV_RL16(src + xp + 2);
823  }
824 
825  x = c->xyzgamma[x>>4];
826  y = c->xyzgamma[y>>4];
827  z = c->xyzgamma[z>>4];
828 
829  // convert from XYZlinear to sRGBlinear
830  r = c->xyz2rgb_matrix[0][0] * x +
831  c->xyz2rgb_matrix[0][1] * y +
832  c->xyz2rgb_matrix[0][2] * z >> 12;
833  g = c->xyz2rgb_matrix[1][0] * x +
834  c->xyz2rgb_matrix[1][1] * y +
835  c->xyz2rgb_matrix[1][2] * z >> 12;
836  b = c->xyz2rgb_matrix[2][0] * x +
837  c->xyz2rgb_matrix[2][1] * y +
838  c->xyz2rgb_matrix[2][2] * z >> 12;
839 
840  // limit values to 12-bit depth
841  r = av_clip_c(r,0,4095);
842  g = av_clip_c(g,0,4095);
843  b = av_clip_c(b,0,4095);
844 
845  // convert from sRGBlinear to RGB and scale from 12bit to 16bit
846  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
847  AV_WB16(dst + xp + 0, c->rgbgamma[r] << 4);
848  AV_WB16(dst + xp + 1, c->rgbgamma[g] << 4);
849  AV_WB16(dst + xp + 2, c->rgbgamma[b] << 4);
850  } else {
851  AV_WL16(dst + xp + 0, c->rgbgamma[r] << 4);
852  AV_WL16(dst + xp + 1, c->rgbgamma[g] << 4);
853  AV_WL16(dst + xp + 2, c->rgbgamma[b] << 4);
854  }
855  }
856  src += stride;
857  dst += stride;
858  }
859 }
860 
861 static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst,
862  const uint16_t *src, int stride, int h)
863 {
864  int xp,yp;
866 
867  for (yp=0; yp<h; yp++) {
868  for (xp=0; xp+2<stride; xp+=3) {
869  int x, y, z, r, g, b;
870 
871  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
872  r = AV_RB16(src + xp + 0);
873  g = AV_RB16(src + xp + 1);
874  b = AV_RB16(src + xp + 2);
875  } else {
876  r = AV_RL16(src + xp + 0);
877  g = AV_RL16(src + xp + 1);
878  b = AV_RL16(src + xp + 2);
879  }
880 
881  r = c->rgbgammainv[r>>4];
882  g = c->rgbgammainv[g>>4];
883  b = c->rgbgammainv[b>>4];
884 
885  // convert from sRGBlinear to XYZlinear
886  x = c->rgb2xyz_matrix[0][0] * r +
887  c->rgb2xyz_matrix[0][1] * g +
888  c->rgb2xyz_matrix[0][2] * b >> 12;
889  y = c->rgb2xyz_matrix[1][0] * r +
890  c->rgb2xyz_matrix[1][1] * g +
891  c->rgb2xyz_matrix[1][2] * b >> 12;
892  z = c->rgb2xyz_matrix[2][0] * r +
893  c->rgb2xyz_matrix[2][1] * g +
894  c->rgb2xyz_matrix[2][2] * b >> 12;
895 
896  // limit values to 12-bit depth
897  x = av_clip_c(x,0,4095);
898  y = av_clip_c(y,0,4095);
899  z = av_clip_c(z,0,4095);
900 
901  // convert from XYZlinear to X'Y'Z' and scale from 12bit to 16bit
902  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
903  AV_WB16(dst + xp + 0, c->xyzgammainv[x] << 4);
904  AV_WB16(dst + xp + 1, c->xyzgammainv[y] << 4);
905  AV_WB16(dst + xp + 2, c->xyzgammainv[z] << 4);
906  } else {
907  AV_WL16(dst + xp + 0, c->xyzgammainv[x] << 4);
908  AV_WL16(dst + xp + 1, c->xyzgammainv[y] << 4);
909  AV_WL16(dst + xp + 2, c->xyzgammainv[z] << 4);
910  }
911  }
912  src += stride;
913  dst += stride;
914  }
915 }
916 
917 /**
918  * swscale wrapper, so we don't need to export the SwsContext.
919  * Assumes planar YUV to be in YUV order instead of YVU.
920  */
921 int attribute_align_arg sws_scale(struct SwsContext *c,
922  const uint8_t * const srcSlice[],
923  const int srcStride[], int srcSliceY,
924  int srcSliceH, uint8_t *const dst[],
925  const int dstStride[])
926 {
927  int i, ret;
928  const uint8_t *src2[4];
929  uint8_t *dst2[4];
930  uint8_t *rgb0_tmp = NULL;
931 
932  if (!srcStride || !dstStride || !dst || !srcSlice) {
933  av_log(c, AV_LOG_ERROR, "One of the input parameters to sws_scale() is NULL, please check the calling code\n");
934  return 0;
935  }
936  memcpy(src2, srcSlice, sizeof(src2));
937  memcpy(dst2, dst, sizeof(dst2));
938 
939  // do not mess up sliceDir if we have a "trailing" 0-size slice
940  if (srcSliceH == 0)
941  return 0;
942 
943  if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {
944  av_log(c, AV_LOG_ERROR, "bad src image pointers\n");
945  return 0;
946  }
947  if (!check_image_pointers((const uint8_t* const*)dst, c->dstFormat, dstStride)) {
948  av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");
949  return 0;
950  }
951 
952  if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
953  av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
954  return 0;
955  }
956  if (c->sliceDir == 0) {
957  if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
958  }
959 
960  if (usePal(c->srcFormat)) {
961  for (i = 0; i < 256; i++) {
962  int r, g, b, y, u, v, a = 0xff;
963  if (c->srcFormat == AV_PIX_FMT_PAL8) {
964  uint32_t p = ((const uint32_t *)(srcSlice[1]))[i];
965  a = (p >> 24) & 0xFF;
966  r = (p >> 16) & 0xFF;
967  g = (p >> 8) & 0xFF;
968  b = p & 0xFF;
969  } else if (c->srcFormat == AV_PIX_FMT_RGB8) {
970  r = ( i >> 5 ) * 36;
971  g = ((i >> 2) & 7) * 36;
972  b = ( i & 3) * 85;
973  } else if (c->srcFormat == AV_PIX_FMT_BGR8) {
974  b = ( i >> 6 ) * 85;
975  g = ((i >> 3) & 7) * 36;
976  r = ( i & 7) * 36;
977  } else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) {
978  r = ( i >> 3 ) * 255;
979  g = ((i >> 1) & 3) * 85;
980  b = ( i & 1) * 255;
981  } else if (c->srcFormat == AV_PIX_FMT_GRAY8 || c->srcFormat == AV_PIX_FMT_GRAY8A) {
982  r = g = b = i;
983  } else {
985  b = ( i >> 3 ) * 255;
986  g = ((i >> 1) & 3) * 85;
987  r = ( i & 1) * 255;
988  }
989 #define RGB2YUV_SHIFT 15
990 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
991 #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
992 #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
993 #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
994 #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
995 #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
996 #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
997 #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
998 #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
999 
1000  y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
1001  u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
1002  v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
1003  c->pal_yuv[i]= y + (u<<8) + (v<<16) + ((unsigned)a<<24);
1004 
1005  switch (c->dstFormat) {
1006  case AV_PIX_FMT_BGR32:
1007 #if !HAVE_BIGENDIAN
1008  case AV_PIX_FMT_RGB24:
1009 #endif
1010  c->pal_rgb[i]= r + (g<<8) + (b<<16) + ((unsigned)a<<24);
1011  break;
1012  case AV_PIX_FMT_BGR32_1:
1013 #if HAVE_BIGENDIAN
1014  case AV_PIX_FMT_BGR24:
1015 #endif
1016  c->pal_rgb[i]= a + (r<<8) + (g<<16) + ((unsigned)b<<24);
1017  break;
1018  case AV_PIX_FMT_RGB32_1:
1019 #if HAVE_BIGENDIAN
1020  case AV_PIX_FMT_RGB24:
1021 #endif
1022  c->pal_rgb[i]= a + (b<<8) + (g<<16) + ((unsigned)r<<24);
1023  break;
1024  case AV_PIX_FMT_RGB32:
1025 #if !HAVE_BIGENDIAN
1026  case AV_PIX_FMT_BGR24:
1027 #endif
1028  default:
1029  c->pal_rgb[i]= b + (g<<8) + (r<<16) + ((unsigned)a<<24);
1030  }
1031  }
1032  }
1033 
1034  if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) {
1035  uint8_t *base;
1036  int x,y;
1037  rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
1038  if (!rgb0_tmp)
1039  return AVERROR(ENOMEM);
1040 
1041  base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
1042  for (y=0; y<srcSliceH; y++){
1043  memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW);
1044  for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) {
1045  base[ srcStride[0]*y + x] = 0xFF;
1046  }
1047  }
1048  src2[0] = base;
1049  }
1050 
1051  if (c->srcXYZ && !(c->dstXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
1052  uint8_t *base;
1053  rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
1054  if (!rgb0_tmp)
1055  return AVERROR(ENOMEM);
1056 
1057  base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
1058 
1059  xyz12Torgb48(c, (uint16_t*)base, (const uint16_t*)src2[0], srcStride[0]/2, srcSliceH);
1060  src2[0] = base;
1061  }
1062 
1063  if (!srcSliceY && (c->flags & SWS_BITEXACT) && c->dither == SWS_DITHER_ED && c->dither_error[0])
1064  for (i = 0; i < 4; i++)
1065  memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (c->dstW+2));
1066 
1067 
1068  // copy strides, so they can safely be modified
1069  if (c->sliceDir == 1) {
1070  // slices go from top to bottom
1071  int srcStride2[4] = { srcStride[0], srcStride[1], srcStride[2],
1072  srcStride[3] };
1073  int dstStride2[4] = { dstStride[0], dstStride[1], dstStride[2],
1074  dstStride[3] };
1075 
1076  reset_ptr(src2, c->srcFormat);
1077  reset_ptr((void*)dst2, c->dstFormat);
1078 
1079  /* reset slice direction at end of frame */
1080  if (srcSliceY + srcSliceH == c->srcH)
1081  c->sliceDir = 0;
1082 
1083  ret = c->swscale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2,
1084  dstStride2);
1085  } else {
1086  // slices go from bottom to top => we flip the image internally
1087  int srcStride2[4] = { -srcStride[0], -srcStride[1], -srcStride[2],
1088  -srcStride[3] };
1089  int dstStride2[4] = { -dstStride[0], -dstStride[1], -dstStride[2],
1090  -dstStride[3] };
1091 
1092  src2[0] += (srcSliceH - 1) * srcStride[0];
1093  if (!usePal(c->srcFormat))
1094  src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];
1095  src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];
1096  src2[3] += (srcSliceH - 1) * srcStride[3];
1097  dst2[0] += ( c->dstH - 1) * dstStride[0];
1098  dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];
1099  dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];
1100  dst2[3] += ( c->dstH - 1) * dstStride[3];
1101 
1102  reset_ptr(src2, c->srcFormat);
1103  reset_ptr((void*)dst2, c->dstFormat);
1104 
1105  /* reset slice direction at end of frame */
1106  if (!srcSliceY)
1107  c->sliceDir = 0;
1108 
1109  ret = c->swscale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH,
1110  srcSliceH, dst2, dstStride2);
1111  }
1112 
1113 
1114  if (c->dstXYZ && !(c->srcXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
1115  /* replace on the same data */
1116  rgb48Toxyz12(c, (uint16_t*)dst2[0], (const uint16_t*)dst2[0], dstStride[0]/2, ret);
1117  }
1118 
1119  av_free(rgb0_tmp);
1120  return ret;
1121 }
1122