FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
wmalosslessdec.c
Go to the documentation of this file.
1 /*
2  * Windows Media Audio Lossless decoder
3  * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
4  * Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
5  * Copyright (c) 2011 Andreas Ă–man
6  * Copyright (c) 2011 - 2012 Mashiat Sarker Shakkhar
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 #include <inttypes.h>
26 
27 #include "libavutil/attributes.h"
28 #include "libavutil/avassert.h"
29 
30 #include "avcodec.h"
31 #include "internal.h"
32 #include "get_bits.h"
33 #include "put_bits.h"
34 #include "lossless_audiodsp.h"
35 #include "wma.h"
36 #include "wma_common.h"
37 
38 /** current decoder limitations */
39 #define WMALL_MAX_CHANNELS 8 ///< max number of handled channels
40 #define MAX_SUBFRAMES 32 ///< max number of subframes per channel
41 #define MAX_BANDS 29 ///< max number of scale factor bands
42 #define MAX_FRAMESIZE 32768 ///< maximum compressed frame size
43 #define MAX_ORDER 256
44 
45 #define WMALL_BLOCK_MIN_BITS 6 ///< log2 of min block size
46 #define WMALL_BLOCK_MAX_BITS 14 ///< log2 of max block size
47 #define WMALL_BLOCK_MAX_SIZE (1 << WMALL_BLOCK_MAX_BITS) ///< maximum block size
48 #define WMALL_BLOCK_SIZES (WMALL_BLOCK_MAX_BITS - WMALL_BLOCK_MIN_BITS + 1) ///< possible block sizes
49 
50 #define WMALL_COEFF_PAD_SIZE 16 ///< pad coef buffers with 0 for use with SIMD
51 
52 /**
53  * @brief frame-specific decoder context for a single channel
54  */
55 typedef struct WmallChannelCtx {
56  int16_t prev_block_len; ///< length of the previous block
59  uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
60  uint16_t subframe_offsets[MAX_SUBFRAMES]; ///< subframe positions in the current frame
61  uint8_t cur_subframe; ///< current subframe number
62  uint16_t decoded_samples; ///< number of already processed samples
63  int quant_step; ///< quantization step for the current subframe
64  int transient_counter; ///< number of transient samples from the beginning of the transient zone
66 
67 /**
68  * @brief main decoder context
69  */
70 typedef struct WmallDecodeCtx {
71  /* generic decoder variables */
74  LLAudDSPContext dsp; ///< accelerated DSP functions
76  PutBitContext pb; ///< context for filling the frame_data buffer
77 
78  /* frame size dependent frame information (set during initialization) */
79  uint32_t decode_flags; ///< used compression features
80  int len_prefix; ///< frame is prefixed with its length
81  int dynamic_range_compression; ///< frame contains DRC data
82  uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
83  uint16_t samples_per_frame; ///< number of samples to output
84  uint16_t log2_frame_size;
85  int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels)
86  int8_t lfe_channel; ///< lfe channel index
88  uint8_t subframe_len_bits; ///< number of bits used for the subframe length
89  uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
91 
92  /* packet decode state */
93  GetBitContext pgb; ///< bitstream reader context for the packet
94  int next_packet_start; ///< start offset of the next WMA packet in the demuxer packet
95  uint8_t packet_offset; ///< offset to the frame in the packet
96  uint8_t packet_sequence_number; ///< current packet number
97  int num_saved_bits; ///< saved number of bits
98  int frame_offset; ///< frame offset in the bit reservoir
99  int subframe_offset; ///< subframe offset in the bit reservoir
100  uint8_t packet_loss; ///< set in case of bitstream error
101  uint8_t packet_done; ///< set when a packet is fully decoded
102 
103  /* frame decode state */
104  uint32_t frame_num; ///< current frame number (not used for decoding)
105  GetBitContext gb; ///< bitstream reader context
106  int buf_bit_size; ///< buffer size in bits
107  int16_t *samples_16[WMALL_MAX_CHANNELS]; ///< current samplebuffer pointer (16-bit)
108  int32_t *samples_32[WMALL_MAX_CHANNELS]; ///< current samplebuffer pointer (24-bit)
109  uint8_t drc_gain; ///< gain for the DRC tool
110  int8_t skip_frame; ///< skip output step
111  int8_t parsed_all_subframes; ///< all subframes decoded?
112 
113  /* subframe/block decode state */
114  int16_t subframe_len; ///< current subframe length
115  int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe
117 
119 
120  // WMA Lossless-specific
121 
127 
130  int16_t acfilter_coeffs[16];
132 
133  int8_t mclms_order;
140 
143 
144  struct {
145  int order;
146  int scaling;
147  int coefsend;
148  int bitsend;
149  DECLARE_ALIGNED(16, int16_t, coefs)[MAX_ORDER + WMALL_COEFF_PAD_SIZE/sizeof(int16_t)];
150  DECLARE_ALIGNED(16, int16_t, lms_prevvalues)[MAX_ORDER * 2 + WMALL_COEFF_PAD_SIZE/sizeof(int16_t)];
151  DECLARE_ALIGNED(16, int16_t, lms_updates)[MAX_ORDER * 2 + WMALL_COEFF_PAD_SIZE/sizeof(int16_t)];
152  int recent;
154 
156 
157  int bV3RTM;
158 
161 
162  int transient[WMALL_MAX_CHANNELS];
165 
167 
169 
174 
177 
178 /** Get sign of integer (1 for positive, -1 for negative and 0 for zero) */
179 #define WMASIGN(x) (((x) > 0) - ((x) < 0))
180 
182 {
183  WmallDecodeCtx *s = avctx->priv_data;
184  uint8_t *edata_ptr = avctx->extradata;
185  unsigned int channel_mask;
186  int i, log2_max_num_subframes;
187 
188  if (!avctx->block_align) {
189  av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
190  return AVERROR(EINVAL);
191  }
192 
193  s->avctx = avctx;
194  ff_llauddsp_init(&s->dsp);
196 
197  if (avctx->extradata_size >= 18) {
198  s->decode_flags = AV_RL16(edata_ptr + 14);
199  channel_mask = AV_RL32(edata_ptr + 2);
200  s->bits_per_sample = AV_RL16(edata_ptr);
201  if (s->bits_per_sample == 16)
203  else if (s->bits_per_sample == 24) {
205  avctx->bits_per_raw_sample = 24;
206  } else {
207  av_log(avctx, AV_LOG_ERROR, "Unknown bit-depth: %"PRIu8"\n",
208  s->bits_per_sample);
209  return AVERROR_INVALIDDATA;
210  }
211  /* dump the extradata */
212  for (i = 0; i < avctx->extradata_size; i++)
213  ff_dlog(avctx, "[%x] ", avctx->extradata[i]);
214  ff_dlog(avctx, "\n");
215 
216  } else {
217  avpriv_request_sample(avctx, "Unsupported extradata size");
218  return AVERROR_PATCHWELCOME;
219  }
220 
221  /* generic init */
222  s->log2_frame_size = av_log2(avctx->block_align) + 4;
223 
224  /* frame info */
225  s->skip_frame = 1; /* skip first frame */
226  s->packet_loss = 1;
227  s->len_prefix = s->decode_flags & 0x40;
228 
229  /* get frame len */
231  3, s->decode_flags);
233 
234  /* init previous block len */
235  for (i = 0; i < avctx->channels; i++)
237 
238  /* subframe info */
239  log2_max_num_subframes = (s->decode_flags & 0x38) >> 3;
240  s->max_num_subframes = 1 << log2_max_num_subframes;
241  s->max_subframe_len_bit = 0;
242  s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
243 
246  s->bV3RTM = s->decode_flags & 0x100;
247 
248  if (s->max_num_subframes > MAX_SUBFRAMES) {
249  av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %"PRIu8"\n",
250  s->max_num_subframes);
251  return AVERROR_INVALIDDATA;
252  }
253 
254  s->num_channels = avctx->channels;
255 
256  /* extract lfe channel position */
257  s->lfe_channel = -1;
258 
259  if (channel_mask & 8) {
260  unsigned int mask;
261  for (mask = 1; mask < 16; mask <<= 1)
262  if (channel_mask & mask)
263  ++s->lfe_channel;
264  }
265 
266  if (s->num_channels < 0) {
267  av_log(avctx, AV_LOG_ERROR, "invalid number of channels %"PRId8"\n",
268  s->num_channels);
269  return AVERROR_INVALIDDATA;
270  } else if (s->num_channels > WMALL_MAX_CHANNELS) {
271  avpriv_request_sample(avctx,
272  "More than %d channels", WMALL_MAX_CHANNELS);
273  return AVERROR_PATCHWELCOME;
274  }
275 
276  s->frame = av_frame_alloc();
277  if (!s->frame)
278  return AVERROR(ENOMEM);
279 
280  avctx->channel_layout = channel_mask;
281  return 0;
282 }
283 
284 /**
285  * @brief Decode the subframe length.
286  * @param s context
287  * @param offset sample offset in the frame
288  * @return decoded subframe length on success, < 0 in case of an error
289  */
291 {
292  int frame_len_ratio, subframe_len, len;
293 
294  /* no need to read from the bitstream when only one length is possible */
295  if (offset == s->samples_per_frame - s->min_samples_per_subframe)
296  return s->min_samples_per_subframe;
297 
298  len = av_log2(s->max_num_subframes - 1) + 1;
299  frame_len_ratio = get_bits(&s->gb, len);
300  subframe_len = s->min_samples_per_subframe * (frame_len_ratio + 1);
301 
302  /* sanity check the length */
303  if (subframe_len < s->min_samples_per_subframe ||
304  subframe_len > s->samples_per_frame) {
305  av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
306  subframe_len);
307  return AVERROR_INVALIDDATA;
308  }
309  return subframe_len;
310 }
311 
312 /**
313  * @brief Decode how the data in the frame is split into subframes.
314  * Every WMA frame contains the encoded data for a fixed number of
315  * samples per channel. The data for every channel might be split
316  * into several subframes. This function will reconstruct the list of
317  * subframes for every channel.
318  *
319  * If the subframes are not evenly split, the algorithm estimates the
320  * channels with the lowest number of total samples.
321  * Afterwards, for each of these channels a bit is read from the
322  * bitstream that indicates if the channel contains a subframe with the
323  * next subframe size that is going to be read from the bitstream or not.
324  * If a channel contains such a subframe, the subframe size gets added to
325  * the channel's subframe list.
326  * The algorithm repeats these steps until the frame is properly divided
327  * between the individual channels.
328  *
329  * @param s context
330  * @return 0 on success, < 0 in case of an error
331  */
333 {
334  uint16_t num_samples[WMALL_MAX_CHANNELS] = { 0 }; /* sum of samples for all currently known subframes of a channel */
335  uint8_t contains_subframe[WMALL_MAX_CHANNELS]; /* flag indicating if a channel contains the current subframe */
336  int channels_for_cur_subframe = s->num_channels; /* number of channels that contain the current subframe */
337  int fixed_channel_layout = 0; /* flag indicating that all channels use the same subfra2me offsets and sizes */
338  int min_channel_len = 0; /* smallest sum of samples (channels with this length will be processed first) */
339  int c, tile_aligned;
340 
341  /* reset tiling information */
342  for (c = 0; c < s->num_channels; c++)
343  s->channel[c].num_subframes = 0;
344 
345  tile_aligned = get_bits1(&s->gb);
346  if (s->max_num_subframes == 1 || tile_aligned)
347  fixed_channel_layout = 1;
348 
349  /* loop until the frame data is split between the subframes */
350  do {
351  int subframe_len, in_use = 0;
352 
353  /* check which channels contain the subframe */
354  for (c = 0; c < s->num_channels; c++) {
355  if (num_samples[c] == min_channel_len) {
356  if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
357  (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) {
358  contains_subframe[c] = 1;
359  } else {
360  contains_subframe[c] = get_bits1(&s->gb);
361  }
362  in_use |= contains_subframe[c];
363  } else
364  contains_subframe[c] = 0;
365  }
366 
367  if (!in_use) {
369  "Found empty subframe\n");
370  return AVERROR_INVALIDDATA;
371  }
372 
373  /* get subframe length, subframe_len == 0 is not allowed */
374  if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
375  return AVERROR_INVALIDDATA;
376  /* add subframes to the individual channels and find new min_channel_len */
377  min_channel_len += subframe_len;
378  for (c = 0; c < s->num_channels; c++) {
379  WmallChannelCtx *chan = &s->channel[c];
380 
381  if (contains_subframe[c]) {
382  if (chan->num_subframes >= MAX_SUBFRAMES) {
384  "broken frame: num subframes > 31\n");
385  return AVERROR_INVALIDDATA;
386  }
387  chan->subframe_len[chan->num_subframes] = subframe_len;
388  num_samples[c] += subframe_len;
389  ++chan->num_subframes;
390  if (num_samples[c] > s->samples_per_frame) {
391  av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
392  "channel len(%"PRIu16") > samples_per_frame(%"PRIu16")\n",
393  num_samples[c], s->samples_per_frame);
394  return AVERROR_INVALIDDATA;
395  }
396  } else if (num_samples[c] <= min_channel_len) {
397  if (num_samples[c] < min_channel_len) {
398  channels_for_cur_subframe = 0;
399  min_channel_len = num_samples[c];
400  }
401  ++channels_for_cur_subframe;
402  }
403  }
404  } while (min_channel_len < s->samples_per_frame);
405 
406  for (c = 0; c < s->num_channels; c++) {
407  int i, offset = 0;
408  for (i = 0; i < s->channel[c].num_subframes; i++) {
409  s->channel[c].subframe_offsets[i] = offset;
410  offset += s->channel[c].subframe_len[i];
411  }
412  }
413 
414  return 0;
415 }
416 
418 {
419  int i;
420  s->acfilter_order = get_bits(&s->gb, 4) + 1;
421  s->acfilter_scaling = get_bits(&s->gb, 4);
422 
423  for (i = 0; i < s->acfilter_order; i++)
424  s->acfilter_coeffs[i] = (s->acfilter_scaling ?
425  get_bits(&s->gb, s->acfilter_scaling) : 0) + 1;
426 }
427 
429 {
430  s->mclms_order = (get_bits(&s->gb, 4) + 1) * 2;
431  s->mclms_scaling = get_bits(&s->gb, 4);
432  if (get_bits1(&s->gb)) {
433  int i, send_coef_bits;
434  int cbits = av_log2(s->mclms_scaling + 1);
435  if (1 << cbits < s->mclms_scaling + 1)
436  cbits++;
437 
438  send_coef_bits = (cbits ? get_bits(&s->gb, cbits) : 0) + 2;
439 
440  for (i = 0; i < s->mclms_order * s->num_channels * s->num_channels; i++)
441  s->mclms_coeffs[i] = get_bits(&s->gb, send_coef_bits);
442 
443  for (i = 0; i < s->num_channels; i++) {
444  int c;
445  for (c = 0; c < i; c++)
446  s->mclms_coeffs_cur[i * s->num_channels + c] = get_bits(&s->gb, send_coef_bits);
447  }
448  }
449 }
450 
452 {
453  int c, i;
454  int cdlms_send_coef = get_bits1(&s->gb);
455 
456  for (c = 0; c < s->num_channels; c++) {
457  s->cdlms_ttl[c] = get_bits(&s->gb, 3) + 1;
458  for (i = 0; i < s->cdlms_ttl[c]; i++) {
459  s->cdlms[c][i].order = (get_bits(&s->gb, 7) + 1) * 8;
460  if (s->cdlms[c][i].order > MAX_ORDER) {
462  "Order[%d][%d] %d > max (%d), not supported\n",
463  c, i, s->cdlms[c][i].order, MAX_ORDER);
464  s->cdlms[0][0].order = 0;
465  return AVERROR_INVALIDDATA;
466  }
467  if(s->cdlms[c][i].order & 8) {
468  static int warned;
469  if(!warned)
470  avpriv_request_sample(s->avctx, "CDLMS of order %d",
471  s->cdlms[c][i].order);
472  warned = 1;
473  }
474  }
475 
476  for (i = 0; i < s->cdlms_ttl[c]; i++)
477  s->cdlms[c][i].scaling = get_bits(&s->gb, 4);
478 
479  if (cdlms_send_coef) {
480  for (i = 0; i < s->cdlms_ttl[c]; i++) {
481  int cbits, shift_l, shift_r, j;
482  cbits = av_log2(s->cdlms[c][i].order);
483  if ((1 << cbits) < s->cdlms[c][i].order)
484  cbits++;
485  s->cdlms[c][i].coefsend = get_bits(&s->gb, cbits) + 1;
486 
487  cbits = av_log2(s->cdlms[c][i].scaling + 1);
488  if ((1 << cbits) < s->cdlms[c][i].scaling + 1)
489  cbits++;
490 
491  s->cdlms[c][i].bitsend = get_bits(&s->gb, cbits) + 2;
492  shift_l = 32 - s->cdlms[c][i].bitsend;
493  shift_r = 32 - s->cdlms[c][i].scaling - 2;
494  for (j = 0; j < s->cdlms[c][i].coefsend; j++)
495  s->cdlms[c][i].coefs[j] =
496  (get_bits(&s->gb, s->cdlms[c][i].bitsend) << shift_l) >> shift_r;
497  }
498  }
499 
500  for (i = 0; i < s->cdlms_ttl[c]; i++)
501  memset(s->cdlms[c][i].coefs + s->cdlms[c][i].order,
503  }
504 
505  return 0;
506 }
507 
508 static int decode_channel_residues(WmallDecodeCtx *s, int ch, int tile_size)
509 {
510  int i = 0;
511  unsigned int ave_mean;
512  s->transient[ch] = get_bits1(&s->gb);
513  if (s->transient[ch]) {
514  s->transient_pos[ch] = get_bits(&s->gb, av_log2(tile_size));
515  if (s->transient_pos[ch])
516  s->transient[ch] = 0;
517  s->channel[ch].transient_counter =
519  } else if (s->channel[ch].transient_counter)
520  s->transient[ch] = 1;
521 
522  if (s->seekable_tile) {
523  ave_mean = get_bits(&s->gb, s->bits_per_sample);
524  s->ave_sum[ch] = ave_mean << (s->movave_scaling + 1);
525  }
526 
527  if (s->seekable_tile) {
528  if (s->do_inter_ch_decorr)
529  s->channel_residues[ch][0] = get_sbits_long(&s->gb, s->bits_per_sample + 1);
530  else
531  s->channel_residues[ch][0] = get_sbits_long(&s->gb, s->bits_per_sample);
532  i++;
533  }
534  for (; i < tile_size; i++) {
535  int quo = 0, rem, rem_bits, residue;
536  while(get_bits1(&s->gb)) {
537  quo++;
538  if (get_bits_left(&s->gb) <= 0)
539  return -1;
540  }
541  if (quo >= 32)
542  quo += get_bits_long(&s->gb, get_bits(&s->gb, 5) + 1);
543 
544  ave_mean = (s->ave_sum[ch] + (1 << s->movave_scaling)) >> (s->movave_scaling + 1);
545  if (ave_mean <= 1)
546  residue = quo;
547  else {
548  rem_bits = av_ceil_log2(ave_mean);
549  rem = get_bits_long(&s->gb, rem_bits);
550  residue = (quo << rem_bits) + rem;
551  }
552 
553  s->ave_sum[ch] = residue + s->ave_sum[ch] -
554  (s->ave_sum[ch] >> s->movave_scaling);
555 
556  residue = (residue >> 1) ^ -(residue & 1);
557  s->channel_residues[ch][i] = residue;
558  }
559 
560  return 0;
561 
562 }
563 
565 {
566  int ch, i, cbits;
567  s->lpc_order = get_bits(&s->gb, 5) + 1;
568  s->lpc_scaling = get_bits(&s->gb, 4);
569  s->lpc_intbits = get_bits(&s->gb, 3) + 1;
570  cbits = s->lpc_scaling + s->lpc_intbits;
571  for (ch = 0; ch < s->num_channels; ch++)
572  for (i = 0; i < s->lpc_order; i++)
573  s->lpc_coefs[ch][i] = get_sbits(&s->gb, cbits);
574 }
575 
577 {
578  int ich, ilms;
579 
580  memset(s->acfilter_coeffs, 0, sizeof(s->acfilter_coeffs));
581  memset(s->acfilter_prevvalues, 0, sizeof(s->acfilter_prevvalues));
582  memset(s->lpc_coefs, 0, sizeof(s->lpc_coefs));
583 
584  memset(s->mclms_coeffs, 0, sizeof(s->mclms_coeffs));
585  memset(s->mclms_coeffs_cur, 0, sizeof(s->mclms_coeffs_cur));
586  memset(s->mclms_prevvalues, 0, sizeof(s->mclms_prevvalues));
587  memset(s->mclms_updates, 0, sizeof(s->mclms_updates));
588 
589  for (ich = 0; ich < s->num_channels; ich++) {
590  for (ilms = 0; ilms < s->cdlms_ttl[ich]; ilms++) {
591  memset(s->cdlms[ich][ilms].coefs, 0,
592  sizeof(s->cdlms[ich][ilms].coefs));
593  memset(s->cdlms[ich][ilms].lms_prevvalues, 0,
594  sizeof(s->cdlms[ich][ilms].lms_prevvalues));
595  memset(s->cdlms[ich][ilms].lms_updates, 0,
596  sizeof(s->cdlms[ich][ilms].lms_updates));
597  }
598  s->ave_sum[ich] = 0;
599  }
600 }
601 
602 /**
603  * @brief Reset filter parameters and transient area at new seekable tile.
604  */
606 {
607  int ich, ilms;
609  for (ich = 0; ich < s->num_channels; ich++) {
610  for (ilms = 0; ilms < s->cdlms_ttl[ich]; ilms++)
611  s->cdlms[ich][ilms].recent = s->cdlms[ich][ilms].order;
612  /* first sample of a seekable subframe is considered as the starting of
613  a transient area which is samples_per_frame samples long */
615  s->transient[ich] = 1;
616  s->transient_pos[ich] = 0;
617  }
618 }
619 
620 static void mclms_update(WmallDecodeCtx *s, int icoef, int *pred)
621 {
622  int i, j, ich, pred_error;
623  int order = s->mclms_order;
624  int num_channels = s->num_channels;
625  int range = 1 << (s->bits_per_sample - 1);
626 
627  for (ich = 0; ich < num_channels; ich++) {
628  pred_error = s->channel_residues[ich][icoef] - pred[ich];
629  if (pred_error > 0) {
630  for (i = 0; i < order * num_channels; i++)
631  s->mclms_coeffs[i + ich * order * num_channels] +=
632  s->mclms_updates[s->mclms_recent + i];
633  for (j = 0; j < ich; j++)
634  s->mclms_coeffs_cur[ich * num_channels + j] += WMASIGN(s->channel_residues[j][icoef]);
635  } else if (pred_error < 0) {
636  for (i = 0; i < order * num_channels; i++)
637  s->mclms_coeffs[i + ich * order * num_channels] -=
638  s->mclms_updates[s->mclms_recent + i];
639  for (j = 0; j < ich; j++)
640  s->mclms_coeffs_cur[ich * num_channels + j] -= WMASIGN(s->channel_residues[j][icoef]);
641  }
642  }
643 
644  for (ich = num_channels - 1; ich >= 0; ich--) {
645  s->mclms_recent--;
646  s->mclms_prevvalues[s->mclms_recent] = av_clip(s->channel_residues[ich][icoef],
647  -range, range - 1);
648  s->mclms_updates[s->mclms_recent] = WMASIGN(s->channel_residues[ich][icoef]);
649  }
650 
651  if (s->mclms_recent == 0) {
652  memcpy(&s->mclms_prevvalues[order * num_channels],
653  s->mclms_prevvalues,
654  sizeof(int16_t) * order * num_channels);
655  memcpy(&s->mclms_updates[order * num_channels],
656  s->mclms_updates,
657  sizeof(int16_t) * order * num_channels);
658  s->mclms_recent = num_channels * order;
659  }
660 }
661 
662 static void mclms_predict(WmallDecodeCtx *s, int icoef, int *pred)
663 {
664  int ich, i;
665  int order = s->mclms_order;
666  int num_channels = s->num_channels;
667 
668  for (ich = 0; ich < num_channels; ich++) {
669  pred[ich] = 0;
670  if (!s->is_channel_coded[ich])
671  continue;
672  for (i = 0; i < order * num_channels; i++)
673  pred[ich] += s->mclms_prevvalues[i + s->mclms_recent] *
674  s->mclms_coeffs[i + order * num_channels * ich];
675  for (i = 0; i < ich; i++)
676  pred[ich] += s->channel_residues[i][icoef] *
677  s->mclms_coeffs_cur[i + num_channels * ich];
678  pred[ich] += 1 << s->mclms_scaling - 1;
679  pred[ich] >>= s->mclms_scaling;
680  s->channel_residues[ich][icoef] += pred[ich];
681  }
682 }
683 
684 static void revert_mclms(WmallDecodeCtx *s, int tile_size)
685 {
686  int icoef, pred[WMALL_MAX_CHANNELS] = { 0 };
687  for (icoef = 0; icoef < tile_size; icoef++) {
688  mclms_predict(s, icoef, pred);
689  mclms_update(s, icoef, pred);
690  }
691 }
692 
693 static void lms_update(WmallDecodeCtx *s, int ich, int ilms, int input)
694 {
695  int recent = s->cdlms[ich][ilms].recent;
696  int range = 1 << s->bits_per_sample - 1;
697  int order = s->cdlms[ich][ilms].order;
698 
699  if (recent)
700  recent--;
701  else {
702  memcpy(s->cdlms[ich][ilms].lms_prevvalues + order,
703  s->cdlms[ich][ilms].lms_prevvalues, sizeof(*s->cdlms[ich][ilms].lms_prevvalues) * order);
704  memcpy(s->cdlms[ich][ilms].lms_updates + order,
705  s->cdlms[ich][ilms].lms_updates, sizeof(*s->cdlms[ich][ilms].lms_updates) * order);
706  recent = order - 1;
707  }
708 
709  s->cdlms[ich][ilms].lms_prevvalues[recent] = av_clip(input, -range, range - 1);
710  s->cdlms[ich][ilms].lms_updates[recent] = WMASIGN(input) * s->update_speed[ich];
711 
712  s->cdlms[ich][ilms].lms_updates[recent + (order >> 4)] >>= 2;
713  s->cdlms[ich][ilms].lms_updates[recent + (order >> 3)] >>= 1;
714  s->cdlms[ich][ilms].recent = recent;
715  memset(s->cdlms[ich][ilms].lms_updates + recent + order, 0,
716  sizeof(s->cdlms[ich][ilms].lms_updates) - 2*(recent+order));
717 }
718 
719 static void use_high_update_speed(WmallDecodeCtx *s, int ich)
720 {
721  int ilms, recent, icoef;
722  for (ilms = s->cdlms_ttl[ich] - 1; ilms >= 0; ilms--) {
723  recent = s->cdlms[ich][ilms].recent;
724  if (s->update_speed[ich] == 16)
725  continue;
726  if (s->bV3RTM) {
727  for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
728  s->cdlms[ich][ilms].lms_updates[icoef + recent] *= 2;
729  } else {
730  for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
731  s->cdlms[ich][ilms].lms_updates[icoef] *= 2;
732  }
733  }
734  s->update_speed[ich] = 16;
735 }
736 
738 {
739  int ilms, recent, icoef;
740  for (ilms = s->cdlms_ttl[ich] - 1; ilms >= 0; ilms--) {
741  recent = s->cdlms[ich][ilms].recent;
742  if (s->update_speed[ich] == 8)
743  continue;
744  if (s->bV3RTM)
745  for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
746  s->cdlms[ich][ilms].lms_updates[icoef + recent] /= 2;
747  else
748  for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
749  s->cdlms[ich][ilms].lms_updates[icoef] /= 2;
750  }
751  s->update_speed[ich] = 8;
752 }
753 
754 static void revert_cdlms(WmallDecodeCtx *s, int ch,
755  int coef_begin, int coef_end)
756 {
757  int icoef, pred, ilms, num_lms, residue, input;
758 
759  num_lms = s->cdlms_ttl[ch];
760  for (ilms = num_lms - 1; ilms >= 0; ilms--) {
761  for (icoef = coef_begin; icoef < coef_end; icoef++) {
762  pred = 1 << (s->cdlms[ch][ilms].scaling - 1);
763  residue = s->channel_residues[ch][icoef];
764  pred += s->dsp.scalarproduct_and_madd_int16(s->cdlms[ch][ilms].coefs,
765  s->cdlms[ch][ilms].lms_prevvalues
766  + s->cdlms[ch][ilms].recent,
767  s->cdlms[ch][ilms].lms_updates
768  + s->cdlms[ch][ilms].recent,
769  FFALIGN(s->cdlms[ch][ilms].order,
771  WMASIGN(residue));
772  input = residue + (pred >> s->cdlms[ch][ilms].scaling);
773  lms_update(s, ch, ilms, input);
774  s->channel_residues[ch][icoef] = input;
775  }
776  }
777  emms_c();
778 }
779 
780 static void revert_inter_ch_decorr(WmallDecodeCtx *s, int tile_size)
781 {
782  if (s->num_channels != 2)
783  return;
784  else if (s->is_channel_coded[0] || s->is_channel_coded[1]) {
785  int icoef;
786  for (icoef = 0; icoef < tile_size; icoef++) {
787  s->channel_residues[0][icoef] -= s->channel_residues[1][icoef] >> 1;
788  s->channel_residues[1][icoef] += s->channel_residues[0][icoef];
789  }
790  }
791 }
792 
793 static void revert_acfilter(WmallDecodeCtx *s, int tile_size)
794 {
795  int ich, pred, i, j;
796  int16_t *filter_coeffs = s->acfilter_coeffs;
797  int scaling = s->acfilter_scaling;
798  int order = s->acfilter_order;
799 
800  for (ich = 0; ich < s->num_channels; ich++) {
801  int *prevvalues = s->acfilter_prevvalues[ich];
802  for (i = 0; i < order; i++) {
803  pred = 0;
804  for (j = 0; j < order; j++) {
805  if (i <= j)
806  pred += filter_coeffs[j] * prevvalues[j - i];
807  else
808  pred += s->channel_residues[ich][i - j - 1] * filter_coeffs[j];
809  }
810  pred >>= scaling;
811  s->channel_residues[ich][i] += pred;
812  }
813  for (i = order; i < tile_size; i++) {
814  pred = 0;
815  for (j = 0; j < order; j++)
816  pred += s->channel_residues[ich][i - j - 1] * filter_coeffs[j];
817  pred >>= scaling;
818  s->channel_residues[ich][i] += pred;
819  }
820  for (j = 0; j < order; j++)
821  prevvalues[j] = s->channel_residues[ich][tile_size - j - 1];
822  }
823 }
824 
826 {
827  int offset = s->samples_per_frame;
828  int subframe_len = s->samples_per_frame;
829  int total_samples = s->samples_per_frame * s->num_channels;
830  int i, j, rawpcm_tile, padding_zeroes, res;
831 
833 
834  /* reset channel context and find the next block offset and size
835  == the next block of the channel with the smallest number of
836  decoded samples */
837  for (i = 0; i < s->num_channels; i++) {
838  if (offset > s->channel[i].decoded_samples) {
839  offset = s->channel[i].decoded_samples;
840  subframe_len =
842  }
843  }
844 
845  /* get a list of all channels that contain the estimated block */
847  for (i = 0; i < s->num_channels; i++) {
848  const int cur_subframe = s->channel[i].cur_subframe;
849  /* subtract already processed samples */
850  total_samples -= s->channel[i].decoded_samples;
851 
852  /* and count if there are multiple subframes that match our profile */
853  if (offset == s->channel[i].decoded_samples &&
854  subframe_len == s->channel[i].subframe_len[cur_subframe]) {
855  total_samples -= s->channel[i].subframe_len[cur_subframe];
856  s->channel[i].decoded_samples +=
857  s->channel[i].subframe_len[cur_subframe];
860  }
861  }
862 
863  /* check if the frame will be complete after processing the
864  estimated block */
865  if (!total_samples)
866  s->parsed_all_subframes = 1;
867 
868 
869  s->seekable_tile = get_bits1(&s->gb);
870  if (s->seekable_tile) {
872 
873  s->do_arith_coding = get_bits1(&s->gb);
874  if (s->do_arith_coding) {
875  avpriv_request_sample(s->avctx, "Arithmetic coding");
876  return AVERROR_PATCHWELCOME;
877  }
878  s->do_ac_filter = get_bits1(&s->gb);
879  s->do_inter_ch_decorr = get_bits1(&s->gb);
880  s->do_mclms = get_bits1(&s->gb);
881 
882  if (s->do_ac_filter)
883  decode_ac_filter(s);
884 
885  if (s->do_mclms)
886  decode_mclms(s);
887 
888  if ((res = decode_cdlms(s)) < 0)
889  return res;
890  s->movave_scaling = get_bits(&s->gb, 3);
891  s->quant_stepsize = get_bits(&s->gb, 8) + 1;
892 
893  reset_codec(s);
894  } else if (!s->cdlms[0][0].order) {
896  "Waiting for seekable tile\n");
897  av_frame_unref(s->frame);
898  return -1;
899  }
900 
901  rawpcm_tile = get_bits1(&s->gb);
902 
903  for (i = 0; i < s->num_channels; i++)
904  s->is_channel_coded[i] = 1;
905 
906  if (!rawpcm_tile) {
907  for (i = 0; i < s->num_channels; i++)
908  s->is_channel_coded[i] = get_bits1(&s->gb);
909 
910  if (s->bV3RTM) {
911  // LPC
912  s->do_lpc = get_bits1(&s->gb);
913  if (s->do_lpc) {
914  decode_lpc(s);
915  avpriv_request_sample(s->avctx, "Expect wrong output since "
916  "inverse LPC filter");
917  }
918  } else
919  s->do_lpc = 0;
920  }
921 
922 
923  if (get_bits1(&s->gb))
924  padding_zeroes = get_bits(&s->gb, 5);
925  else
926  padding_zeroes = 0;
927 
928  if (rawpcm_tile) {
929  int bits = s->bits_per_sample - padding_zeroes;
930  if (bits <= 0) {
932  "Invalid number of padding bits in raw PCM tile\n");
933  return AVERROR_INVALIDDATA;
934  }
935  ff_dlog(s->avctx, "RAWPCM %d bits per sample. "
936  "total %d bits, remain=%d\n", bits,
937  bits * s->num_channels * subframe_len, get_bits_count(&s->gb));
938  for (i = 0; i < s->num_channels; i++)
939  for (j = 0; j < subframe_len; j++)
940  s->channel_coeffs[i][j] = get_sbits_long(&s->gb, bits);
941  } else {
942  for (i = 0; i < s->num_channels; i++)
943  if (s->is_channel_coded[i]) {
944  decode_channel_residues(s, i, subframe_len);
945  if (s->seekable_tile)
946  use_high_update_speed(s, i);
947  else
949  revert_cdlms(s, i, 0, subframe_len);
950  } else {
951  memset(s->channel_residues[i], 0, sizeof(**s->channel_residues) * subframe_len);
952  }
953  }
954  if (s->do_mclms)
955  revert_mclms(s, subframe_len);
956  if (s->do_inter_ch_decorr)
957  revert_inter_ch_decorr(s, subframe_len);
958  if (s->do_ac_filter)
959  revert_acfilter(s, subframe_len);
960 
961  /* Dequantize */
962  if (s->quant_stepsize != 1)
963  for (i = 0; i < s->num_channels; i++)
964  for (j = 0; j < subframe_len; j++)
965  s->channel_residues[i][j] *= s->quant_stepsize;
966 
967  /* Write to proper output buffer depending on bit-depth */
968  for (i = 0; i < s->channels_for_cur_subframe; i++) {
970  int subframe_len = s->channel[c].subframe_len[s->channel[c].cur_subframe];
971 
972  for (j = 0; j < subframe_len; j++) {
973  if (s->bits_per_sample == 16) {
974  *s->samples_16[c]++ = (int16_t) s->channel_residues[c][j] << padding_zeroes;
975  } else {
976  *s->samples_32[c]++ = s->channel_residues[c][j] << (padding_zeroes + 8);
977  }
978  }
979  }
980 
981  /* handled one subframe */
982  for (i = 0; i < s->channels_for_cur_subframe; i++) {
984  if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
985  av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
986  return AVERROR_INVALIDDATA;
987  }
988  ++s->channel[c].cur_subframe;
989  }
990  return 0;
991 }
992 
993 /**
994  * @brief Decode one WMA frame.
995  * @param s codec context
996  * @return 0 if the trailer bit indicates that this is the last frame,
997  * 1 if there are additional frames
998  */
1000 {
1001  GetBitContext* gb = &s->gb;
1002  int more_frames = 0, len = 0, i, ret;
1003 
1005  if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0) {
1006  /* return an error if no frame could be decoded at all */
1007  s->packet_loss = 1;
1008  return ret;
1009  }
1010  for (i = 0; i < s->num_channels; i++) {
1011  s->samples_16[i] = (int16_t *)s->frame->extended_data[i];
1012  s->samples_32[i] = (int32_t *)s->frame->extended_data[i];
1013  }
1014 
1015  /* get frame length */
1016  if (s->len_prefix)
1017  len = get_bits(gb, s->log2_frame_size);
1018 
1019  /* decode tile information */
1020  if ((ret = decode_tilehdr(s))) {
1021  s->packet_loss = 1;
1022  av_frame_unref(s->frame);
1023  return ret;
1024  }
1025 
1026  /* read drc info */
1028  s->drc_gain = get_bits(gb, 8);
1029 
1030  /* no idea what these are for, might be the number of samples
1031  that need to be skipped at the beginning or end of a stream */
1032  if (get_bits1(gb)) {
1033  int av_unused skip;
1034 
1035  /* usually true for the first frame */
1036  if (get_bits1(gb)) {
1037  skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1038  ff_dlog(s->avctx, "start skip: %i\n", skip);
1039  }
1040 
1041  /* sometimes true for the last frame */
1042  if (get_bits1(gb)) {
1043  skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1044  ff_dlog(s->avctx, "end skip: %i\n", skip);
1045  }
1046 
1047  }
1048 
1049  /* reset subframe states */
1050  s->parsed_all_subframes = 0;
1051  for (i = 0; i < s->num_channels; i++) {
1052  s->channel[i].decoded_samples = 0;
1053  s->channel[i].cur_subframe = 0;
1054  }
1055 
1056  /* decode all subframes */
1057  while (!s->parsed_all_subframes) {
1058  int decoded_samples = s->channel[0].decoded_samples;
1059  if (decode_subframe(s) < 0) {
1060  s->packet_loss = 1;
1061  if (s->frame->nb_samples)
1062  s->frame->nb_samples = decoded_samples;
1063  return 0;
1064  }
1065  }
1066 
1067  ff_dlog(s->avctx, "Frame done\n");
1068 
1069  s->skip_frame = 0;
1070 
1071  if (s->len_prefix) {
1072  if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
1073  /* FIXME: not sure if this is always an error */
1075  "frame[%"PRIu32"] would have to skip %i bits\n",
1076  s->frame_num,
1077  len - (get_bits_count(gb) - s->frame_offset) - 1);
1078  s->packet_loss = 1;
1079  return 0;
1080  }
1081 
1082  /* skip the rest of the frame data */
1083  skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
1084  }
1085 
1086  /* decode trailer bit */
1087  more_frames = get_bits1(gb);
1088  ++s->frame_num;
1089  return more_frames;
1090 }
1091 
1092 /**
1093  * @brief Calculate remaining input buffer length.
1094  * @param s codec context
1095  * @param gb bitstream reader context
1096  * @return remaining size in bits
1097  */
1099 {
1100  return s->buf_bit_size - get_bits_count(gb);
1101 }
1102 
1103 /**
1104  * @brief Fill the bit reservoir with a (partial) frame.
1105  * @param s codec context
1106  * @param gb bitstream reader context
1107  * @param len length of the partial frame
1108  * @param append decides whether to reset the buffer or not
1109  */
1110 static void save_bits(WmallDecodeCtx *s, GetBitContext* gb, int len,
1111  int append)
1112 {
1113  int buflen;
1114  PutBitContext tmp;
1115 
1116  /* when the frame data does not need to be concatenated, the input buffer
1117  is reset and additional bits from the previous frame are copied
1118  and skipped later so that a fast byte copy is possible */
1119 
1120  if (!append) {
1121  s->frame_offset = get_bits_count(gb) & 7;
1122  s->num_saved_bits = s->frame_offset;
1124  }
1125 
1126  buflen = (s->num_saved_bits + len + 8) >> 3;
1127 
1128  if (len <= 0 || buflen > MAX_FRAMESIZE) {
1129  avpriv_request_sample(s->avctx, "Too small input buffer");
1130  s->packet_loss = 1;
1131  return;
1132  }
1133 
1134  s->num_saved_bits += len;
1135  if (!append) {
1136  avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
1137  s->num_saved_bits);
1138  } else {
1139  int align = 8 - (get_bits_count(gb) & 7);
1140  align = FFMIN(align, len);
1141  put_bits(&s->pb, align, get_bits(gb, align));
1142  len -= align;
1143  avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
1144  }
1145  skip_bits_long(gb, len);
1146 
1147  tmp = s->pb;
1148  flush_put_bits(&tmp);
1149 
1151  skip_bits(&s->gb, s->frame_offset);
1152 }
1153 
1154 static int decode_packet(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1155  AVPacket* avpkt)
1156 {
1157  WmallDecodeCtx *s = avctx->priv_data;
1158  GetBitContext* gb = &s->pgb;
1159  const uint8_t* buf = avpkt->data;
1160  int buf_size = avpkt->size;
1161  int num_bits_prev_frame, packet_sequence_number, spliced_packet;
1162 
1163  s->frame->nb_samples = 0;
1164 
1165  if (s->packet_done || s->packet_loss) {
1166  s->packet_done = 0;
1167 
1168  if (!buf_size)
1169  return 0;
1170  /* sanity check for the buffer length */
1171  if (buf_size < avctx->block_align) {
1172  av_log(avctx, AV_LOG_ERROR, "buf size %d invalid\n", buf_size);
1173  return AVERROR_INVALIDDATA;
1174  }
1175 
1176  s->next_packet_start = buf_size - avctx->block_align;
1177  buf_size = avctx->block_align;
1178  s->buf_bit_size = buf_size << 3;
1179 
1180  /* parse packet header */
1181  init_get_bits(gb, buf, s->buf_bit_size);
1182  packet_sequence_number = get_bits(gb, 4);
1183  skip_bits(gb, 1); // Skip seekable_frame_in_packet, currently ununused
1184  spliced_packet = get_bits1(gb);
1185  if (spliced_packet)
1186  avpriv_request_sample(avctx, "Bitstream splicing");
1187 
1188  /* get number of bits that need to be added to the previous frame */
1189  num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
1190 
1191  /* check for packet loss */
1192  if (!s->packet_loss &&
1193  ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
1194  s->packet_loss = 1;
1195  av_log(avctx, AV_LOG_ERROR,
1196  "Packet loss detected! seq %"PRIx8" vs %x\n",
1197  s->packet_sequence_number, packet_sequence_number);
1198  }
1199  s->packet_sequence_number = packet_sequence_number;
1200 
1201  if (num_bits_prev_frame > 0) {
1202  int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb);
1203  if (num_bits_prev_frame >= remaining_packet_bits) {
1204  num_bits_prev_frame = remaining_packet_bits;
1205  s->packet_done = 1;
1206  }
1207 
1208  /* Append the previous frame data to the remaining data from the
1209  * previous packet to create a full frame. */
1210  save_bits(s, gb, num_bits_prev_frame, 1);
1211 
1212  /* decode the cross packet frame if it is valid */
1213  if (num_bits_prev_frame < remaining_packet_bits && !s->packet_loss)
1214  decode_frame(s);
1215  } else if (s->num_saved_bits - s->frame_offset) {
1216  ff_dlog(avctx, "ignoring %x previously saved bits\n",
1217  s->num_saved_bits - s->frame_offset);
1218  }
1219 
1220  if (s->packet_loss) {
1221  /* Reset number of saved bits so that the decoder does not start
1222  * to decode incomplete frames in the s->len_prefix == 0 case. */
1223  s->num_saved_bits = 0;
1224  s->packet_loss = 0;
1226  }
1227 
1228  } else {
1229  int frame_size;
1230 
1231  s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3;
1232  init_get_bits(gb, avpkt->data, s->buf_bit_size);
1233  skip_bits(gb, s->packet_offset);
1234 
1235  if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size &&
1236  (frame_size = show_bits(gb, s->log2_frame_size)) &&
1237  frame_size <= remaining_bits(s, gb)) {
1238  save_bits(s, gb, frame_size, 0);
1239  s->packet_done = !decode_frame(s);
1240  } else if (!s->len_prefix
1241  && s->num_saved_bits > get_bits_count(&s->gb)) {
1242  /* when the frames do not have a length prefix, we don't know the
1243  * compressed length of the individual frames however, we know what
1244  * part of a new packet belongs to the previous frame therefore we
1245  * save the incoming packet first, then we append the "previous
1246  * frame" data from the next packet so that we get a buffer that
1247  * only contains full frames */
1248  s->packet_done = !decode_frame(s);
1249  } else {
1250  s->packet_done = 1;
1251  }
1252  }
1253 
1254  if (s->packet_done && !s->packet_loss &&
1255  remaining_bits(s, gb) > 0) {
1256  /* save the rest of the data so that it can be decoded
1257  * with the next packet */
1258  save_bits(s, gb, remaining_bits(s, gb), 0);
1259  }
1260 
1261  *got_frame_ptr = s->frame->nb_samples > 0;
1262  av_frame_move_ref(data, s->frame);
1263 
1264  s->packet_offset = get_bits_count(gb) & 7;
1265 
1266  return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3;
1267 }
1268 
1269 static void flush(AVCodecContext *avctx)
1270 {
1271  WmallDecodeCtx *s = avctx->priv_data;
1272  s->packet_loss = 1;
1273  s->packet_done = 0;
1274  s->num_saved_bits = 0;
1275  s->frame_offset = 0;
1276  s->next_packet_start = 0;
1277  s->cdlms[0][0].order = 0;
1278  s->frame->nb_samples = 0;
1280 }
1281 
1283 {
1284  WmallDecodeCtx *s = avctx->priv_data;
1285 
1286  av_frame_free(&s->frame);
1287 
1288  return 0;
1289 }
1290 
1292  .name = "wmalossless",
1293  .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio Lossless"),
1294  .type = AVMEDIA_TYPE_AUDIO,
1296  .priv_data_size = sizeof(WmallDecodeCtx),
1297  .init = decode_init,
1298  .close = decode_close,
1299  .decode = decode_packet,
1300  .flush = flush,
1302  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
1305 };