FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hevc_filter.c
Go to the documentation of this file.
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2013 Seppo Tomperi
6  * Copyright (C) 2013 Wassim Hamidouche
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 #include "libavutil/common.h"
26 #include "libavutil/internal.h"
27 
28 #include "cabac_functions.h"
29 #include "golomb.h"
30 #include "hevc.h"
31 
32 #include "bit_depth_template.c"
33 
34 #define LUMA 0
35 #define CB 1
36 #define CR 2
37 
38 static const uint8_t tctable[54] = {
39  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
40  1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
41  5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53
42 };
43 
44 static const uint8_t betatable[52] = {
45  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
46  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
47  38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51
48 };
49 
50 static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
51 {
52  static const int qp_c[] = {
53  29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
54  };
55  int qp, qp_i, offset, idxt;
56 
57  // slice qp offset is not used for deblocking
58  if (c_idx == 1)
59  offset = s->pps->cb_qp_offset;
60  else
61  offset = s->pps->cr_qp_offset;
62 
63  qp_i = av_clip(qp_y + offset, 0, 57);
64  if (s->sps->chroma_format_idc == 1) {
65  if (qp_i < 30)
66  qp = qp_i;
67  else if (qp_i > 43)
68  qp = qp_i - 6;
69  else
70  qp = qp_c[qp_i - 30];
71  } else {
72  qp = av_clip(qp_i, 0, 51);
73  }
74 
75  idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
76  return tctable[idxt];
77 }
78 
79 static int get_qPy_pred(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
80 {
81  HEVCLocalContext *lc = s->HEVClc;
82  int ctb_size_mask = (1 << s->sps->log2_ctb_size) - 1;
83  int MinCuQpDeltaSizeMask = (1 << (s->sps->log2_ctb_size -
84  s->pps->diff_cu_qp_delta_depth)) - 1;
85  int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask);
86  int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask);
87  int min_cb_width = s->sps->min_cb_width;
88  int x_cb = xQgBase >> s->sps->log2_min_cb_size;
89  int y_cb = yQgBase >> s->sps->log2_min_cb_size;
90  int availableA = (xBase & ctb_size_mask) &&
91  (xQgBase & ctb_size_mask);
92  int availableB = (yBase & ctb_size_mask) &&
93  (yQgBase & ctb_size_mask);
94  int qPy_pred, qPy_a, qPy_b;
95 
96  // qPy_pred
97  if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
99  qPy_pred = s->sh.slice_qp;
100  } else {
101  qPy_pred = lc->qPy_pred;
102  }
103 
104  // qPy_a
105  if (availableA == 0)
106  qPy_a = qPy_pred;
107  else
108  qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
109 
110  // qPy_b
111  if (availableB == 0)
112  qPy_b = qPy_pred;
113  else
114  qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
115 
116  av_assert2(qPy_a >= -s->sps->qp_bd_offset && qPy_a < 52);
117  av_assert2(qPy_b >= -s->sps->qp_bd_offset && qPy_b < 52);
118 
119  return (qPy_a + qPy_b + 1) >> 1;
120 }
121 
122 void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
123 {
124  int qp_y = get_qPy_pred(s, xBase, yBase, log2_cb_size);
125 
126  if (s->HEVClc->tu.cu_qp_delta != 0) {
127  int off = s->sps->qp_bd_offset;
128  s->HEVClc->qp_y = FFUMOD(qp_y + s->HEVClc->tu.cu_qp_delta + 52 + 2 * off,
129  52 + off) - off;
130  } else
131  s->HEVClc->qp_y = qp_y;
132 }
133 
134 static int get_qPy(HEVCContext *s, int xC, int yC)
135 {
136  int log2_min_cb_size = s->sps->log2_min_cb_size;
137  int x = xC >> log2_min_cb_size;
138  int y = yC >> log2_min_cb_size;
139  return s->qp_y_tab[x + y * s->sps->min_cb_width];
140 }
141 
142 static void copy_CTB(uint8_t *dst, const uint8_t *src, int width, int height,
143  intptr_t stride_dst, intptr_t stride_src)
144 {
145 int i, j;
146 
147  if (((intptr_t)dst | (intptr_t)src | stride_dst | stride_src) & 15) {
148  for (i = 0; i < height; i++) {
149  for (j = 0; j < width; j+=8)
150  AV_COPY64U(dst+j, src+j);
151  dst += stride_dst;
152  src += stride_src;
153  }
154  } else {
155  for (i = 0; i < height; i++) {
156  for (j = 0; j < width; j+=16)
157  AV_COPY128(dst+j, src+j);
158  dst += stride_dst;
159  src += stride_src;
160  }
161  }
162 }
163 
164 static void copy_pixel(uint8_t *dst, const uint8_t *src, int pixel_shift)
165 {
166  if (pixel_shift)
167  *(uint16_t *)dst = *(uint16_t *)src;
168  else
169  *dst = *src;
170 }
171 
172 static void copy_vert(uint8_t *dst, const uint8_t *src,
173  int pixel_shift, int height,
174  int stride_dst, int stride_src)
175 {
176  int i;
177  if (pixel_shift == 0) {
178  for (i = 0; i < height; i++) {
179  *dst = *src;
180  dst += stride_dst;
181  src += stride_src;
182  }
183  } else {
184  for (i = 0; i < height; i++) {
185  *(uint16_t *)dst = *(uint16_t *)src;
186  dst += stride_dst;
187  src += stride_src;
188  }
189  }
190 }
191 
192 static void copy_CTB_to_hv(HEVCContext *s, const uint8_t *src,
193  int stride_src, int x, int y, int width, int height,
194  int c_idx, int x_ctb, int y_ctb)
195 {
196  int sh = s->sps->pixel_shift;
197  int w = s->sps->width >> s->sps->hshift[c_idx];
198  int h = s->sps->height >> s->sps->vshift[c_idx];
199 
200  /* copy horizontal edges */
201  memcpy(s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb) * w + x) << sh),
202  src, width << sh);
203  memcpy(s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb + 1) * w + x) << sh),
204  src + stride_src * (height - 1), width << sh);
205 
206  /* copy vertical edges */
207  copy_vert(s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb) * h + y) << sh), src, sh, height, 1 << sh, stride_src);
208 
209  copy_vert(s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb + 1) * h + y) << sh), src + ((width - 1) << sh), sh, height, 1 << sh, stride_src);
210 }
211 
213  uint8_t *src1, const uint8_t *dst1,
214  ptrdiff_t stride_src, ptrdiff_t stride_dst,
215  int x0, int y0, int width, int height, int c_idx)
216 {
219  int x, y;
220  int min_pu_size = 1 << s->sps->log2_min_pu_size;
221  int hshift = s->sps->hshift[c_idx];
222  int vshift = s->sps->vshift[c_idx];
223  int x_min = ((x0 ) >> s->sps->log2_min_pu_size);
224  int y_min = ((y0 ) >> s->sps->log2_min_pu_size);
225  int x_max = ((x0 + width ) >> s->sps->log2_min_pu_size);
226  int y_max = ((y0 + height) >> s->sps->log2_min_pu_size);
227  int len = (min_pu_size >> hshift) << s->sps->pixel_shift;
228  for (y = y_min; y < y_max; y++) {
229  for (x = x_min; x < x_max; x++) {
230  if (s->is_pcm[y * s->sps->min_pu_width + x]) {
231  int n;
232  uint8_t *src = src1 + (((y << s->sps->log2_min_pu_size) - y0) >> vshift) * stride_src + ((((x << s->sps->log2_min_pu_size) - x0) >> hshift) << s->sps->pixel_shift);
233  const uint8_t *dst = dst1 + (((y << s->sps->log2_min_pu_size) - y0) >> vshift) * stride_dst + ((((x << s->sps->log2_min_pu_size) - x0) >> hshift) << s->sps->pixel_shift);
234  for (n = 0; n < (min_pu_size >> vshift); n++) {
235  memcpy(src, dst, len);
236  src += stride_src;
237  dst += stride_dst;
238  }
239  }
240  }
241  }
242  }
243 }
244 
245 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
246 
247 static void sao_filter_CTB(HEVCContext *s, int x, int y)
248 {
249  static const uint8_t sao_tab[8] = { 0, 1, 2, 2, 3, 3, 4, 4 };
250  HEVCLocalContext *lc = s->HEVClc;
251  int c_idx;
252  int edges[4]; // 0 left 1 top 2 right 3 bottom
253  int x_ctb = x >> s->sps->log2_ctb_size;
254  int y_ctb = y >> s->sps->log2_ctb_size;
255  int ctb_addr_rs = y_ctb * s->sps->ctb_width + x_ctb;
256  int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
257  SAOParams *sao = &CTB(s->sao, x_ctb, y_ctb);
258  // flags indicating unfilterable edges
259  uint8_t vert_edge[] = { 0, 0 };
260  uint8_t horiz_edge[] = { 0, 0 };
261  uint8_t diag_edge[] = { 0, 0, 0, 0 };
262  uint8_t lfase = CTB(s->filter_slice_edges, x_ctb, y_ctb);
263  uint8_t no_tile_filter = s->pps->tiles_enabled_flag &&
265  uint8_t restore = no_tile_filter || !lfase;
266  uint8_t left_tile_edge = 0;
267  uint8_t right_tile_edge = 0;
268  uint8_t up_tile_edge = 0;
269  uint8_t bottom_tile_edge = 0;
270 
271  edges[0] = x_ctb == 0;
272  edges[1] = y_ctb == 0;
273  edges[2] = x_ctb == s->sps->ctb_width - 1;
274  edges[3] = y_ctb == s->sps->ctb_height - 1;
275 
276  if (restore) {
277  if (!edges[0]) {
278  left_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
279  vert_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
280  }
281  if (!edges[2]) {
282  right_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1]];
283  vert_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb)) || right_tile_edge;
284  }
285  if (!edges[1]) {
286  up_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]];
287  horiz_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
288  }
289  if (!edges[3]) {
290  bottom_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs + s->sps->ctb_width]];
291  horiz_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb + 1)) || bottom_tile_edge;
292  }
293  if (!edges[0] && !edges[1]) {
294  diag_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
295  }
296  if (!edges[1] && !edges[2]) {
297  diag_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb - 1)) || right_tile_edge || up_tile_edge;
298  }
299  if (!edges[2] && !edges[3]) {
300  diag_edge[2] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb + 1)) || right_tile_edge || bottom_tile_edge;
301  }
302  if (!edges[0] && !edges[3]) {
303  diag_edge[3] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb + 1)) || left_tile_edge || bottom_tile_edge;
304  }
305  }
306 
307  for (c_idx = 0; c_idx < (s->sps->chroma_format_idc ? 3 : 1); c_idx++) {
308  int x0 = x >> s->sps->hshift[c_idx];
309  int y0 = y >> s->sps->vshift[c_idx];
310  int stride_src = s->frame->linesize[c_idx];
311  int ctb_size_h = (1 << (s->sps->log2_ctb_size)) >> s->sps->hshift[c_idx];
312  int ctb_size_v = (1 << (s->sps->log2_ctb_size)) >> s->sps->vshift[c_idx];
313  int width = FFMIN(ctb_size_h, (s->sps->width >> s->sps->hshift[c_idx]) - x0);
314  int height = FFMIN(ctb_size_v, (s->sps->height >> s->sps->vshift[c_idx]) - y0);
315  int tab = sao_tab[(FFALIGN(width, 8) >> 3) - 1];
316  uint8_t *src = &s->frame->data[c_idx][y0 * stride_src + (x0 << s->sps->pixel_shift)];
317  int stride_dst;
318  uint8_t *dst;
319 
320  switch (sao->type_idx[c_idx]) {
321  case SAO_BAND:
322  copy_CTB_to_hv(s, src, stride_src, x0, y0, width, height, c_idx,
323  x_ctb, y_ctb);
326  dst = lc->edge_emu_buffer;
327  stride_dst = 2*MAX_PB_SIZE;
328  copy_CTB(dst, src, width << s->sps->pixel_shift, height, stride_dst, stride_src);
329  s->hevcdsp.sao_band_filter[tab](src, dst, stride_src, stride_dst,
330  sao->offset_val[c_idx], sao->band_position[c_idx],
331  width, height);
332  restore_tqb_pixels(s, src, dst, stride_src, stride_dst,
333  x, y, width, height, c_idx);
334  } else {
335  s->hevcdsp.sao_band_filter[tab](src, src, stride_src, stride_src,
336  sao->offset_val[c_idx], sao->band_position[c_idx],
337  width, height);
338  }
339  sao->type_idx[c_idx] = SAO_APPLIED;
340  break;
341  case SAO_EDGE:
342  {
343  int w = s->sps->width >> s->sps->hshift[c_idx];
344  int h = s->sps->height >> s->sps->vshift[c_idx];
345  int left_edge = edges[0];
346  int top_edge = edges[1];
347  int right_edge = edges[2];
348  int bottom_edge = edges[3];
349  int sh = s->sps->pixel_shift;
350  int left_pixels, right_pixels;
351 
352  stride_dst = 2*MAX_PB_SIZE + FF_INPUT_BUFFER_PADDING_SIZE;
353  dst = lc->edge_emu_buffer + stride_dst + FF_INPUT_BUFFER_PADDING_SIZE;
354 
355  if (!top_edge) {
356  int left = 1 - left_edge;
357  int right = 1 - right_edge;
358  const uint8_t *src1[2];
359  uint8_t *dst1;
360  int src_idx, pos;
361 
362  dst1 = dst - stride_dst - (left << sh);
363  src1[0] = src - stride_src - (left << sh);
364  src1[1] = s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb - 1) * w + x0 - left) << sh);
365  pos = 0;
366  if (left) {
367  src_idx = (CTB(s->sao, x_ctb-1, y_ctb-1).type_idx[c_idx] ==
368  SAO_APPLIED);
369  copy_pixel(dst1, src1[src_idx], sh);
370  pos += (1 << sh);
371  }
372  src_idx = (CTB(s->sao, x_ctb, y_ctb-1).type_idx[c_idx] ==
373  SAO_APPLIED);
374  memcpy(dst1 + pos, src1[src_idx] + pos, width << sh);
375  if (right) {
376  pos += width << sh;
377  src_idx = (CTB(s->sao, x_ctb+1, y_ctb-1).type_idx[c_idx] ==
378  SAO_APPLIED);
379  copy_pixel(dst1 + pos, src1[src_idx] + pos, sh);
380  }
381  }
382  if (!bottom_edge) {
383  int left = 1 - left_edge;
384  int right = 1 - right_edge;
385  const uint8_t *src1[2];
386  uint8_t *dst1;
387  int src_idx, pos;
388 
389  dst1 = dst + height * stride_dst - (left << sh);
390  src1[0] = src + height * stride_src - (left << sh);
391  src1[1] = s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb + 2) * w + x0 - left) << sh);
392  pos = 0;
393  if (left) {
394  src_idx = (CTB(s->sao, x_ctb-1, y_ctb+1).type_idx[c_idx] ==
395  SAO_APPLIED);
396  copy_pixel(dst1, src1[src_idx], sh);
397  pos += (1 << sh);
398  }
399  src_idx = (CTB(s->sao, x_ctb, y_ctb+1).type_idx[c_idx] ==
400  SAO_APPLIED);
401  memcpy(dst1 + pos, src1[src_idx] + pos, width << sh);
402  if (right) {
403  pos += width << sh;
404  src_idx = (CTB(s->sao, x_ctb+1, y_ctb+1).type_idx[c_idx] ==
405  SAO_APPLIED);
406  copy_pixel(dst1 + pos, src1[src_idx] + pos, sh);
407  }
408  }
409  left_pixels = 0;
410  if (!left_edge) {
411  if (CTB(s->sao, x_ctb-1, y_ctb).type_idx[c_idx] == SAO_APPLIED) {
412  copy_vert(dst - (1 << sh),
413  s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb - 1) * h + y0) << sh),
414  sh, height, stride_dst, 1 << sh);
415  } else {
416  left_pixels = 1;
417  }
418  }
419  right_pixels = 0;
420  if (!right_edge) {
421  if (CTB(s->sao, x_ctb+1, y_ctb).type_idx[c_idx] == SAO_APPLIED) {
422  copy_vert(dst + (width << sh),
423  s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb + 2) * h + y0) << sh),
424  sh, height, stride_dst, 1 << sh);
425  } else {
426  right_pixels = 1;
427  }
428  }
429 
430  copy_CTB(dst - (left_pixels << sh),
431  src - (left_pixels << sh),
432  (width + left_pixels + right_pixels) << sh,
433  height, stride_dst, stride_src);
434 
435  copy_CTB_to_hv(s, src, stride_src, x0, y0, width, height, c_idx,
436  x_ctb, y_ctb);
437  s->hevcdsp.sao_edge_filter[tab](src, dst, stride_src, sao->offset_val[c_idx],
438  sao->eo_class[c_idx], width, height);
439  s->hevcdsp.sao_edge_restore[restore](src, dst,
440  stride_src, stride_dst,
441  sao,
442  edges, width,
443  height, c_idx,
444  vert_edge,
445  horiz_edge,
446  diag_edge);
447  restore_tqb_pixels(s, src, dst, stride_src, stride_dst,
448  x, y, width, height, c_idx);
449  sao->type_idx[c_idx] = SAO_APPLIED;
450  break;
451  }
452  }
453  }
454 }
455 
456 static int get_pcm(HEVCContext *s, int x, int y)
457 {
458  int log2_min_pu_size = s->sps->log2_min_pu_size;
459  int x_pu, y_pu;
460 
461  if (x < 0 || y < 0)
462  return 2;
463 
464  x_pu = x >> log2_min_pu_size;
465  y_pu = y >> log2_min_pu_size;
466 
467  if (x_pu >= s->sps->min_pu_width || y_pu >= s->sps->min_pu_height)
468  return 2;
469  return s->is_pcm[y_pu * s->sps->min_pu_width + x_pu];
470 }
471 
472 #define TC_CALC(qp, bs) \
473  tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
474  (tc_offset >> 1 << 1), \
475  0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
476 
477 static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
478 {
479  uint8_t *src;
480  int x, y;
481  int chroma, beta;
482  int32_t c_tc[2], tc[2];
483  uint8_t no_p[2] = { 0 };
484  uint8_t no_q[2] = { 0 };
485 
486  int log2_ctb_size = s->sps->log2_ctb_size;
487  int x_end, x_end2, y_end;
488  int ctb_size = 1 << log2_ctb_size;
489  int ctb = (x0 >> log2_ctb_size) +
490  (y0 >> log2_ctb_size) * s->sps->ctb_width;
491  int cur_tc_offset = s->deblock[ctb].tc_offset;
492  int cur_beta_offset = s->deblock[ctb].beta_offset;
493  int left_tc_offset, left_beta_offset;
494  int tc_offset, beta_offset;
495  int pcmf = (s->sps->pcm_enabled_flag &&
498 
499  if (x0) {
500  left_tc_offset = s->deblock[ctb - 1].tc_offset;
501  left_beta_offset = s->deblock[ctb - 1].beta_offset;
502  } else {
503  left_tc_offset = 0;
504  left_beta_offset = 0;
505  }
506 
507  x_end = x0 + ctb_size;
508  if (x_end > s->sps->width)
509  x_end = s->sps->width;
510  y_end = y0 + ctb_size;
511  if (y_end > s->sps->height)
512  y_end = s->sps->height;
513 
514  tc_offset = cur_tc_offset;
515  beta_offset = cur_beta_offset;
516 
517  x_end2 = x_end;
518  if (x_end2 != s->sps->width)
519  x_end2 -= 8;
520  for (y = y0; y < y_end; y += 8) {
521  // vertical filtering luma
522  for (x = x0 ? x0 : 8; x < x_end; x += 8) {
523  const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
524  const int bs1 = s->vertical_bs[(x + (y + 4) * s->bs_width) >> 2];
525  if (bs0 || bs1) {
526  const int qp = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
527 
528  beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
529 
530  tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
531  tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
532  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
533  if (pcmf) {
534  no_p[0] = get_pcm(s, x - 1, y);
535  no_p[1] = get_pcm(s, x - 1, y + 4);
536  no_q[0] = get_pcm(s, x, y);
537  no_q[1] = get_pcm(s, x, y + 4);
539  s->frame->linesize[LUMA],
540  beta, tc, no_p, no_q);
541  } else
543  s->frame->linesize[LUMA],
544  beta, tc, no_p, no_q);
545  }
546  }
547 
548  if(!y)
549  continue;
550 
551  // horizontal filtering luma
552  for (x = x0 ? x0 - 8 : 0; x < x_end2; x += 8) {
553  const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
554  const int bs1 = s->horizontal_bs[((x + 4) + y * s->bs_width) >> 2];
555  if (bs0 || bs1) {
556  const int qp = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1;
557 
558  tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
559  beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
560 
561  beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
562  tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
563  tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
564  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
565  if (pcmf) {
566  no_p[0] = get_pcm(s, x, y - 1);
567  no_p[1] = get_pcm(s, x + 4, y - 1);
568  no_q[0] = get_pcm(s, x, y);
569  no_q[1] = get_pcm(s, x + 4, y);
571  s->frame->linesize[LUMA],
572  beta, tc, no_p, no_q);
573  } else
575  s->frame->linesize[LUMA],
576  beta, tc, no_p, no_q);
577  }
578  }
579  }
580 
581  if (s->sps->chroma_format_idc) {
582  for (chroma = 1; chroma <= 2; chroma++) {
583  int h = 1 << s->sps->hshift[chroma];
584  int v = 1 << s->sps->vshift[chroma];
585 
586  // vertical filtering chroma
587  for (y = y0; y < y_end; y += (8 * v)) {
588  for (x = x0 ? x0 : 8 * h; x < x_end; x += (8 * h)) {
589  const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
590  const int bs1 = s->vertical_bs[(x + (y + (4 * v)) * s->bs_width) >> 2];
591 
592  if ((bs0 == 2) || (bs1 == 2)) {
593  const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
594  const int qp1 = (get_qPy(s, x - 1, y + (4 * v)) + get_qPy(s, x, y + (4 * v)) + 1) >> 1;
595 
596  c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
597  c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
598  src = &s->frame->data[chroma][(y >> s->sps->vshift[chroma]) * s->frame->linesize[chroma] + ((x >> s->sps->hshift[chroma]) << s->sps->pixel_shift)];
599  if (pcmf) {
600  no_p[0] = get_pcm(s, x - 1, y);
601  no_p[1] = get_pcm(s, x - 1, y + (4 * v));
602  no_q[0] = get_pcm(s, x, y);
603  no_q[1] = get_pcm(s, x, y + (4 * v));
605  s->frame->linesize[chroma],
606  c_tc, no_p, no_q);
607  } else
609  s->frame->linesize[chroma],
610  c_tc, no_p, no_q);
611  }
612  }
613 
614  if(!y)
615  continue;
616 
617  // horizontal filtering chroma
618  tc_offset = x0 ? left_tc_offset : cur_tc_offset;
619  x_end2 = x_end;
620  if (x_end != s->sps->width)
621  x_end2 = x_end - 8 * h;
622  for (x = x0 ? x0 - 8 * h : 0; x < x_end2; x += (8 * h)) {
623  const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
624  const int bs1 = s->horizontal_bs[((x + 4 * h) + y * s->bs_width) >> 2];
625  if ((bs0 == 2) || (bs1 == 2)) {
626  const int qp0 = bs0 == 2 ? (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1 : 0;
627  const int qp1 = bs1 == 2 ? (get_qPy(s, x + (4 * h), y - 1) + get_qPy(s, x + (4 * h), y) + 1) >> 1 : 0;
628 
629  c_tc[0] = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
630  c_tc[1] = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
631  src = &s->frame->data[chroma][(y >> s->sps->vshift[1]) * s->frame->linesize[chroma] + ((x >> s->sps->hshift[1]) << s->sps->pixel_shift)];
632  if (pcmf) {
633  no_p[0] = get_pcm(s, x, y - 1);
634  no_p[1] = get_pcm(s, x + (4 * h), y - 1);
635  no_q[0] = get_pcm(s, x, y);
636  no_q[1] = get_pcm(s, x + (4 * h), y);
638  s->frame->linesize[chroma],
639  c_tc, no_p, no_q);
640  } else
642  s->frame->linesize[chroma],
643  c_tc, no_p, no_q);
644  }
645  }
646  }
647  }
648  }
649 }
650 
651 static int boundary_strength(HEVCContext *s, MvField *curr, MvField *neigh,
652  RefPicList *neigh_refPicList)
653 {
654  if (curr->pred_flag == PF_BI && neigh->pred_flag == PF_BI) {
655  // same L0 and L1
656  if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
657  s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
658  neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
659  if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
660  FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
661  (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
662  FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4))
663  return 1;
664  else
665  return 0;
666  } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
667  neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
668  if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
669  FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4)
670  return 1;
671  else
672  return 0;
673  } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
674  neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
675  if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
676  FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4)
677  return 1;
678  else
679  return 0;
680  } else {
681  return 1;
682  }
683  } else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV
684  Mv A, B;
685  int ref_A, ref_B;
686 
687  if (curr->pred_flag & 1) {
688  A = curr->mv[0];
689  ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
690  } else {
691  A = curr->mv[1];
692  ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
693  }
694 
695  if (neigh->pred_flag & 1) {
696  B = neigh->mv[0];
697  ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
698  } else {
699  B = neigh->mv[1];
700  ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
701  }
702 
703  if (ref_A == ref_B) {
704  if (FFABS(A.x - B.x) >= 4 || FFABS(A.y - B.y) >= 4)
705  return 1;
706  else
707  return 0;
708  } else
709  return 1;
710  }
711 
712  return 1;
713 }
714 
716  int log2_trafo_size)
717 {
718  HEVCLocalContext *lc = s->HEVClc;
719  MvField *tab_mvf = s->ref->tab_mvf;
720  int log2_min_pu_size = s->sps->log2_min_pu_size;
721  int log2_min_tu_size = s->sps->log2_min_tb_size;
722  int min_pu_width = s->sps->min_pu_width;
723  int min_tu_width = s->sps->min_tb_width;
724  int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
725  (x0 >> log2_min_pu_size)].pred_flag == PF_INTRA;
726  int boundary_upper, boundary_left;
727  int i, j, bs;
728 
729  boundary_upper = y0 > 0 && !(y0 & 7);
730  if (boundary_upper &&
733  (y0 % (1 << s->sps->log2_ctb_size)) == 0) ||
736  (y0 % (1 << s->sps->log2_ctb_size)) == 0)))
737  boundary_upper = 0;
738 
739  if (boundary_upper) {
740  RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ?
741  ff_hevc_get_ref_list(s, s->ref, x0, y0 - 1) :
742  s->ref->refPicList;
743  int yp_pu = (y0 - 1) >> log2_min_pu_size;
744  int yq_pu = y0 >> log2_min_pu_size;
745  int yp_tu = (y0 - 1) >> log2_min_tu_size;
746  int yq_tu = y0 >> log2_min_tu_size;
747 
748  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
749  int x_pu = (x0 + i) >> log2_min_pu_size;
750  int x_tu = (x0 + i) >> log2_min_tu_size;
751  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
752  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
753  uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
754  uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
755 
756  if (curr->pred_flag == PF_INTRA || top->pred_flag == PF_INTRA)
757  bs = 2;
758  else if (curr_cbf_luma || top_cbf_luma)
759  bs = 1;
760  else
761  bs = boundary_strength(s, curr, top, rpl_top);
762  s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
763  }
764  }
765 
766  // bs for vertical TU boundaries
767  boundary_left = x0 > 0 && !(x0 & 7);
768  if (boundary_left &&
771  (x0 % (1 << s->sps->log2_ctb_size)) == 0) ||
774  (x0 % (1 << s->sps->log2_ctb_size)) == 0)))
775  boundary_left = 0;
776 
777  if (boundary_left) {
778  RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ?
779  ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0) :
780  s->ref->refPicList;
781  int xp_pu = (x0 - 1) >> log2_min_pu_size;
782  int xq_pu = x0 >> log2_min_pu_size;
783  int xp_tu = (x0 - 1) >> log2_min_tu_size;
784  int xq_tu = x0 >> log2_min_tu_size;
785 
786  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
787  int y_pu = (y0 + i) >> log2_min_pu_size;
788  int y_tu = (y0 + i) >> log2_min_tu_size;
789  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
790  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
791  uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
792  uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
793 
794  if (curr->pred_flag == PF_INTRA || left->pred_flag == PF_INTRA)
795  bs = 2;
796  else if (curr_cbf_luma || left_cbf_luma)
797  bs = 1;
798  else
799  bs = boundary_strength(s, curr, left, rpl_left);
800  s->vertical_bs[(x0 + (y0 + i) * s->bs_width) >> 2] = bs;
801  }
802  }
803 
804  if (log2_trafo_size > log2_min_pu_size && !is_intra) {
805  RefPicList *rpl = s->ref->refPicList;
806 
807  // bs for TU internal horizontal PU boundaries
808  for (j = 8; j < (1 << log2_trafo_size); j += 8) {
809  int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
810  int yq_pu = (y0 + j) >> log2_min_pu_size;
811 
812  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
813  int x_pu = (x0 + i) >> log2_min_pu_size;
814  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
815  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
816 
817  bs = boundary_strength(s, curr, top, rpl);
818  s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
819  }
820  }
821 
822  // bs for TU internal vertical PU boundaries
823  for (j = 0; j < (1 << log2_trafo_size); j += 4) {
824  int y_pu = (y0 + j) >> log2_min_pu_size;
825 
826  for (i = 8; i < (1 << log2_trafo_size); i += 8) {
827  int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
828  int xq_pu = (x0 + i) >> log2_min_pu_size;
829  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
830  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
831 
832  bs = boundary_strength(s, curr, left, rpl);
833  s->vertical_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
834  }
835  }
836  }
837 }
838 
839 #undef LUMA
840 #undef CB
841 #undef CR
842 
843 void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size)
844 {
845  int x_end = x >= s->sps->width - ctb_size;
846  deblocking_filter_CTB(s, x, y);
847  if (s->sps->sao_enabled) {
848  int y_end = y >= s->sps->height - ctb_size;
849  if (y && x)
850  sao_filter_CTB(s, x - ctb_size, y - ctb_size);
851  if (x && y_end)
852  sao_filter_CTB(s, x - ctb_size, y);
853  if (y && x_end) {
854  sao_filter_CTB(s, x, y - ctb_size);
855  if (s->threads_type & FF_THREAD_FRAME )
856  ff_thread_report_progress(&s->ref->tf, y, 0);
857  }
858  if (x_end && y_end) {
859  sao_filter_CTB(s, x , y);
860  if (s->threads_type & FF_THREAD_FRAME )
861  ff_thread_report_progress(&s->ref->tf, y + ctb_size, 0);
862  }
863  } else if (s->threads_type & FF_THREAD_FRAME && x_end)
864  ff_thread_report_progress(&s->ref->tf, y + ctb_size - 4, 0);
865 }
866 
867 void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
868 {
869  int x_end = x_ctb >= s->sps->width - ctb_size;
870  int y_end = y_ctb >= s->sps->height - ctb_size;
871  if (y_ctb && x_ctb)
872  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size, ctb_size);
873  if (y_ctb && x_end)
874  ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size, ctb_size);
875  if (x_ctb && y_end)
876  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb, ctb_size);
877 }
unsigned int log2_min_cb_size
Definition: hevc.h:449
float v
const char * s
Definition: avisynth_c.h:631
HEVCFrame * ref
Definition: hevc.h:833
Definition: hevc.h:654
int ctb_height
Definition: hevc.h:470
uint8_t is_cu_qp_delta_coded
Definition: hevc.h:688
uint8_t edge_emu_buffer[(MAX_PB_SIZE+7)*EDGE_EMU_BUFFER_STRIDE *2]
Definition: hevc.h:771
void(* sao_edge_restore[2])(uint8_t *_dst, uint8_t *_src, ptrdiff_t _stride_dst, ptrdiff_t _stride_src, struct SAOParams *sao, int *borders, int _width, int _height, int c_idx, uint8_t *vert_edge, uint8_t *horiz_edge, uint8_t *diag_edge)
Definition: hevcdsp.h:68
int16_t x
horizontal component of motion vector
Definition: hevc.h:650
MvField * tab_mvf
Definition: hevc.h:708
int bs_width
Definition: hevc.h:841
int vshift[3]
Definition: hevc.h:481
int tc_offset
Definition: hevc.h:697
#define tc
Definition: regdef.h:69
static void restore_tqb_pixels(HEVCContext *s, uint8_t *src1, const uint8_t *dst1, ptrdiff_t stride_src, ptrdiff_t stride_dst, int x0, int y0, int width, int height, int c_idx)
Definition: hevc_filter.c:212
Definition: hevc.h:259
int list[MAX_REFS]
Definition: hevc.h:291
int width
Definition: hevc.h:467
void(* hevc_h_loop_filter_chroma_c)(uint8_t *pix, ptrdiff_t stride, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:117
uint8_t threads_type
Definition: hevc.h:799
#define FFALIGN(x, a)
Definition: common.h:71
int qp_bd_offset
Definition: hevc.h:483
int pixel_shift
Definition: hevc.h:409
static void sao_filter_CTB(HEVCContext *s, int x, int y)
Definition: hevc_filter.c:247
int chroma_format_idc
Definition: hevc.h:399
#define LUMA
Definition: hevc_filter.c:34
if()
Definition: avfilter.c:975
uint8_t
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:63
void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size)
Definition: hevc_filter.c:715
int min_tb_width
Definition: hevc.h:474
SAOParams * sao
Definition: hevc.h:829
int min_cb_width
Definition: hevc.h:472
ThreadFrame tf
Definition: hevc.h:707
void(* hevc_h_loop_filter_luma)(uint8_t *pix, ptrdiff_t stride, int beta, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:101
static const uint8_t tctable[54]
Definition: hevc_filter.c:38
Definition: hevc.h:212
int8_t pred_flag
Definition: hevc.h:657
int8_t * qp_y_tab
Definition: hevc.h:850
uint8_t loop_filter_disable_flag
Definition: hevc.h:444
void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size)
Definition: hevc_filter.c:843
static void copy_CTB(uint8_t *dst, const uint8_t *src, int width, int height, intptr_t stride_dst, intptr_t stride_src)
Definition: hevc_filter.c:142
#define A(x)
Definition: vp56_arith.h:28
static const uint8_t betatable[52]
Definition: hevc_filter.c:44
uint8_t transquant_bypass_enable_flag
Definition: hevc.h:509
uint8_t first_qp_group
Definition: hevc.h:752
HEVCDSPContext hevcdsp
Definition: hevc.h:847
Definition: hevc.h:215
#define BOUNDARY_UPPER_SLICE
Definition: hevc.h:783
void(* hevc_v_loop_filter_luma)(uint8_t *pix, ptrdiff_t stride, int beta, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:104
const HEVCSPS * sps
Definition: hevc.h:816
int min_pu_height
Definition: hevc.h:477
void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
Definition: hevc_filter.c:867
RefPicList * refPicList
Definition: hevc.h:709
unsigned int log2_ctb_size
Definition: hevc.h:453
static void copy_CTB_to_hv(HEVCContext *s, const uint8_t *src, int stride_src, int x, int y, int width, int height, int c_idx, int x_ctb, int y_ctb)
Definition: hevc_filter.c:192
#define TC_CALC(qp, bs)
Definition: hevc_filter.c:472
uint8_t * sao_pixel_buffer_h[3]
Definition: hevc.h:812
void(* sao_edge_filter[5])(uint8_t *_dst, uint8_t *_src, ptrdiff_t stride_dst, int16_t *sao_offset_val, int sao_eo_class, int width, int height)
Definition: hevcdsp.h:65
#define AV_COPY64U(d, s)
Definition: intreadwrite.h:561
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
int8_t slice_qp
Definition: hevc.h:617
uint8_t * vertical_bs
Definition: hevc.h:852
uint8_t tiles_enabled_flag
Definition: hevc.h:512
static void copy_pixel(uint8_t *dst, const uint8_t *src, int pixel_shift)
Definition: hevc_filter.c:164
int eo_class[3]
sao_eo_class
Definition: hevcdsp.h:38
const HEVCPPS * pps
Definition: hevc.h:817
common internal API header
#define FF_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
Definition: avcodec.h:630
void(* hevc_v_loop_filter_chroma)(uint8_t *pix, ptrdiff_t stride, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:109
uint8_t type_idx[3]
sao_type_idx
Definition: hevcdsp.h:42
#define FFMIN(a, b)
Definition: common.h:66
uint8_t * sao_pixel_buffer_v[3]
Definition: hevc.h:813
float y
int hshift[3]
Definition: hevc.h:480
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
int32_t
int8_t qp_y
Definition: hevc.h:757
#define FFABS(a)
Definition: common.h:61
void(* hevc_h_loop_filter_chroma)(uint8_t *pix, ptrdiff_t stride, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:107
Context Adaptive Binary Arithmetic Coder inline functions.
int ctb_width
Definition: hevc.h:469
int height
Definition: hevc.h:468
int n
Definition: avisynth_c.h:547
void(* sao_band_filter[5])(uint8_t *_dst, uint8_t *_src, ptrdiff_t _stride_dst, ptrdiff_t _stride_src, int16_t *sao_offset_val, int sao_left_class, int width, int height)
Definition: hevcdsp.h:61
AVS_Value src
Definition: avisynth_c.h:482
int * ctb_addr_rs_to_ts
CtbAddrRSToTS.
Definition: hevc.h:552
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:199
unsigned int log2_min_pu_size
Definition: hevc.h:454
struct HEVCSPS::@51 pcm
uint8_t sao_enabled
Definition: hevc.h:432
int16_t y
vertical component of motion vector
Definition: hevc.h:651
uint8_t loop_filter_across_tiles_enabled_flag
Definition: hevc.h:518
TransformUnit tu
Definition: hevc.h:762
int cu_qp_delta
Definition: hevc.h:680
uint8_t * is_pcm
Definition: hevc.h:863
BYTE int const BYTE int int int height
Definition: avisynth_c.h:676
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:2764
#define CTB(tab, x, y)
Definition: hevc_filter.c:245
AVFrame * frame
Definition: hevc.h:810
DBParams * deblock
Definition: hevc.h:830
unsigned int log2_min_tb_size
Definition: hevc.h:451
static int get_qPy(HEVCContext *s, int xC, int yC)
Definition: hevc_filter.c:134
Definition: hevc.h:649
int * tile_id
TileId.
Definition: hevc.h:554
HEVCLocalContext * HEVClc
Definition: hevc.h:797
#define MAX_PB_SIZE
Definition: hevcdsp.h:30
int cr_qp_offset
Definition: hevc.h:504
static int get_pcm(HEVCContext *s, int x, int y)
Definition: hevc_filter.c:456
void(* hevc_h_loop_filter_luma_c)(uint8_t *pix, ptrdiff_t stride, int beta, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:111
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:182
#define DEFAULT_INTRA_TC_OFFSET
Definition: hevc.h:61
RefPicList * ff_hevc_get_ref_list(HEVCContext *s, HEVCFrame *frame, int x0, int y0)
Definition: hevc_refs.c:56
Mv mv[2]
Definition: hevc.h:655
static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
Definition: hevc_filter.c:50
int8_t ref_idx[2]
Definition: hevc.h:656
common internal and external API header
#define AV_COPY128(d, s)
Definition: intreadwrite.h:594
uint8_t * horizontal_bs
Definition: hevc.h:851
Definition: hevc.h:258
#define BOUNDARY_LEFT_SLICE
Definition: hevc.h:781
int32_t * tab_slice_address
Definition: hevc.h:854
int16_t offset_val[3][5]
SaoOffsetVal.
Definition: hevcdsp.h:40
#define MAX_QP
Definition: hevc.h:60
uint8_t * filter_slice_edges
Definition: hevc.h:866
uint8_t slice_loop_filter_across_slices_enabled_flag
Definition: hevc.h:596
uint8_t band_position[3]
sao_band_position
Definition: hevcdsp.h:36
int len
int min_pu_width
Definition: hevc.h:476
#define FFUMOD(a, b)
Definition: common.h:60
int beta_offset
Definition: hevc.h:696
void(* hevc_v_loop_filter_luma_c)(uint8_t *pix, ptrdiff_t stride, int beta, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:114
static const struct twinvq_data tab
static void copy_vert(uint8_t *dst, const uint8_t *src, int pixel_shift, int height, int stride_dst, int stride_src)
Definition: hevc_filter.c:172
int boundary_flags
Definition: hevc.h:787
int diff_cu_qp_delta_depth
Definition: hevc.h:501
void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
Definition: hevc_filter.c:122
int cb_qp_offset
Definition: hevc.h:503
void(* hevc_v_loop_filter_chroma_c)(uint8_t *pix, ptrdiff_t stride, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:120
#define BOUNDARY_LEFT_TILE
Definition: hevc.h:782
uint8_t * cbf_luma
Definition: hevc.h:862
SliceHeader sh
Definition: hevc.h:828
int qPy_pred
Definition: hevc.h:760
static int boundary_strength(HEVCContext *s, MvField *curr, MvField *neigh, RefPicList *neigh_refPicList)
Definition: hevc_filter.c:651
exp golomb vlc stuff
int pcm_enabled_flag
Definition: hevc.h:413
Definition: vf_geq.c:45
for(j=16;j >0;--j)
static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
Definition: hevc_filter.c:477
#define BOUNDARY_UPPER_TILE
Definition: hevc.h:784
static int width
static int get_qPy_pred(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
Definition: hevc_filter.c:79