FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hevc_filter.c
Go to the documentation of this file.
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2013 Seppo Tomperi
6  * Copyright (C) 2013 Wassim Hamidouche
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 #include "libavutil/common.h"
26 #include "libavutil/internal.h"
27 
28 #include "cabac_functions.h"
29 #include "hevcdec.h"
30 
31 #include "bit_depth_template.c"
32 
33 #define LUMA 0
34 #define CB 1
35 #define CR 2
36 
37 static const uint8_t tctable[54] = {
38  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
39  1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
40  5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53
41 };
42 
43 static const uint8_t betatable[52] = {
44  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
45  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
46  38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51
47 };
48 
49 static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
50 {
51  static const int qp_c[] = {
52  29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
53  };
54  int qp, qp_i, offset, idxt;
55 
56  // slice qp offset is not used for deblocking
57  if (c_idx == 1)
58  offset = s->ps.pps->cb_qp_offset;
59  else
60  offset = s->ps.pps->cr_qp_offset;
61 
62  qp_i = av_clip(qp_y + offset, 0, 57);
63  if (s->ps.sps->chroma_format_idc == 1) {
64  if (qp_i < 30)
65  qp = qp_i;
66  else if (qp_i > 43)
67  qp = qp_i - 6;
68  else
69  qp = qp_c[qp_i - 30];
70  } else {
71  qp = av_clip(qp_i, 0, 51);
72  }
73 
74  idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
75  return tctable[idxt];
76 }
77 
78 static int get_qPy_pred(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
79 {
80  HEVCLocalContext *lc = s->HEVClc;
81  int ctb_size_mask = (1 << s->ps.sps->log2_ctb_size) - 1;
82  int MinCuQpDeltaSizeMask = (1 << (s->ps.sps->log2_ctb_size -
83  s->ps.pps->diff_cu_qp_delta_depth)) - 1;
84  int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask);
85  int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask);
86  int min_cb_width = s->ps.sps->min_cb_width;
87  int x_cb = xQgBase >> s->ps.sps->log2_min_cb_size;
88  int y_cb = yQgBase >> s->ps.sps->log2_min_cb_size;
89  int availableA = (xBase & ctb_size_mask) &&
90  (xQgBase & ctb_size_mask);
91  int availableB = (yBase & ctb_size_mask) &&
92  (yQgBase & ctb_size_mask);
93  int qPy_pred, qPy_a, qPy_b;
94 
95  // qPy_pred
96  if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
98  qPy_pred = s->sh.slice_qp;
99  } else {
100  qPy_pred = lc->qPy_pred;
101  }
102 
103  // qPy_a
104  if (availableA == 0)
105  qPy_a = qPy_pred;
106  else
107  qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
108 
109  // qPy_b
110  if (availableB == 0)
111  qPy_b = qPy_pred;
112  else
113  qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
114 
115  av_assert2(qPy_a >= -s->ps.sps->qp_bd_offset && qPy_a < 52);
116  av_assert2(qPy_b >= -s->ps.sps->qp_bd_offset && qPy_b < 52);
117 
118  return (qPy_a + qPy_b + 1) >> 1;
119 }
120 
121 void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
122 {
123  int qp_y = get_qPy_pred(s, xBase, yBase, log2_cb_size);
124 
125  if (s->HEVClc->tu.cu_qp_delta != 0) {
126  int off = s->ps.sps->qp_bd_offset;
127  s->HEVClc->qp_y = FFUMOD(qp_y + s->HEVClc->tu.cu_qp_delta + 52 + 2 * off,
128  52 + off) - off;
129  } else
130  s->HEVClc->qp_y = qp_y;
131 }
132 
133 static int get_qPy(HEVCContext *s, int xC, int yC)
134 {
135  int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
136  int x = xC >> log2_min_cb_size;
137  int y = yC >> log2_min_cb_size;
138  return s->qp_y_tab[x + y * s->ps.sps->min_cb_width];
139 }
140 
141 static void copy_CTB(uint8_t *dst, const uint8_t *src, int width, int height,
142  ptrdiff_t stride_dst, ptrdiff_t stride_src)
143 {
144 int i, j;
145 
146  if (((intptr_t)dst | (intptr_t)src | stride_dst | stride_src) & 15) {
147  for (i = 0; i < height; i++) {
148  for (j = 0; j < width; j+=8)
149  AV_COPY64U(dst+j, src+j);
150  dst += stride_dst;
151  src += stride_src;
152  }
153  } else {
154  for (i = 0; i < height; i++) {
155  for (j = 0; j < width; j+=16)
156  AV_COPY128(dst+j, src+j);
157  dst += stride_dst;
158  src += stride_src;
159  }
160  }
161 }
162 
163 static void copy_pixel(uint8_t *dst, const uint8_t *src, int pixel_shift)
164 {
165  if (pixel_shift)
166  *(uint16_t *)dst = *(uint16_t *)src;
167  else
168  *dst = *src;
169 }
170 
171 static void copy_vert(uint8_t *dst, const uint8_t *src,
172  int pixel_shift, int height,
173  ptrdiff_t stride_dst, ptrdiff_t stride_src)
174 {
175  int i;
176  if (pixel_shift == 0) {
177  for (i = 0; i < height; i++) {
178  *dst = *src;
179  dst += stride_dst;
180  src += stride_src;
181  }
182  } else {
183  for (i = 0; i < height; i++) {
184  *(uint16_t *)dst = *(uint16_t *)src;
185  dst += stride_dst;
186  src += stride_src;
187  }
188  }
189 }
190 
191 static void copy_CTB_to_hv(HEVCContext *s, const uint8_t *src,
192  ptrdiff_t stride_src, int x, int y, int width, int height,
193  int c_idx, int x_ctb, int y_ctb)
194 {
195  int sh = s->ps.sps->pixel_shift;
196  int w = s->ps.sps->width >> s->ps.sps->hshift[c_idx];
197  int h = s->ps.sps->height >> s->ps.sps->vshift[c_idx];
198 
199  /* copy horizontal edges */
200  memcpy(s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb) * w + x) << sh),
201  src, width << sh);
202  memcpy(s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb + 1) * w + x) << sh),
203  src + stride_src * (height - 1), width << sh);
204 
205  /* copy vertical edges */
206  copy_vert(s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb) * h + y) << sh), src, sh, height, 1 << sh, stride_src);
207 
208  copy_vert(s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb + 1) * h + y) << sh), src + ((width - 1) << sh), sh, height, 1 << sh, stride_src);
209 }
210 
212  uint8_t *src1, const uint8_t *dst1,
213  ptrdiff_t stride_src, ptrdiff_t stride_dst,
214  int x0, int y0, int width, int height, int c_idx)
215 {
218  int x, y;
219  int min_pu_size = 1 << s->ps.sps->log2_min_pu_size;
220  int hshift = s->ps.sps->hshift[c_idx];
221  int vshift = s->ps.sps->vshift[c_idx];
222  int x_min = ((x0 ) >> s->ps.sps->log2_min_pu_size);
223  int y_min = ((y0 ) >> s->ps.sps->log2_min_pu_size);
224  int x_max = ((x0 + width ) >> s->ps.sps->log2_min_pu_size);
225  int y_max = ((y0 + height) >> s->ps.sps->log2_min_pu_size);
226  int len = (min_pu_size >> hshift) << s->ps.sps->pixel_shift;
227  for (y = y_min; y < y_max; y++) {
228  for (x = x_min; x < x_max; x++) {
229  if (s->is_pcm[y * s->ps.sps->min_pu_width + x]) {
230  int n;
231  uint8_t *src = src1 + (((y << s->ps.sps->log2_min_pu_size) - y0) >> vshift) * stride_src + ((((x << s->ps.sps->log2_min_pu_size) - x0) >> hshift) << s->ps.sps->pixel_shift);
232  const uint8_t *dst = dst1 + (((y << s->ps.sps->log2_min_pu_size) - y0) >> vshift) * stride_dst + ((((x << s->ps.sps->log2_min_pu_size) - x0) >> hshift) << s->ps.sps->pixel_shift);
233  for (n = 0; n < (min_pu_size >> vshift); n++) {
234  memcpy(src, dst, len);
235  src += stride_src;
236  dst += stride_dst;
237  }
238  }
239  }
240  }
241  }
242 }
243 
244 #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
245 
246 static void sao_filter_CTB(HEVCContext *s, int x, int y)
247 {
248  static const uint8_t sao_tab[8] = { 0, 1, 2, 2, 3, 3, 4, 4 };
249  HEVCLocalContext *lc = s->HEVClc;
250  int c_idx;
251  int edges[4]; // 0 left 1 top 2 right 3 bottom
252  int x_ctb = x >> s->ps.sps->log2_ctb_size;
253  int y_ctb = y >> s->ps.sps->log2_ctb_size;
254  int ctb_addr_rs = y_ctb * s->ps.sps->ctb_width + x_ctb;
255  int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
256  SAOParams *sao = &CTB(s->sao, x_ctb, y_ctb);
257  // flags indicating unfilterable edges
258  uint8_t vert_edge[] = { 0, 0 };
259  uint8_t horiz_edge[] = { 0, 0 };
260  uint8_t diag_edge[] = { 0, 0, 0, 0 };
261  uint8_t lfase = CTB(s->filter_slice_edges, x_ctb, y_ctb);
262  uint8_t no_tile_filter = s->ps.pps->tiles_enabled_flag &&
264  uint8_t restore = no_tile_filter || !lfase;
265  uint8_t left_tile_edge = 0;
266  uint8_t right_tile_edge = 0;
267  uint8_t up_tile_edge = 0;
268  uint8_t bottom_tile_edge = 0;
269 
270  edges[0] = x_ctb == 0;
271  edges[1] = y_ctb == 0;
272  edges[2] = x_ctb == s->ps.sps->ctb_width - 1;
273  edges[3] = y_ctb == s->ps.sps->ctb_height - 1;
274 
275  if (restore) {
276  if (!edges[0]) {
277  left_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
278  vert_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
279  }
280  if (!edges[2]) {
281  right_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1]];
282  vert_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb)) || right_tile_edge;
283  }
284  if (!edges[1]) {
285  up_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]];
286  horiz_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
287  }
288  if (!edges[3]) {
289  bottom_tile_edge = no_tile_filter && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs + s->ps.sps->ctb_width]];
290  horiz_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb + 1)) || bottom_tile_edge;
291  }
292  if (!edges[0] && !edges[1]) {
293  diag_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
294  }
295  if (!edges[1] && !edges[2]) {
296  diag_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb - 1)) || right_tile_edge || up_tile_edge;
297  }
298  if (!edges[2] && !edges[3]) {
299  diag_edge[2] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb + 1)) || right_tile_edge || bottom_tile_edge;
300  }
301  if (!edges[0] && !edges[3]) {
302  diag_edge[3] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb + 1)) || left_tile_edge || bottom_tile_edge;
303  }
304  }
305 
306  for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
307  int x0 = x >> s->ps.sps->hshift[c_idx];
308  int y0 = y >> s->ps.sps->vshift[c_idx];
309  ptrdiff_t stride_src = s->frame->linesize[c_idx];
310  int ctb_size_h = (1 << (s->ps.sps->log2_ctb_size)) >> s->ps.sps->hshift[c_idx];
311  int ctb_size_v = (1 << (s->ps.sps->log2_ctb_size)) >> s->ps.sps->vshift[c_idx];
312  int width = FFMIN(ctb_size_h, (s->ps.sps->width >> s->ps.sps->hshift[c_idx]) - x0);
313  int height = FFMIN(ctb_size_v, (s->ps.sps->height >> s->ps.sps->vshift[c_idx]) - y0);
314  int tab = sao_tab[(FFALIGN(width, 8) >> 3) - 1];
315  uint8_t *src = &s->frame->data[c_idx][y0 * stride_src + (x0 << s->ps.sps->pixel_shift)];
316  ptrdiff_t stride_dst;
317  uint8_t *dst;
318 
319  switch (sao->type_idx[c_idx]) {
320  case SAO_BAND:
321  copy_CTB_to_hv(s, src, stride_src, x0, y0, width, height, c_idx,
322  x_ctb, y_ctb);
325  dst = lc->edge_emu_buffer;
326  stride_dst = 2*MAX_PB_SIZE;
327  copy_CTB(dst, src, width << s->ps.sps->pixel_shift, height, stride_dst, stride_src);
328  s->hevcdsp.sao_band_filter[tab](src, dst, stride_src, stride_dst,
329  sao->offset_val[c_idx], sao->band_position[c_idx],
330  width, height);
331  restore_tqb_pixels(s, src, dst, stride_src, stride_dst,
332  x, y, width, height, c_idx);
333  } else {
334  s->hevcdsp.sao_band_filter[tab](src, src, stride_src, stride_src,
335  sao->offset_val[c_idx], sao->band_position[c_idx],
336  width, height);
337  }
338  sao->type_idx[c_idx] = SAO_APPLIED;
339  break;
340  case SAO_EDGE:
341  {
342  int w = s->ps.sps->width >> s->ps.sps->hshift[c_idx];
343  int h = s->ps.sps->height >> s->ps.sps->vshift[c_idx];
344  int left_edge = edges[0];
345  int top_edge = edges[1];
346  int right_edge = edges[2];
347  int bottom_edge = edges[3];
348  int sh = s->ps.sps->pixel_shift;
349  int left_pixels, right_pixels;
350 
351  stride_dst = 2*MAX_PB_SIZE + AV_INPUT_BUFFER_PADDING_SIZE;
352  dst = lc->edge_emu_buffer + stride_dst + AV_INPUT_BUFFER_PADDING_SIZE;
353 
354  if (!top_edge) {
355  int left = 1 - left_edge;
356  int right = 1 - right_edge;
357  const uint8_t *src1[2];
358  uint8_t *dst1;
359  int src_idx, pos;
360 
361  dst1 = dst - stride_dst - (left << sh);
362  src1[0] = src - stride_src - (left << sh);
363  src1[1] = s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb - 1) * w + x0 - left) << sh);
364  pos = 0;
365  if (left) {
366  src_idx = (CTB(s->sao, x_ctb-1, y_ctb-1).type_idx[c_idx] ==
367  SAO_APPLIED);
368  copy_pixel(dst1, src1[src_idx], sh);
369  pos += (1 << sh);
370  }
371  src_idx = (CTB(s->sao, x_ctb, y_ctb-1).type_idx[c_idx] ==
372  SAO_APPLIED);
373  memcpy(dst1 + pos, src1[src_idx] + pos, width << sh);
374  if (right) {
375  pos += width << sh;
376  src_idx = (CTB(s->sao, x_ctb+1, y_ctb-1).type_idx[c_idx] ==
377  SAO_APPLIED);
378  copy_pixel(dst1 + pos, src1[src_idx] + pos, sh);
379  }
380  }
381  if (!bottom_edge) {
382  int left = 1 - left_edge;
383  int right = 1 - right_edge;
384  const uint8_t *src1[2];
385  uint8_t *dst1;
386  int src_idx, pos;
387 
388  dst1 = dst + height * stride_dst - (left << sh);
389  src1[0] = src + height * stride_src - (left << sh);
390  src1[1] = s->sao_pixel_buffer_h[c_idx] + (((2 * y_ctb + 2) * w + x0 - left) << sh);
391  pos = 0;
392  if (left) {
393  src_idx = (CTB(s->sao, x_ctb-1, y_ctb+1).type_idx[c_idx] ==
394  SAO_APPLIED);
395  copy_pixel(dst1, src1[src_idx], sh);
396  pos += (1 << sh);
397  }
398  src_idx = (CTB(s->sao, x_ctb, y_ctb+1).type_idx[c_idx] ==
399  SAO_APPLIED);
400  memcpy(dst1 + pos, src1[src_idx] + pos, width << sh);
401  if (right) {
402  pos += width << sh;
403  src_idx = (CTB(s->sao, x_ctb+1, y_ctb+1).type_idx[c_idx] ==
404  SAO_APPLIED);
405  copy_pixel(dst1 + pos, src1[src_idx] + pos, sh);
406  }
407  }
408  left_pixels = 0;
409  if (!left_edge) {
410  if (CTB(s->sao, x_ctb-1, y_ctb).type_idx[c_idx] == SAO_APPLIED) {
411  copy_vert(dst - (1 << sh),
412  s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb - 1) * h + y0) << sh),
413  sh, height, stride_dst, 1 << sh);
414  } else {
415  left_pixels = 1;
416  }
417  }
418  right_pixels = 0;
419  if (!right_edge) {
420  if (CTB(s->sao, x_ctb+1, y_ctb).type_idx[c_idx] == SAO_APPLIED) {
421  copy_vert(dst + (width << sh),
422  s->sao_pixel_buffer_v[c_idx] + (((2 * x_ctb + 2) * h + y0) << sh),
423  sh, height, stride_dst, 1 << sh);
424  } else {
425  right_pixels = 1;
426  }
427  }
428 
429  copy_CTB(dst - (left_pixels << sh),
430  src - (left_pixels << sh),
431  (width + left_pixels + right_pixels) << sh,
432  height, stride_dst, stride_src);
433 
434  copy_CTB_to_hv(s, src, stride_src, x0, y0, width, height, c_idx,
435  x_ctb, y_ctb);
436  s->hevcdsp.sao_edge_filter[tab](src, dst, stride_src, sao->offset_val[c_idx],
437  sao->eo_class[c_idx], width, height);
438  s->hevcdsp.sao_edge_restore[restore](src, dst,
439  stride_src, stride_dst,
440  sao,
441  edges, width,
442  height, c_idx,
443  vert_edge,
444  horiz_edge,
445  diag_edge);
446  restore_tqb_pixels(s, src, dst, stride_src, stride_dst,
447  x, y, width, height, c_idx);
448  sao->type_idx[c_idx] = SAO_APPLIED;
449  break;
450  }
451  }
452  }
453 }
454 
455 static int get_pcm(HEVCContext *s, int x, int y)
456 {
457  int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
458  int x_pu, y_pu;
459 
460  if (x < 0 || y < 0)
461  return 2;
462 
463  x_pu = x >> log2_min_pu_size;
464  y_pu = y >> log2_min_pu_size;
465 
466  if (x_pu >= s->ps.sps->min_pu_width || y_pu >= s->ps.sps->min_pu_height)
467  return 2;
468  return s->is_pcm[y_pu * s->ps.sps->min_pu_width + x_pu];
469 }
470 
471 #define TC_CALC(qp, bs) \
472  tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
473  (tc_offset & -2), \
474  0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
475 
476 static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
477 {
478  uint8_t *src;
479  int x, y;
480  int chroma, beta;
481  int32_t c_tc[2], tc[2];
482  uint8_t no_p[2] = { 0 };
483  uint8_t no_q[2] = { 0 };
484 
485  int log2_ctb_size = s->ps.sps->log2_ctb_size;
486  int x_end, x_end2, y_end;
487  int ctb_size = 1 << log2_ctb_size;
488  int ctb = (x0 >> log2_ctb_size) +
489  (y0 >> log2_ctb_size) * s->ps.sps->ctb_width;
490  int cur_tc_offset = s->deblock[ctb].tc_offset;
491  int cur_beta_offset = s->deblock[ctb].beta_offset;
492  int left_tc_offset, left_beta_offset;
493  int tc_offset, beta_offset;
494  int pcmf = (s->ps.sps->pcm_enabled_flag &&
497 
498  if (x0) {
499  left_tc_offset = s->deblock[ctb - 1].tc_offset;
500  left_beta_offset = s->deblock[ctb - 1].beta_offset;
501  } else {
502  left_tc_offset = 0;
503  left_beta_offset = 0;
504  }
505 
506  x_end = x0 + ctb_size;
507  if (x_end > s->ps.sps->width)
508  x_end = s->ps.sps->width;
509  y_end = y0 + ctb_size;
510  if (y_end > s->ps.sps->height)
511  y_end = s->ps.sps->height;
512 
513  tc_offset = cur_tc_offset;
514  beta_offset = cur_beta_offset;
515 
516  x_end2 = x_end;
517  if (x_end2 != s->ps.sps->width)
518  x_end2 -= 8;
519  for (y = y0; y < y_end; y += 8) {
520  // vertical filtering luma
521  for (x = x0 ? x0 : 8; x < x_end; x += 8) {
522  const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
523  const int bs1 = s->vertical_bs[(x + (y + 4) * s->bs_width) >> 2];
524  if (bs0 || bs1) {
525  const int qp = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
526 
527  beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
528 
529  tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
530  tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
531  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->ps.sps->pixel_shift)];
532  if (pcmf) {
533  no_p[0] = get_pcm(s, x - 1, y);
534  no_p[1] = get_pcm(s, x - 1, y + 4);
535  no_q[0] = get_pcm(s, x, y);
536  no_q[1] = get_pcm(s, x, y + 4);
538  s->frame->linesize[LUMA],
539  beta, tc, no_p, no_q);
540  } else
542  s->frame->linesize[LUMA],
543  beta, tc, no_p, no_q);
544  }
545  }
546 
547  if(!y)
548  continue;
549 
550  // horizontal filtering luma
551  for (x = x0 ? x0 - 8 : 0; x < x_end2; x += 8) {
552  const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
553  const int bs1 = s->horizontal_bs[((x + 4) + y * s->bs_width) >> 2];
554  if (bs0 || bs1) {
555  const int qp = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1;
556 
557  tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
558  beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
559 
560  beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
561  tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
562  tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
563  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->ps.sps->pixel_shift)];
564  if (pcmf) {
565  no_p[0] = get_pcm(s, x, y - 1);
566  no_p[1] = get_pcm(s, x + 4, y - 1);
567  no_q[0] = get_pcm(s, x, y);
568  no_q[1] = get_pcm(s, x + 4, y);
570  s->frame->linesize[LUMA],
571  beta, tc, no_p, no_q);
572  } else
574  s->frame->linesize[LUMA],
575  beta, tc, no_p, no_q);
576  }
577  }
578  }
579 
580  if (s->ps.sps->chroma_format_idc) {
581  for (chroma = 1; chroma <= 2; chroma++) {
582  int h = 1 << s->ps.sps->hshift[chroma];
583  int v = 1 << s->ps.sps->vshift[chroma];
584 
585  // vertical filtering chroma
586  for (y = y0; y < y_end; y += (8 * v)) {
587  for (x = x0 ? x0 : 8 * h; x < x_end; x += (8 * h)) {
588  const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
589  const int bs1 = s->vertical_bs[(x + (y + (4 * v)) * s->bs_width) >> 2];
590 
591  if ((bs0 == 2) || (bs1 == 2)) {
592  const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
593  const int qp1 = (get_qPy(s, x - 1, y + (4 * v)) + get_qPy(s, x, y + (4 * v)) + 1) >> 1;
594 
595  c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
596  c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
597  src = &s->frame->data[chroma][(y >> s->ps.sps->vshift[chroma]) * s->frame->linesize[chroma] + ((x >> s->ps.sps->hshift[chroma]) << s->ps.sps->pixel_shift)];
598  if (pcmf) {
599  no_p[0] = get_pcm(s, x - 1, y);
600  no_p[1] = get_pcm(s, x - 1, y + (4 * v));
601  no_q[0] = get_pcm(s, x, y);
602  no_q[1] = get_pcm(s, x, y + (4 * v));
604  s->frame->linesize[chroma],
605  c_tc, no_p, no_q);
606  } else
608  s->frame->linesize[chroma],
609  c_tc, no_p, no_q);
610  }
611  }
612 
613  if(!y)
614  continue;
615 
616  // horizontal filtering chroma
617  tc_offset = x0 ? left_tc_offset : cur_tc_offset;
618  x_end2 = x_end;
619  if (x_end != s->ps.sps->width)
620  x_end2 = x_end - 8 * h;
621  for (x = x0 ? x0 - 8 * h : 0; x < x_end2; x += (8 * h)) {
622  const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
623  const int bs1 = s->horizontal_bs[((x + 4 * h) + y * s->bs_width) >> 2];
624  if ((bs0 == 2) || (bs1 == 2)) {
625  const int qp0 = bs0 == 2 ? (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1 : 0;
626  const int qp1 = bs1 == 2 ? (get_qPy(s, x + (4 * h), y - 1) + get_qPy(s, x + (4 * h), y) + 1) >> 1 : 0;
627 
628  c_tc[0] = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
629  c_tc[1] = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
630  src = &s->frame->data[chroma][(y >> s->ps.sps->vshift[1]) * s->frame->linesize[chroma] + ((x >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
631  if (pcmf) {
632  no_p[0] = get_pcm(s, x, y - 1);
633  no_p[1] = get_pcm(s, x + (4 * h), y - 1);
634  no_q[0] = get_pcm(s, x, y);
635  no_q[1] = get_pcm(s, x + (4 * h), y);
637  s->frame->linesize[chroma],
638  c_tc, no_p, no_q);
639  } else
641  s->frame->linesize[chroma],
642  c_tc, no_p, no_q);
643  }
644  }
645  }
646  }
647  }
648 }
649 
650 static int boundary_strength(HEVCContext *s, MvField *curr, MvField *neigh,
651  RefPicList *neigh_refPicList)
652 {
653  if (curr->pred_flag == PF_BI && neigh->pred_flag == PF_BI) {
654  // same L0 and L1
655  if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
656  s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
657  neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
658  if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
659  FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
660  (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
661  FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4))
662  return 1;
663  else
664  return 0;
665  } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
666  neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
667  if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
668  FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4)
669  return 1;
670  else
671  return 0;
672  } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
673  neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
674  if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
675  FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4)
676  return 1;
677  else
678  return 0;
679  } else {
680  return 1;
681  }
682  } else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV
683  Mv A, B;
684  int ref_A, ref_B;
685 
686  if (curr->pred_flag & 1) {
687  A = curr->mv[0];
688  ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
689  } else {
690  A = curr->mv[1];
691  ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
692  }
693 
694  if (neigh->pred_flag & 1) {
695  B = neigh->mv[0];
696  ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
697  } else {
698  B = neigh->mv[1];
699  ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
700  }
701 
702  if (ref_A == ref_B) {
703  if (FFABS(A.x - B.x) >= 4 || FFABS(A.y - B.y) >= 4)
704  return 1;
705  else
706  return 0;
707  } else
708  return 1;
709  }
710 
711  return 1;
712 }
713 
715  int log2_trafo_size)
716 {
717  HEVCLocalContext *lc = s->HEVClc;
718  MvField *tab_mvf = s->ref->tab_mvf;
719  int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
720  int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
721  int min_pu_width = s->ps.sps->min_pu_width;
722  int min_tu_width = s->ps.sps->min_tb_width;
723  int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
724  (x0 >> log2_min_pu_size)].pred_flag == PF_INTRA;
725  int boundary_upper, boundary_left;
726  int i, j, bs;
727 
728  boundary_upper = y0 > 0 && !(y0 & 7);
729  if (boundary_upper &&
732  (y0 % (1 << s->ps.sps->log2_ctb_size)) == 0) ||
735  (y0 % (1 << s->ps.sps->log2_ctb_size)) == 0)))
736  boundary_upper = 0;
737 
738  if (boundary_upper) {
739  RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ?
740  ff_hevc_get_ref_list(s, s->ref, x0, y0 - 1) :
741  s->ref->refPicList;
742  int yp_pu = (y0 - 1) >> log2_min_pu_size;
743  int yq_pu = y0 >> log2_min_pu_size;
744  int yp_tu = (y0 - 1) >> log2_min_tu_size;
745  int yq_tu = y0 >> log2_min_tu_size;
746 
747  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
748  int x_pu = (x0 + i) >> log2_min_pu_size;
749  int x_tu = (x0 + i) >> log2_min_tu_size;
750  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
751  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
752  uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
753  uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
754 
755  if (curr->pred_flag == PF_INTRA || top->pred_flag == PF_INTRA)
756  bs = 2;
757  else if (curr_cbf_luma || top_cbf_luma)
758  bs = 1;
759  else
760  bs = boundary_strength(s, curr, top, rpl_top);
761  s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
762  }
763  }
764 
765  // bs for vertical TU boundaries
766  boundary_left = x0 > 0 && !(x0 & 7);
767  if (boundary_left &&
770  (x0 % (1 << s->ps.sps->log2_ctb_size)) == 0) ||
773  (x0 % (1 << s->ps.sps->log2_ctb_size)) == 0)))
774  boundary_left = 0;
775 
776  if (boundary_left) {
777  RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ?
778  ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0) :
779  s->ref->refPicList;
780  int xp_pu = (x0 - 1) >> log2_min_pu_size;
781  int xq_pu = x0 >> log2_min_pu_size;
782  int xp_tu = (x0 - 1) >> log2_min_tu_size;
783  int xq_tu = x0 >> log2_min_tu_size;
784 
785  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
786  int y_pu = (y0 + i) >> log2_min_pu_size;
787  int y_tu = (y0 + i) >> log2_min_tu_size;
788  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
789  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
790  uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
791  uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
792 
793  if (curr->pred_flag == PF_INTRA || left->pred_flag == PF_INTRA)
794  bs = 2;
795  else if (curr_cbf_luma || left_cbf_luma)
796  bs = 1;
797  else
798  bs = boundary_strength(s, curr, left, rpl_left);
799  s->vertical_bs[(x0 + (y0 + i) * s->bs_width) >> 2] = bs;
800  }
801  }
802 
803  if (log2_trafo_size > log2_min_pu_size && !is_intra) {
804  RefPicList *rpl = s->ref->refPicList;
805 
806  // bs for TU internal horizontal PU boundaries
807  for (j = 8; j < (1 << log2_trafo_size); j += 8) {
808  int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
809  int yq_pu = (y0 + j) >> log2_min_pu_size;
810 
811  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
812  int x_pu = (x0 + i) >> log2_min_pu_size;
813  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
814  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
815 
816  bs = boundary_strength(s, curr, top, rpl);
817  s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
818  }
819  }
820 
821  // bs for TU internal vertical PU boundaries
822  for (j = 0; j < (1 << log2_trafo_size); j += 4) {
823  int y_pu = (y0 + j) >> log2_min_pu_size;
824 
825  for (i = 8; i < (1 << log2_trafo_size); i += 8) {
826  int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
827  int xq_pu = (x0 + i) >> log2_min_pu_size;
828  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
829  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
830 
831  bs = boundary_strength(s, curr, left, rpl);
832  s->vertical_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
833  }
834  }
835  }
836 }
837 
838 #undef LUMA
839 #undef CB
840 #undef CR
841 
842 void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size)
843 {
844  int x_end = x >= s->ps.sps->width - ctb_size;
846  deblocking_filter_CTB(s, x, y);
847  if (s->ps.sps->sao_enabled) {
848  int y_end = y >= s->ps.sps->height - ctb_size;
849  if (y && x)
850  sao_filter_CTB(s, x - ctb_size, y - ctb_size);
851  if (x && y_end)
852  sao_filter_CTB(s, x - ctb_size, y);
853  if (y && x_end) {
854  sao_filter_CTB(s, x, y - ctb_size);
855  if (s->threads_type & FF_THREAD_FRAME )
856  ff_thread_report_progress(&s->ref->tf, y, 0);
857  }
858  if (x_end && y_end) {
859  sao_filter_CTB(s, x , y);
860  if (s->threads_type & FF_THREAD_FRAME )
861  ff_thread_report_progress(&s->ref->tf, y + ctb_size, 0);
862  }
863  } else if (s->threads_type & FF_THREAD_FRAME && x_end)
864  ff_thread_report_progress(&s->ref->tf, y + ctb_size - 4, 0);
865 }
866 
867 void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
868 {
869  int x_end = x_ctb >= s->ps.sps->width - ctb_size;
870  int y_end = y_ctb >= s->ps.sps->height - ctb_size;
871  if (y_ctb && x_ctb)
872  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size, ctb_size);
873  if (y_ctb && x_end)
874  ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size, ctb_size);
875  if (x_ctb && y_end)
876  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb, ctb_size);
877 }
const HEVCPPS * pps
Definition: hevc_ps.h:319
unsigned int log2_min_cb_size
Definition: hevc_ps.h:194
const char * s
Definition: avisynth_c.h:768
static av_always_inline void chroma(WaveformContext *s, AVFrame *in, AVFrame *out, int component, int intensity, int offset_y, int offset_x, int column, int mirror)
Definition: vf_waveform.c:1337
HEVCFrame * ref
Definition: hevcdec.h:505
int ctb_height
Definition: hevc_ps.h:215
uint8_t is_cu_qp_delta_coded
Definition: hevcdec.h:376
struct HEVCSPS::@68 pcm
uint8_t edge_emu_buffer[(MAX_PB_SIZE+7)*EDGE_EMU_BUFFER_STRIDE *2]
Definition: hevcdec.h:448
void(* sao_edge_restore[2])(uint8_t *_dst, uint8_t *_src, ptrdiff_t _stride_dst, ptrdiff_t _stride_src, struct SAOParams *sao, int *borders, int _width, int _height, int c_idx, uint8_t *vert_edge, uint8_t *horiz_edge, uint8_t *diag_edge)
Definition: hevcdsp.h:68
int16_t x
horizontal component of motion vector
Definition: hevcdec.h:338
Definition: vf_geq.c:46
MvField * tab_mvf
Definition: hevcdec.h:396
int bs_width
Definition: hevcdec.h:513
int vshift[3]
Definition: hevc_ps.h:226
int tc_offset
Definition: hevcdec.h:385
#define tc
Definition: regdef.h:69
static void restore_tqb_pixels(HEVCContext *s, uint8_t *src1, const uint8_t *dst1, ptrdiff_t stride_src, ptrdiff_t stride_dst, int x0, int y0, int width, int height, int c_idx)
Definition: hevc_filter.c:211
HEVCParamSets ps
Definition: hevcdec.h:492
discard all
Definition: avcodec.h:822
#define src
Definition: vp8dsp.c:254
int width
Definition: hevc_ps.h:212
void(* hevc_h_loop_filter_chroma_c)(uint8_t *pix, ptrdiff_t stride, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:117
uint8_t threads_type
Definition: hevcdec.h:476
int qp_bd_offset
Definition: hevc_ps.h:228
int pixel_shift
Definition: hevc_ps.h:154
static void sao_filter_CTB(HEVCContext *s, int x, int y)
Definition: hevc_filter.c:246
int chroma_format_idc
Definition: hevc_ps.h:144
#define LUMA
Definition: hevc_filter.c:33
uint8_t
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size)
Definition: hevc_filter.c:714
int min_tb_width
Definition: hevc_ps.h:219
#define BOUNDARY_LEFT_TILE
Definition: hevcdec.h:459
SAOParams * sao
Definition: hevcdec.h:501
AVCodecContext * avctx
Definition: hevcdec.h:469
int min_cb_width
Definition: hevc_ps.h:217
#define height
ThreadFrame tf
Definition: hevcdec.h:395
void(* hevc_h_loop_filter_luma)(uint8_t *pix, ptrdiff_t stride, int beta, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:101
static const uint8_t tctable[54]
Definition: hevc_filter.c:37
int8_t pred_flag
Definition: hevcdec.h:345
int8_t * qp_y_tab
Definition: hevcdec.h:523
uint8_t loop_filter_disable_flag
Definition: hevc_ps.h:189
void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size)
Definition: hevc_filter.c:842
#define A(x)
Definition: vp56_arith.h:28
#define FFALIGN(x, a)
Definition: macros.h:48
static const uint8_t betatable[52]
Definition: hevc_filter.c:43
uint8_t transquant_bypass_enable_flag
Definition: hevc_ps.h:257
uint8_t first_qp_group
Definition: hevcdec.h:429
HEVCDSPContext hevcdsp
Definition: hevcdec.h:520
void(* hevc_v_loop_filter_luma)(uint8_t *pix, ptrdiff_t stride, int beta, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:104
int min_pu_height
Definition: hevc_ps.h:222
void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
Definition: hevc_filter.c:867
RefPicList * refPicList
Definition: hevcdec.h:397
unsigned int log2_ctb_size
Definition: hevc_ps.h:198
#define TC_CALC(qp, bs)
Definition: hevc_filter.c:471
uint8_t * sao_pixel_buffer_h[3]
Definition: hevcdec.h:489
void(* sao_edge_filter[5])(uint8_t *_dst, uint8_t *_src, ptrdiff_t stride_dst, int16_t *sao_offset_val, int sao_eo_class, int width, int height)
Definition: hevcdsp.h:65
#define AV_COPY64U(d, s)
Definition: intreadwrite.h:566
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
int8_t slice_qp
Definition: hevcdec.h:305
#define BOUNDARY_UPPER_TILE
Definition: hevcdec.h:461
uint8_t * vertical_bs
Definition: hevcdec.h:525
uint8_t tiles_enabled_flag
Definition: hevc_ps.h:260
static void copy_pixel(uint8_t *dst, const uint8_t *src, int pixel_shift)
Definition: hevc_filter.c:163
int eo_class[3]
sao_eo_class
Definition: hevcdsp.h:38
common internal API header
void(* hevc_v_loop_filter_chroma)(uint8_t *pix, ptrdiff_t stride, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:109
const HEVCSPS * sps
Definition: hevc_ps.h:318
uint8_t type_idx[3]
sao_type_idx
Definition: hevcdsp.h:42
static void copy_CTB(uint8_t *dst, const uint8_t *src, int width, int height, ptrdiff_t stride_dst, ptrdiff_t stride_src)
Definition: hevc_filter.c:141
Definition: hevcdec.h:169
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:3172
#define FFMIN(a, b)
Definition: common.h:96
uint8_t * sao_pixel_buffer_v[3]
Definition: hevcdec.h:490
#define width
int hshift[3]
Definition: hevc_ps.h:225
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
int32_t
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
void(* hevc_h_loop_filter_chroma)(uint8_t *pix, ptrdiff_t stride, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:107
Context Adaptive Binary Arithmetic Coder inline functions.
int ctb_width
Definition: hevc_ps.h:214
int height
Definition: hevc_ps.h:213
int n
Definition: avisynth_c.h:684
void(* sao_band_filter[5])(uint8_t *_dst, uint8_t *_src, ptrdiff_t _stride_dst, ptrdiff_t _stride_src, int16_t *sao_offset_val, int sao_left_class, int width, int height)
Definition: hevcdsp.h:61
#define src1
Definition: h264pred.c:139
int * ctb_addr_rs_to_ts
CtbAddrRSToTS.
Definition: hevc_ps.h:300
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:218
unsigned int log2_min_pu_size
Definition: hevc_ps.h:199
uint8_t sao_enabled
Definition: hevc_ps.h:177
int16_t y
vertical component of motion vector
Definition: hevcdec.h:339
uint8_t loop_filter_across_tiles_enabled_flag
Definition: hevc_ps.h:266
TransformUnit tu
Definition: hevcdec.h:439
int cu_qp_delta
Definition: hevcdec.h:368
uint8_t * is_pcm
Definition: hevcdec.h:536
#define CTB(tab, x, y)
Definition: hevc_filter.c:244
AVFrame * frame
Definition: hevcdec.h:487
DBParams * deblock
Definition: hevcdec.h:502
#define BOUNDARY_UPPER_SLICE
Definition: hevcdec.h:460
unsigned int log2_min_tb_size
Definition: hevc_ps.h:196
static int get_qPy(HEVCContext *s, int xC, int yC)
Definition: hevc_filter.c:133
static void copy_vert(uint8_t *dst, const uint8_t *src, int pixel_shift, int height, ptrdiff_t stride_dst, ptrdiff_t stride_src)
Definition: hevc_filter.c:171
Definition: hevcdec.h:337
#define DEFAULT_INTRA_TC_OFFSET
Definition: hevcdec.h:52
int * tile_id
TileId.
Definition: hevc_ps.h:302
HEVCLocalContext * HEVClc
Definition: hevcdec.h:474
#define MAX_PB_SIZE
Definition: hevcdsp.h:30
int cr_qp_offset
Definition: hevc_ps.h:252
int list[HEVC_MAX_REFS]
Definition: hevcdec.h:238
RefPicList * ff_hevc_get_ref_list(HEVCContext *s, HEVCFrame *ref, int x0, int y0)
Definition: hevc_refs.c:57
static int get_pcm(HEVCContext *s, int x, int y)
Definition: hevc_filter.c:455
void(* hevc_h_loop_filter_luma_c)(uint8_t *pix, ptrdiff_t stride, int beta, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:111
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:201
#define BOUNDARY_LEFT_SLICE
Definition: hevcdec.h:458
Mv mv[2]
Definition: hevcdec.h:343
static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
Definition: hevc_filter.c:49
int8_t ref_idx[2]
Definition: hevcdec.h:344
common internal and external API header
if(ret< 0)
Definition: vf_mcdeint.c:282
#define AV_COPY128(d, s)
Definition: intreadwrite.h:599
uint8_t * horizontal_bs
Definition: hevcdec.h:524
int32_t * tab_slice_address
Definition: hevcdec.h:527
int16_t offset_val[3][5]
SaoOffsetVal.
Definition: hevcdsp.h:40
uint8_t * filter_slice_edges
Definition: hevcdec.h:539
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
Definition: avcodec.h:3341
#define AV_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
Definition: avcodec.h:769
uint8_t slice_loop_filter_across_slices_enabled_flag
Definition: hevcdec.h:284
uint8_t band_position[3]
sao_band_position
Definition: hevcdsp.h:36
int len
int min_pu_width
Definition: hevc_ps.h:221
#define FFUMOD(a, b)
Definition: common.h:64
int beta_offset
Definition: hevcdec.h:384
void(* hevc_v_loop_filter_luma_c)(uint8_t *pix, ptrdiff_t stride, int beta, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:114
static const struct twinvq_data tab
#define MAX_QP
Definition: hevcdec.h:51
int boundary_flags
Definition: hevcdec.h:464
int diff_cu_qp_delta_depth
Definition: hevc_ps.h:249
void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
Definition: hevc_filter.c:121
int cb_qp_offset
Definition: hevc_ps.h:251
void(* hevc_v_loop_filter_chroma_c)(uint8_t *pix, ptrdiff_t stride, int32_t *tc, uint8_t *no_p, uint8_t *no_q)
Definition: hevcdsp.h:120
uint8_t * cbf_luma
Definition: hevcdec.h:535
SliceHeader sh
Definition: hevcdec.h:500
static int boundary_strength(HEVCContext *s, MvField *curr, MvField *neigh, RefPicList *neigh_refPicList)
Definition: hevc_filter.c:650
int pcm_enabled_flag
Definition: hevc_ps.h:158
for(j=16;j >0;--j)
static void copy_CTB_to_hv(HEVCContext *s, const uint8_t *src, ptrdiff_t stride_src, int x, int y, int width, int height, int c_idx, int x_ctb, int y_ctb)
Definition: hevc_filter.c:191
static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
Definition: hevc_filter.c:476
static int get_qPy_pred(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
Definition: hevc_filter.c:78