25 #define TEMPLATE_REMATRIX_FLT 
   27 #undef TEMPLATE_REMATRIX_FLT 
   29 #define TEMPLATE_REMATRIX_DBL 
   31 #undef TEMPLATE_REMATRIX_DBL 
   33 #define TEMPLATE_REMATRIX_S16 
   38 #undef TEMPLATE_REMATRIX_S16 
   40 #define TEMPLATE_REMATRIX_S32 
   42 #undef TEMPLATE_REMATRIX_S32 
   46 #define FRONT_CENTER           2 
   47 #define LOW_FREQUENCY          3 
   50 #define FRONT_LEFT_OF_CENTER   6 
   51 #define FRONT_RIGHT_OF_CENTER  7 
   56 #define TOP_FRONT_LEFT         12 
   57 #define TOP_FRONT_CENTER       13 
   58 #define TOP_FRONT_RIGHT        14 
   59 #define TOP_BACK_LEFT          15 
   60 #define TOP_BACK_CENTER        16 
   61 #define TOP_BACK_RIGHT         17 
   62 #define NUM_NAMED_CHANNELS     18 
   66     int nb_in, nb_out, 
in, 
out;
 
   76     for (out = 0; out < nb_out; out++) {
 
   77         for (in = 0; in < nb_in; in++)
 
   87     if(layout&(layout-1)) 
return 1;
 
  120                              double center_mix_level, 
double surround_mix_level,
 
  121                              double lfe_mix_level, 
double maxval,
 
  122                              double rematrix_volume, 
double *matrix_param,
 
  127     int64_t unaccounted, in_ch_layout, out_ch_layout;
 
  131      in_ch_layout = 
clean_layout(log_context,  in_ch_layout_param);
 
  132     out_ch_layout = 
clean_layout(log_context, out_ch_layout_param);
 
  139     if(    in_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
 
  140        && (out_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
 
  146         av_log(log_context, 
AV_LOG_ERROR, 
"Input channel layout '%s' is not supported\n", buf);
 
  152         av_log(log_context, 
AV_LOG_ERROR, 
"Output channel layout '%s' is not supported\n", buf);
 
  157         if(in_ch_layout & out_ch_layout & (1ULL<<i))
 
  161     unaccounted= in_ch_layout & ~out_ch_layout;
 
  169             if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
 
  180         if(out_ch_layout & AV_CH_FRONT_CENTER){
 
  183             if(in_ch_layout & AV_CH_FRONT_CENTER)
 
  199                 if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
 
  210         }
else if(out_ch_layout & AV_CH_FRONT_CENTER){
 
  216         if(out_ch_layout & AV_CH_BACK_CENTER){
 
  220             if(in_ch_layout & AV_CH_SIDE_LEFT){
 
  242         }
else if(out_ch_layout & AV_CH_FRONT_CENTER){
 
  250         if(out_ch_layout & AV_CH_BACK_LEFT){
 
  253             if (in_ch_layout & AV_CH_BACK_LEFT) {
 
  260         }
else if(out_ch_layout & AV_CH_BACK_CENTER){
 
  278         }
else if(out_ch_layout & AV_CH_FRONT_CENTER){
 
  289         }
else if(out_ch_layout & AV_CH_FRONT_CENTER){
 
  297         if (out_ch_layout & AV_CH_FRONT_CENTER) {
 
  306     for(out_i=i=0; i<64; i++){
 
  309         if((out_ch_layout & (1ULL<<i)) == 0)
 
  312             if((in_ch_layout & (1ULL<<j)) == 0)
 
  315                 matrix_param[stride*out_i + in_i] = matrix[i][j];
 
  317                 matrix_param[stride*out_i + in_i] = i == j && (in_ch_layout & out_ch_layout & (1ULL<<i));
 
  318             sum += fabs(matrix_param[stride*out_i + in_i]);
 
  321         maxcoef= 
FFMAX(maxcoef, sum);
 
  324     if(rematrix_volume  < 0)
 
  325         maxcoef = -rematrix_volume;
 
  327     if(maxcoef > maxval || rematrix_volume  < 0){
 
  331                 matrix_param[stride*i + j] /= maxcoef;
 
  335     if(rematrix_volume > 0){
 
  338                 matrix_param[stride*i + j] *= rematrix_volume;
 
  403         for (i = 0; i < nb_out; i++) {
 
  407             for (j = 0; j < nb_in; j++) {
 
  408                 double target = s->
matrix[i][j] * 32768 + rem;
 
  413             maxsum = 
FFMAX(maxsum, sum);
 
  416         if (maxsum <= 32768) {
 
  430         for (i = 0; i < nb_out; i++)
 
  431             for (j = 0; j < nb_in; j++)
 
  442         for (i = 0; i < nb_out; i++)
 
  443             for (j = 0; j < nb_in; j++)
 
  458         for (i = 0; i < nb_out; i++) {
 
  461             for (j = 0; j < nb_in; j++) {
 
  462                 double target = s->
matrix[i][j] * 32768 + rem;
 
  484     if(HAVE_X86ASM && HAVE_MMX)
 
  498     int out_i, in_i, i, j;
 
  509         off = len1 * out->
bps;
 
  515     for(out_i=0; out_i<out->
ch_count; out_i++){
 
  523             if(s->
matrix[out_i][in_i]!=1.0){
 
  529                 memcpy(out->
ch[out_i], in->
ch[in_i], len*out->
bps);
 
  531                 out->
ch[out_i]= in->
ch[in_i];
 
  546                 for(i=0; i<
len; i++){
 
  550                         v+= ((
float*)in->
ch[in_i])[i] * s->
matrix_flt[out_i][in_i];
 
  552                     ((
float*)out->
ch[out_i])[i]= v;
 
  555                 for(i=0; i<
len; i++){
 
  559                         v+= ((
double*)in->
ch[in_i])[i] * s->
matrix[out_i][in_i];
 
  561                     ((
double*)out->
ch[out_i])[i]= v;
 
  564                 for(i=0; i<
len; i++){
 
  568                         v+= ((int16_t*)in->
ch[in_i])[i] * s->
matrix32[out_i][in_i];
 
  570                     ((int16_t*)out->
ch[out_i])[i]= (v + 16384)>>15;
 
struct AudioConvert * in_convert
input conversion context 
enum AVSampleFormat int_sample_fmt
internal sample format (AV_SAMPLE_FMT_FLTP or AV_SAMPLE_FMT_S16P) 
Audio buffer used for intermediate storage between conversion phases. 
#define FRONT_RIGHT_OF_CENTER
#define AV_CH_LAYOUT_SURROUND
int ch_count
number of channels 
void( mix_2_1_func_type)(void *out, const void *in1, const void *in2, void *coeffp, integer index1, integer index2, integer len)
int rematrix_custom
flag to indicate that a custom matrix has been defined 
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy)
void( mix_1_1_func_type)(void *out, const void *in, void *coeffp, integer index, integer len)
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
#define AV_CH_LAYOUT_STEREO
av_cold int swr_build_matrix(uint64_t in_ch_layout_param, uint64_t out_ch_layout_param, double center_mix_level, double surround_mix_level, double lfe_mix_level, double maxval, double rematrix_volume, double *matrix_param, int stride, enum AVMatrixEncoding matrix_encoding, void *log_context)
Generate a channel mixing matrix. 
static int clean_layout(void *s, int64_t layout)
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array(). 
int av_get_channel_layout_nb_channels(uint64_t channel_layout)
Return the number of channels in the channel layout. 
#define av_assert0(cond)
assert() equivalent, that is always enabled. 
av_cold int swri_rematrix_init(SwrContext *s)
int user_out_ch_count
User set output channel count. 
enum AVSampleFormat fmt
sample format 
AudioData out
converted output audio data 
#define AV_CH_LOW_FREQUENCY
uint8_t * native_simd_one
#define AV_LOG_VERBOSE
Detailed information. 
enum AVSampleFormat out_sample_fmt
output sample format 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered. 
int matrix_encoding
matrixed stereo encoding 
float slev
surround mixing level 
int64_t user_in_ch_layout
User set input channel layout. 
The libswresample context. 
int swri_rematrix_init_x86(struct SwrContext *s)
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers. 
float clev
center mixing level 
simple assert() macros that are a bit more flexible than ISO C assert(). 
mix_2_1_func_type * mix_2_1_simd
#define NUM_NAMED_CHANNELS
int32_t matrix32[SWR_CH_MAX][SWR_CH_MAX]
17.15 fixed point rematrixing coefficients 
AudioData midbuf
intermediate audio data (postin/preout) 
audio channel layout utility functions 
#define AV_CH_LAYOUT_STEREO_DOWNMIX
#define FRONT_LEFT_OF_CENTER
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
Set a customized remix matrix. 
mix_1_1_func_type * mix_1_1_f
mix_1_1_func_type * mix_1_1_simd
int64_t out_ch_layout
output channel layout 
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
#define AV_CH_FRONT_LEFT_OF_CENTER
mix_any_func_type * mix_any_f
#define AV_CH_FRONT_CENTER
#define FF_ARRAY_ELEMS(a)
#define AV_CH_FRONT_RIGHT_OF_CENTER
void av_get_channel_layout_string(char *buf, int buf_size, int nb_channels, uint64_t channel_layout)
Return a description of a channel layout. 
int user_in_ch_count
User set input channel count. 
static av_cold int auto_matrix(SwrContext *s)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
float matrix_flt[SWR_CH_MAX][SWR_CH_MAX]
single precision floating point rematrixing coefficients 
static int sane_layout(int64_t layout)
#define AV_CH_BACK_CENTER
double matrix[SWR_CH_MAX][SWR_CH_MAX]
floating point rematrixing coefficients 
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample. 
int64_t in_ch_layout
input channel layout 
GLint GLenum GLboolean GLsizei stride
enum AVSampleFormat av_get_packed_sample_fmt(enum AVSampleFormat sample_fmt)
Get the packed alternative form of the given sample format. 
uint8_t * native_simd_matrix
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout. 
float lfe_mix_level
LFE mixing level. 
void( mix_any_func_type)(uint8_t **out, const uint8_t **in1, void *coeffp, integer len)
const char * av_get_channel_name(uint64_t channel)
Get the name of a given channel. 
av_cold void swri_rematrix_free(SwrContext *s)
float rematrix_maxval
maximum value for rematrixing output 
float rematrix_volume
rematrixing volume coefficient 
mix_2_1_func_type * mix_2_1_f
#define AV_CH_FRONT_RIGHT
static int even(int64_t layout)
uint8_t matrix_ch[SWR_CH_MAX][SWR_CH_MAX+1]
Lists of input channels per output channel that have non zero rematrixing coefficients. 
uint8_t * ch[SWR_CH_MAX]
samples buffer per channel 
int used_ch_count
number of used input channels (mapped channel count if channel_map, otherwise in.ch_count) ...
int64_t user_out_ch_layout
User set output channel layout.