Go to the documentation of this file.
27 #include "config_components.h"
46 #define OFFSET(x) offsetof(LUT3DContext, x)
47 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
48 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
49 #define COMMON_OPTIONS \
50 { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, TFLAGS, "interp_mode" }, \
51 { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, 0, 0, TFLAGS, "interp_mode" }, \
52 { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, 0, 0, TFLAGS, "interp_mode" }, \
53 { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, 0, TFLAGS, "interp_mode" }, \
54 { "pyramid", "interpolate values using a pyramid", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PYRAMID}, 0, 0, TFLAGS, "interp_mode" }, \
55 { "prism", "interpolate values using a prism", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PRISM}, 0, 0, TFLAGS, "interp_mode" }, \
58 #define EXPONENT_MASK 0x7F800000
59 #define MANTISSA_MASK 0x007FFFFF
60 #define SIGN_MASK 0x80000000
82 static inline float lerpf(
float v0,
float v1,
float f)
84 return v0 + (v1 -
v0) *
f;
95 #define NEAR(x) ((int)((x) + .5))
96 #define PREV(x) ((int)(x))
97 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
105 return lut3d->lut[
NEAR(
s->r) * lut3d->lutsize2 +
NEAR(
s->g) * lut3d->lutsize +
NEAR(
s->b)];
115 const int lutsize2 = lut3d->lutsize2;
116 const int lutsize = lut3d->lutsize;
119 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
120 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
121 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
122 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
123 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
124 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
125 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
126 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
127 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
141 const int lutsize2 = lut3d->lutsize2;
142 const int lutsize = lut3d->lutsize;
145 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
146 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
147 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
150 if (
d.g >
d.r &&
d.b >
d.r) {
151 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
152 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
153 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
155 c.r = c000.
r + (c111.
r - c011.
r) *
d.r + (c010.
r - c000.
r) *
d.g + (c001.
r - c000.
r) *
d.b +
156 (c011.
r - c001.
r - c010.
r + c000.
r) *
d.g *
d.b;
157 c.g = c000.
g + (c111.
g - c011.
g) *
d.r + (c010.
g - c000.
g) *
d.g + (c001.
g - c000.
g) *
d.b +
158 (c011.
g - c001.
g - c010.
g + c000.
g) *
d.g *
d.b;
159 c.b = c000.
b + (c111.
b - c011.
b) *
d.r + (c010.
b - c000.
b) *
d.g + (c001.
b - c000.
b) *
d.b +
160 (c011.
b - c001.
b - c010.
b + c000.
b) *
d.g *
d.b;
161 }
else if (
d.r >
d.g &&
d.b >
d.g) {
162 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
163 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
164 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
166 c.r = c000.
r + (c100.
r - c000.
r) *
d.r + (c111.
r - c101.
r) *
d.g + (c001.
r - c000.
r) *
d.b +
167 (c101.
r - c001.
r - c100.
r + c000.
r) *
d.r *
d.b;
168 c.g = c000.
g + (c100.
g - c000.
g) *
d.r + (c111.
g - c101.
g) *
d.g + (c001.
g - c000.
g) *
d.b +
169 (c101.
g - c001.
g - c100.
g + c000.
g) *
d.r *
d.b;
170 c.b = c000.
b + (c100.
b - c000.
b) *
d.r + (c111.
b - c101.
b) *
d.g + (c001.
b - c000.
b) *
d.b +
171 (c101.
b - c001.
b - c100.
b + c000.
b) *
d.r *
d.b;
173 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
174 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
175 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
177 c.r = c000.
r + (c100.
r - c000.
r) *
d.r + (c010.
r - c000.
r) *
d.g + (c111.
r - c110.
r) *
d.b +
178 (c110.
r - c100.
r - c010.
r + c000.
r) *
d.r *
d.g;
179 c.g = c000.
g + (c100.
g - c000.
g) *
d.r + (c010.
g - c000.
g) *
d.g + (c111.
g - c110.
g) *
d.b +
180 (c110.
g - c100.
g - c010.
g + c000.
g) *
d.r *
d.g;
181 c.b = c000.
b + (c100.
b - c000.
b) *
d.r + (c010.
b - c000.
b) *
d.g + (c111.
b - c110.
b) *
d.b +
182 (c110.
b - c100.
b - c010.
b + c000.
b) *
d.r *
d.g;
191 const int lutsize2 = lut3d->lutsize2;
192 const int lutsize = lut3d->lutsize;
195 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
196 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
197 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
198 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
199 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
203 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
204 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
206 c.r = c000.
r + (c001.
r - c000.
r) *
d.b + (c101.
r - c001.
r) *
d.r + (c010.
r - c000.
r) *
d.g +
207 (c000.
r - c010.
r - c001.
r + c011.
r) *
d.b *
d.g +
208 (c001.
r - c011.
r - c101.
r + c111.
r) *
d.r *
d.g;
209 c.g = c000.
g + (c001.
g - c000.
g) *
d.b + (c101.
g - c001.
g) *
d.r + (c010.
g - c000.
g) *
d.g +
210 (c000.
g - c010.
g - c001.
g + c011.
g) *
d.b *
d.g +
211 (c001.
g - c011.
g - c101.
g + c111.
g) *
d.r *
d.g;
212 c.b = c000.
b + (c001.
b - c000.
b) *
d.b + (c101.
b - c001.
b) *
d.r + (c010.
b - c000.
b) *
d.g +
213 (c000.
b - c010.
b - c001.
b + c011.
b) *
d.b *
d.g +
214 (c001.
b - c011.
b - c101.
b + c111.
b) *
d.r *
d.g;
216 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
217 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
219 c.r = c000.
r + (c101.
r - c100.
r) *
d.b + (c100.
r - c000.
r) *
d.r + (c010.
r - c000.
r) *
d.g +
220 (c100.
r - c110.
r - c101.
r + c111.
r) *
d.b *
d.g +
221 (c000.
r - c010.
r - c100.
r + c110.
r) *
d.r *
d.g;
222 c.g = c000.
g + (c101.
g - c100.
g) *
d.b + (c100.
g - c000.
g) *
d.r + (c010.
g - c000.
g) *
d.g +
223 (c100.
g - c110.
g - c101.
g + c111.
g) *
d.b *
d.g +
224 (c000.
g - c010.
g - c100.
g + c110.
g) *
d.r *
d.g;
225 c.b = c000.
b + (c101.
b - c100.
b) *
d.b + (c100.
b - c000.
b) *
d.r + (c010.
b - c000.
b) *
d.g +
226 (c100.
b - c110.
b - c101.
b + c111.
b) *
d.b *
d.g +
227 (c000.
b - c010.
b - c100.
b + c110.
b) *
d.r *
d.g;
240 const int lutsize2 = lut3d->lutsize2;
241 const int lutsize = lut3d->lutsize;
244 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
245 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
246 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
250 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
251 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
252 c.r = (1-
d.r) * c000.
r + (
d.r-
d.g) * c100.
r + (
d.g-
d.b) * c110.
r + (
d.b) * c111.
r;
253 c.g = (1-
d.r) * c000.
g + (
d.r-
d.g) * c100.
g + (
d.g-
d.b) * c110.
g + (
d.b) * c111.
g;
254 c.b = (1-
d.r) * c000.
b + (
d.r-
d.g) * c100.
b + (
d.g-
d.b) * c110.
b + (
d.b) * c111.
b;
255 }
else if (
d.r >
d.b) {
256 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
257 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
258 c.r = (1-
d.r) * c000.
r + (
d.r-
d.b) * c100.
r + (
d.b-
d.g) * c101.
r + (
d.g) * c111.
r;
259 c.g = (1-
d.r) * c000.
g + (
d.r-
d.b) * c100.
g + (
d.b-
d.g) * c101.
g + (
d.g) * c111.
g;
260 c.b = (1-
d.r) * c000.
b + (
d.r-
d.b) * c100.
b + (
d.b-
d.g) * c101.
b + (
d.g) * c111.
b;
262 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
263 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
264 c.r = (1-
d.b) * c000.
r + (
d.b-
d.r) * c001.
r + (
d.r-
d.g) * c101.
r + (
d.g) * c111.
r;
265 c.g = (1-
d.b) * c000.
g + (
d.b-
d.r) * c001.
g + (
d.r-
d.g) * c101.
g + (
d.g) * c111.
g;
266 c.b = (1-
d.b) * c000.
b + (
d.b-
d.r) * c001.
b + (
d.r-
d.g) * c101.
b + (
d.g) * c111.
b;
270 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
271 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
272 c.r = (1-
d.b) * c000.
r + (
d.b-
d.g) * c001.
r + (
d.g-
d.r) * c011.
r + (
d.r) * c111.
r;
273 c.g = (1-
d.b) * c000.
g + (
d.b-
d.g) * c001.
g + (
d.g-
d.r) * c011.
g + (
d.r) * c111.
g;
274 c.b = (1-
d.b) * c000.
b + (
d.b-
d.g) * c001.
b + (
d.g-
d.r) * c011.
b + (
d.r) * c111.
b;
275 }
else if (
d.b >
d.r) {
276 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
277 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
278 c.r = (1-
d.g) * c000.
r + (
d.g-
d.b) * c010.
r + (
d.b-
d.r) * c011.
r + (
d.r) * c111.
r;
279 c.g = (1-
d.g) * c000.
g + (
d.g-
d.b) * c010.
g + (
d.b-
d.r) * c011.
g + (
d.r) * c111.
g;
280 c.b = (1-
d.g) * c000.
b + (
d.g-
d.b) * c010.
b + (
d.b-
d.r) * c011.
b + (
d.r) * c111.
b;
282 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
283 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
284 c.r = (1-
d.g) * c000.
r + (
d.g-
d.r) * c010.
r + (
d.r-
d.b) * c110.
r + (
d.b) * c111.
r;
285 c.g = (1-
d.g) * c000.
g + (
d.g-
d.r) * c010.
g + (
d.r-
d.b) * c110.
g + (
d.b) * c111.
g;
286 c.b = (1-
d.g) * c000.
b + (
d.g-
d.r) * c010.
b + (
d.r-
d.b) * c110.
b + (
d.b) * c111.
b;
293 int idx,
const float s)
295 const int lut_max = prelut->
size - 1;
296 const float scaled = (
s - prelut->
min[idx]) * prelut->
scale[idx];
297 const float x =
av_clipf(scaled, 0.0
f, lut_max);
298 const int prev =
PREV(x);
299 const int next =
FFMIN((
int)(x) + 1, lut_max);
300 const float p = prelut->
lut[idx][prev];
301 const float n = prelut->
lut[idx][next];
302 const float d = x - (
float)prev;
311 if (prelut->size <= 0)
320 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \
321 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
324 const LUT3DContext *lut3d = ctx->priv; \
325 const Lut3DPreLut *prelut = &lut3d->prelut; \
326 const ThreadData *td = arg; \
327 const AVFrame *in = td->in; \
328 const AVFrame *out = td->out; \
329 const int direct = out == in; \
330 const int slice_start = (in->height * jobnr ) / nb_jobs; \
331 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
332 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
333 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
334 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
335 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
336 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
337 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
338 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
339 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
340 const float lut_max = lut3d->lutsize - 1; \
341 const float scale_f = 1.0f / ((1<<depth) - 1); \
342 const float scale_r = lut3d->scale.r * lut_max; \
343 const float scale_g = lut3d->scale.g * lut_max; \
344 const float scale_b = lut3d->scale.b * lut_max; \
346 for (y = slice_start; y < slice_end; y++) { \
347 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
348 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
349 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
350 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
351 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
352 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
353 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
354 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
355 for (x = 0; x < in->width; x++) { \
356 const struct rgbvec rgb = {srcr[x] * scale_f, \
358 srcb[x] * scale_f}; \
359 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
360 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
361 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
362 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
363 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
364 dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \
365 dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \
366 dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \
367 if (!direct && in->linesize[3]) \
370 grow += out->linesize[0]; \
371 brow += out->linesize[1]; \
372 rrow += out->linesize[2]; \
373 arow += out->linesize[3]; \
374 srcgrow += in->linesize[0]; \
375 srcbrow += in->linesize[1]; \
376 srcrrow += in->linesize[2]; \
377 srcarow += in->linesize[3]; \
418 #define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth) \
419 static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
422 const LUT3DContext *lut3d = ctx->priv; \
423 const Lut3DPreLut *prelut = &lut3d->prelut; \
424 const ThreadData *td = arg; \
425 const AVFrame *in = td->in; \
426 const AVFrame *out = td->out; \
427 const int direct = out == in; \
428 const int slice_start = (in->height * jobnr ) / nb_jobs; \
429 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
430 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
431 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
432 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
433 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
434 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
435 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
436 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
437 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
438 const float lut_max = lut3d->lutsize - 1; \
439 const float scale_r = lut3d->scale.r * lut_max; \
440 const float scale_g = lut3d->scale.g * lut_max; \
441 const float scale_b = lut3d->scale.b * lut_max; \
443 for (y = slice_start; y < slice_end; y++) { \
444 float *dstg = (float *)grow; \
445 float *dstb = (float *)brow; \
446 float *dstr = (float *)rrow; \
447 float *dsta = (float *)arow; \
448 const float *srcg = (const float *)srcgrow; \
449 const float *srcb = (const float *)srcbrow; \
450 const float *srcr = (const float *)srcrrow; \
451 const float *srca = (const float *)srcarow; \
452 for (x = 0; x < in->width; x++) { \
453 const struct rgbvec rgb = {sanitizef(srcr[x]), \
454 sanitizef(srcg[x]), \
455 sanitizef(srcb[x])}; \
456 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
457 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
458 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
459 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
460 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
464 if (!direct && in->linesize[3]) \
467 grow += out->linesize[0]; \
468 brow += out->linesize[1]; \
469 rrow += out->linesize[2]; \
470 arow += out->linesize[3]; \
471 srcgrow += in->linesize[0]; \
472 srcbrow += in->linesize[1]; \
473 srcrrow += in->linesize[2]; \
474 srcarow += in->linesize[3]; \
485 #define DEFINE_INTERP_FUNC(name, nbits) \
486 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
489 const LUT3DContext *lut3d = ctx->priv; \
490 const Lut3DPreLut *prelut = &lut3d->prelut; \
491 const ThreadData *td = arg; \
492 const AVFrame *in = td->in; \
493 const AVFrame *out = td->out; \
494 const int direct = out == in; \
495 const int step = lut3d->step; \
496 const uint8_t r = lut3d->rgba_map[R]; \
497 const uint8_t g = lut3d->rgba_map[G]; \
498 const uint8_t b = lut3d->rgba_map[B]; \
499 const uint8_t a = lut3d->rgba_map[A]; \
500 const int slice_start = (in->height * jobnr ) / nb_jobs; \
501 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
502 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
503 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
504 const float lut_max = lut3d->lutsize - 1; \
505 const float scale_f = 1.0f / ((1<<nbits) - 1); \
506 const float scale_r = lut3d->scale.r * lut_max; \
507 const float scale_g = lut3d->scale.g * lut_max; \
508 const float scale_b = lut3d->scale.b * lut_max; \
510 for (y = slice_start; y < slice_end; y++) { \
511 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
512 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
513 for (x = 0; x < in->width * step; x += step) { \
514 const struct rgbvec rgb = {src[x + r] * scale_f, \
515 src[x + g] * scale_f, \
516 src[x + b] * scale_f}; \
517 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
518 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
519 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
520 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
521 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
522 dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
523 dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
524 dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
525 if (!direct && step == 4) \
526 dst[x + a] = src[x + a]; \
528 dstrow += out->linesize[0]; \
529 srcrow += in ->linesize[0]; \
546 #define MAX_LINE_SIZE 512
552 return !*p || *p ==
'#';
563 while ((
c = fgetc(
f)) != EOF) {
574 if ((
c = fgetc(
f)) == EOF)
589 #define NEXT_LINE(loop_cond) do { \
590 if (!fgets(line, sizeof(line), f)) { \
591 av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
592 return AVERROR_INVALIDDATA; \
596 #define NEXT_LINE_OR_GOTO(loop_cond, label) do { \
597 if (!fgets(line, sizeof(line), f)) { \
598 av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
599 ret = AVERROR_INVALIDDATA; \
608 if (lutsize < 2 || lutsize >
MAX_LEVEL) {
620 for (
i = 0;
i < 3;
i++) {
628 for (
i = 0;
i < 3;
i++) {
633 lut3d->
lutsize2 = lutsize * lutsize;
649 if (!strncmp(
line,
"3DLUTSIZE ", 10)) {
659 for (k = 0; k <
size; k++) {
660 for (j = 0; j <
size; j++) {
663 if (k != 0 || j != 0 ||
i != 0)
678 float min[3] = {0.0, 0.0, 0.0};
679 float max[3] = {1.0, 1.0, 1.0};
682 if (!strncmp(
line,
"LUT_3D_SIZE", 11)) {
691 for (k = 0; k <
size; k++) {
692 for (j = 0; j <
size; j++) {
699 if (!strncmp(
line,
"DOMAIN_", 7)) {
701 if (!strncmp(
line + 7,
"MIN ", 4)) vals =
min;
702 else if (!strncmp(
line + 7,
"MAX ", 4)) vals =
max;
709 }
else if (!strncmp(
line,
"TITLE", 5)) {
737 const int size2 = 17 * 17;
738 const float scale = 16*16*16;
747 for (k = 0; k <
size; k++) {
748 for (j = 0; j <
size; j++) {
772 uint8_t rgb_map[3] = {0, 1, 2};
775 if (!strncmp(
line,
"in", 2)) in = strtol(
line + 2,
NULL, 0);
777 else if (!strncmp(
line,
"values", 6)) {
778 const char *p =
line + 6;
779 #define SET_COLOR(id) do { \
780 while (av_isspace(*p)) \
783 case 'r': rgb_map[id] = 0; break; \
784 case 'g': rgb_map[id] = 1; break; \
785 case 'b': rgb_map[id] = 2; break; \
787 while (*p && !av_isspace(*p)) \
797 if (in == -1 ||
out == -1) {
801 if (in < 2 ||
out < 2 ||
817 for (k = 0; k <
size; k++) {
818 for (j = 0; j <
size; j++) {
852 mid = (low + hi) / 2;
863 #define NEXT_FLOAT_OR_GOTO(value, label) \
864 if (!fget_next_word(line, sizeof(line) ,f)) { \
865 ret = AVERROR_INVALIDDATA; \
868 if (av_sscanf(line, "%f", &value) != 1) { \
869 ret = AVERROR_INVALIDDATA; \
877 float in_min[3] = {0.0, 0.0, 0.0};
878 float in_max[3] = {1.0, 1.0, 1.0};
879 float out_min[3] = {0.0, 0.0, 0.0};
880 float out_max[3] = {1.0, 1.0, 1.0};
881 int inside_metadata = 0,
size, size2;
885 int prelut_sizes[3] = {0, 0, 0};
890 if (strncmp(
line,
"CSPLUTV100", 10)) {
897 if (strncmp(
line,
"3D", 2)) {
906 if (!strncmp(
line,
"BEGIN METADATA", 14)) {
910 if (!strncmp(
line,
"END METADATA", 12)) {
914 if (inside_metadata == 0) {
915 int size_r, size_g, size_b;
917 for (
int i = 0;
i < 3;
i++) {
918 int npoints = strtol(
line,
NULL, 0);
929 if (in_prelut[
i] || out_prelut[
i]) {
935 in_prelut[
i] = (
float*)
av_malloc(npoints *
sizeof(
float));
936 out_prelut[
i] = (
float*)
av_malloc(npoints *
sizeof(
float));
937 if (!in_prelut[
i] || !out_prelut[
i]) {
942 prelut_sizes[
i] = npoints;
944 in_max[
i] = -FLT_MAX;
945 out_min[
i] = FLT_MAX;
946 out_max[
i] = -FLT_MAX;
948 for (
int j = 0; j < npoints; j++) {
950 in_min[
i] =
FFMIN(in_min[
i], v);
951 in_max[
i] =
FFMAX(in_max[
i], v);
953 if (j > 0 && v < last) {
961 for (
int j = 0; j < npoints; j++) {
963 out_min[
i] =
FFMIN(out_min[
i], v);
964 out_max[
i] =
FFMAX(out_max[
i], v);
965 out_prelut[
i][j] = v;
968 }
else if (npoints == 2) {
989 if (
av_sscanf(
line,
"%d %d %d", &size_r, &size_g, &size_b) != 3) {
993 if (size_r != size_g || size_r != size_b) {
1002 if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2])
1009 for (
int k = 0; k <
size; k++) {
1010 for (
int j = 0; j <
size; j++) {
1011 for (
int i = 0;
i <
size;
i++) {
1020 vec->
r *= out_max[0] - out_min[0];
1021 vec->
g *= out_max[1] - out_min[1];
1022 vec->
b *= out_max[2] - out_min[2];
1032 for (
int c = 0;
c < 3;
c++) {
1045 a = out_prelut[
c][idx + 0];
1046 b = out_prelut[
c][idx + 1];
1047 mix = x - in_prelut[
c][idx];
1063 for (
int c = 0;
c < 3;
c++) {
1075 const float c = 1. / (
size - 1);
1081 for (k = 0; k <
size; k++) {
1082 for (j = 0; j <
size; j++) {
1115 int depth, is16bit, isfloat,
planar;
1119 depth =
desc->comp[0].depth;
1120 is16bit =
desc->comp[0].depth > 8;
1126 #define SET_FUNC(name) do { \
1127 if (planar && !isfloat) { \
1129 case 8: lut3d->interp = interp_8_##name##_p8; break; \
1130 case 9: lut3d->interp = interp_16_##name##_p9; break; \
1131 case 10: lut3d->interp = interp_16_##name##_p10; break; \
1132 case 12: lut3d->interp = interp_16_##name##_p12; break; \
1133 case 14: lut3d->interp = interp_16_##name##_p14; break; \
1134 case 16: lut3d->interp = interp_16_##name##_p16; break; \
1136 } else if (isfloat) { lut3d->interp = interp_##name##_pf32; \
1137 } else if (is16bit) { lut3d->interp = interp_16_##name; \
1138 } else { lut3d->interp = interp_8_##name; } \
1198 char *res,
int res_len,
int flags)
1209 #if CONFIG_LUT3D_FILTER || CONFIG_HALDCLUT_FILTER
1214 #define COMMON_OPTIONS_OFFSET CONFIG_LUT3D_FILTER
1215 static const AVOption lut3d_haldclut_options[] = {
1216 #if CONFIG_LUT3D_FILTER
1219 #if CONFIG_HALDCLUT_FILTER
1227 #if CONFIG_LUT3D_FILTER
1251 ext = strrchr(lut3d->
file,
'.');
1290 for (
i = 0;
i < 3;
i++) {
1313 .priv_class = &lut3d_class,
1319 #if CONFIG_HALDCLUT_FILTER
1325 const int w = lut3d->clut_width;
1326 const int step = lut3d->clut_step;
1327 const uint8_t *rgba_map = lut3d->clut_rgba_map;
1329 const int level2 = lut3d->
lutsize2;
1331 #define LOAD_CLUT(nbits) do { \
1332 int i, j, k, x = 0, y = 0; \
1334 for (k = 0; k < level; k++) { \
1335 for (j = 0; j < level; j++) { \
1336 for (i = 0; i < level; i++) { \
1337 const uint##nbits##_t *src = (const uint##nbits##_t *) \
1338 (data + y*linesize + x*step); \
1339 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1340 vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
1341 vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
1342 vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
1352 switch (lut3d->clut_bits) {
1353 case 8: LOAD_CLUT(8);
break;
1354 case 16: LOAD_CLUT(16);
break;
1366 const int w = lut3d->clut_width;
1368 const int level2 = lut3d->
lutsize2;
1370 #define LOAD_CLUT_PLANAR(nbits, depth) do { \
1371 int i, j, k, x = 0, y = 0; \
1373 for (k = 0; k < level; k++) { \
1374 for (j = 0; j < level; j++) { \
1375 for (i = 0; i < level; i++) { \
1376 const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
1377 (datag + y*glinesize); \
1378 const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
1379 (datab + y*blinesize); \
1380 const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
1381 (datar + y*rlinesize); \
1382 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1383 vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \
1384 vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \
1385 vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \
1395 switch (lut3d->clut_bits) {
1396 case 8: LOAD_CLUT_PLANAR(8, 8);
break;
1397 case 9: LOAD_CLUT_PLANAR(16, 9);
break;
1398 case 10: LOAD_CLUT_PLANAR(16, 10);
break;
1399 case 12: LOAD_CLUT_PLANAR(16, 12);
break;
1400 case 14: LOAD_CLUT_PLANAR(16, 14);
break;
1401 case 16: LOAD_CLUT_PLANAR(16, 16);
break;
1413 const int w = lut3d->clut_width;
1415 const int level2 = lut3d->
lutsize2;
1417 int i, j, k, x = 0, y = 0;
1419 for (k = 0; k <
level; k++) {
1420 for (j = 0; j <
level; j++) {
1422 const float *gsrc = (
const float *)(datag + y*glinesize);
1423 const float *bsrc = (
const float *)(datab + y*blinesize);
1424 const float *rsrc = (
const float *)(datar + y*rlinesize);
1447 outlink->
w =
ctx->inputs[0]->w;
1448 outlink->
h =
ctx->inputs[0]->h;
1470 lut3d->clut_bits =
desc->comp[0].depth;
1494 const int max_clut_level = sqrt(
MAX_LEVEL);
1495 const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
1497 "(maximum level is %d, or %dx%d CLUT)\n",
1498 max_clut_level, max_clut_size, max_clut_size);
1518 if (lut3d->clut || !lut3d->got_clut) {
1519 if (lut3d->clut_float)
1520 update_clut_float(
ctx->priv, second);
1521 else if (lut3d->clut_planar)
1522 update_clut_planar(
ctx->priv, second);
1524 update_clut_packed(
ctx->priv, second);
1525 lut3d->got_clut = 1;
1535 lut3d->fs.on_event = update_apply_clut;
1547 &lut3d_haldclut_options[COMMON_OPTIONS_OFFSET]);
1557 .config_props = config_clut,
1573 .
preinit = haldclut_framesync_preinit,
1574 .
init = haldclut_init,
1575 .
uninit = haldclut_uninit,
1580 .priv_class = &haldclut_class,
1588 #if CONFIG_LUT1D_FILTER
1590 enum interp_1d_mode {
1591 INTERPOLATE_1D_NEAREST,
1592 INTERPOLATE_1D_LINEAR,
1593 INTERPOLATE_1D_CUBIC,
1594 INTERPOLATE_1D_COSINE,
1595 INTERPOLATE_1D_SPLINE,
1599 #define MAX_1D_LEVEL 65536
1601 typedef struct LUT1DContext {
1606 uint8_t rgba_map[4];
1608 float lut[3][MAX_1D_LEVEL];
1614 #define OFFSET(x) offsetof(LUT1DContext, x)
1616 static void set_identity_matrix_1d(LUT1DContext *lut1d,
int size)
1618 const float c = 1. / (
size - 1);
1621 lut1d->lutsize =
size;
1623 lut1d->lut[0][
i] =
i *
c;
1624 lut1d->lut[1][
i] =
i *
c;
1625 lut1d->lut[2][
i] =
i *
c;
1631 LUT1DContext *lut1d =
ctx->priv;
1633 float in_min[3] = {0.0, 0.0, 0.0};
1634 float in_max[3] = {1.0, 1.0, 1.0};
1635 float out_min[3] = {0.0, 0.0, 0.0};
1636 float out_max[3] = {1.0, 1.0, 1.0};
1637 int inside_metadata = 0,
size;
1640 if (strncmp(
line,
"CSPLUTV100", 10)) {
1646 if (strncmp(
line,
"1D", 2)) {
1654 if (!strncmp(
line,
"BEGIN METADATA", 14)) {
1655 inside_metadata = 1;
1658 if (!strncmp(
line,
"END METADATA", 12)) {
1659 inside_metadata = 0;
1662 if (inside_metadata == 0) {
1663 for (
int i = 0;
i < 3;
i++) {
1664 int npoints = strtol(
line,
NULL, 0);
1682 if (size < 2 || size > MAX_1D_LEVEL) {
1687 lut1d->lutsize =
size;
1689 for (
int i = 0;
i <
size;
i++) {
1691 if (
av_sscanf(
line,
"%f %f %f", &lut1d->lut[0][
i], &lut1d->lut[1][
i], &lut1d->lut[2][
i]) != 3)
1693 lut1d->lut[0][
i] *= out_max[0] - out_min[0];
1694 lut1d->lut[1][
i] *= out_max[1] - out_min[1];
1695 lut1d->lut[2][
i] *= out_max[2] - out_min[2];
1702 lut1d->scale.r =
av_clipf(1. / (in_max[0] - in_min[0]), 0.
f, 1.
f);
1703 lut1d->scale.g =
av_clipf(1. / (in_max[1] - in_min[1]), 0.
f, 1.
f);
1704 lut1d->scale.b =
av_clipf(1. / (in_max[2] - in_min[2]), 0.
f, 1.
f);
1711 LUT1DContext *lut1d =
ctx->priv;
1713 float min[3] = {0.0, 0.0, 0.0};
1714 float max[3] = {1.0, 1.0, 1.0};
1717 if (!strncmp(
line,
"LUT_1D_SIZE", 11)) {
1721 if (size < 2 || size > MAX_1D_LEVEL) {
1725 lut1d->lutsize =
size;
1730 if (!strncmp(
line,
"DOMAIN_", 7)) {
1732 if (!strncmp(
line + 7,
"MIN ", 4)) vals =
min;
1733 else if (!strncmp(
line + 7,
"MAX ", 4)) vals =
max;
1740 }
else if (!strncmp(
line,
"LUT_1D_INPUT_RANGE ", 19)) {
1745 }
else if (!strncmp(
line,
"TITLE", 5)) {
1749 if (
av_sscanf(
line,
"%f %f %f", &lut1d->lut[0][
i], &lut1d->lut[1][
i], &lut1d->lut[2][
i]) != 3)
1763 static const AVOption lut1d_options[] = {
1766 {
"nearest",
"use values from the nearest defined points", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, 0, 0,
TFLAGS,
"interp_mode" },
1767 {
"linear",
"use values from the linear interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, 0, 0,
TFLAGS,
"interp_mode" },
1768 {
"cosine",
"use values from the cosine interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, 0, 0,
TFLAGS,
"interp_mode" },
1769 {
"cubic",
"use values from the cubic interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, 0, 0,
TFLAGS,
"interp_mode" },
1770 {
"spline",
"use values from the spline interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, 0, 0,
TFLAGS,
"interp_mode" },
1776 static inline float interp_1d_nearest(
const LUT1DContext *lut1d,
1777 int idx,
const float s)
1779 return lut1d->lut[idx][
NEAR(
s)];
1782 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
1784 static inline float interp_1d_linear(
const LUT1DContext *lut1d,
1785 int idx,
const float s)
1787 const int prev =
PREV(
s);
1788 const int next = NEXT1D(
s);
1789 const float d =
s - prev;
1790 const float p = lut1d->lut[idx][prev];
1791 const float n = lut1d->lut[idx][next];
1796 static inline float interp_1d_cosine(
const LUT1DContext *lut1d,
1797 int idx,
const float s)
1799 const int prev =
PREV(
s);
1800 const int next = NEXT1D(
s);
1801 const float d =
s - prev;
1802 const float p = lut1d->lut[idx][prev];
1803 const float n = lut1d->lut[idx][next];
1804 const float m = (1.f -
cosf(
d *
M_PI)) * .5
f;
1806 return lerpf(p, n, m);
1809 static inline float interp_1d_cubic(
const LUT1DContext *lut1d,
1810 int idx,
const float s)
1812 const int prev =
PREV(
s);
1813 const int next = NEXT1D(
s);
1814 const float mu =
s - prev;
1817 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1818 float y1 = lut1d->lut[idx][prev];
1819 float y2 = lut1d->lut[idx][next];
1820 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1824 a0 = y3 - y2 - y0 + y1;
1829 return a0 * mu * mu2 +
a1 * mu2 +
a2 * mu +
a3;
1832 static inline float interp_1d_spline(
const LUT1DContext *lut1d,
1833 int idx,
const float s)
1835 const int prev =
PREV(
s);
1836 const int next = NEXT1D(
s);
1837 const float x =
s - prev;
1838 float c0,
c1,
c2, c3;
1840 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1841 float y1 = lut1d->lut[idx][prev];
1842 float y2 = lut1d->lut[idx][next];
1843 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1846 c1 = .5f * (y2 - y0);
1847 c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
1848 c3 = .5f * (y3 - y0) + 1.5
f * (y1 - y2);
1850 return ((c3 * x +
c2) * x +
c1) * x + c0;
1853 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \
1854 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \
1855 void *arg, int jobnr, \
1859 const LUT1DContext *lut1d = ctx->priv; \
1860 const ThreadData *td = arg; \
1861 const AVFrame *in = td->in; \
1862 const AVFrame *out = td->out; \
1863 const int direct = out == in; \
1864 const int slice_start = (in->height * jobnr ) / nb_jobs; \
1865 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1866 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1867 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1868 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1869 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1870 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1871 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1872 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1873 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1874 const float factor = (1 << depth) - 1; \
1875 const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
1876 const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
1877 const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
1879 for (y = slice_start; y < slice_end; y++) { \
1880 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
1881 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
1882 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
1883 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
1884 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
1885 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
1886 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
1887 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
1888 for (x = 0; x < in->width; x++) { \
1889 float r = srcr[x] * scale_r; \
1890 float g = srcg[x] * scale_g; \
1891 float b = srcb[x] * scale_b; \
1892 r = interp_1d_##name(lut1d, 0, r); \
1893 g = interp_1d_##name(lut1d, 1, g); \
1894 b = interp_1d_##name(lut1d, 2, b); \
1895 dstr[x] = av_clip_uintp2(r * factor, depth); \
1896 dstg[x] = av_clip_uintp2(g * factor, depth); \
1897 dstb[x] = av_clip_uintp2(b * factor, depth); \
1898 if (!direct && in->linesize[3]) \
1899 dsta[x] = srca[x]; \
1901 grow += out->linesize[0]; \
1902 brow += out->linesize[1]; \
1903 rrow += out->linesize[2]; \
1904 arow += out->linesize[3]; \
1905 srcgrow += in->linesize[0]; \
1906 srcbrow += in->linesize[1]; \
1907 srcrrow += in->linesize[2]; \
1908 srcarow += in->linesize[3]; \
1913 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
1914 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 8, 8)
1915 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8)
1916 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
1917 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8)
1919 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
1920 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 9)
1921 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9)
1922 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
1923 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9)
1925 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
1926 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 10)
1927 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10)
1928 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
1929 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10)
1931 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
1932 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 12)
1933 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12)
1934 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
1935 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12)
1937 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
1938 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 14)
1939 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14)
1940 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
1941 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14)
1943 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
1944 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 16)
1945 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16)
1946 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
1947 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16)
1949 #define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth) \
1950 static int interp_1d_##name##_pf##depth(AVFilterContext *ctx, \
1951 void *arg, int jobnr, \
1955 const LUT1DContext *lut1d = ctx->priv; \
1956 const ThreadData *td = arg; \
1957 const AVFrame *in = td->in; \
1958 const AVFrame *out = td->out; \
1959 const int direct = out == in; \
1960 const int slice_start = (in->height * jobnr ) / nb_jobs; \
1961 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1962 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1963 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1964 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1965 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1966 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1967 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1968 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1969 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1970 const float lutsize = lut1d->lutsize - 1; \
1971 const float scale_r = lut1d->scale.r * lutsize; \
1972 const float scale_g = lut1d->scale.g * lutsize; \
1973 const float scale_b = lut1d->scale.b * lutsize; \
1975 for (y = slice_start; y < slice_end; y++) { \
1976 float *dstg = (float *)grow; \
1977 float *dstb = (float *)brow; \
1978 float *dstr = (float *)rrow; \
1979 float *dsta = (float *)arow; \
1980 const float *srcg = (const float *)srcgrow; \
1981 const float *srcb = (const float *)srcbrow; \
1982 const float *srcr = (const float *)srcrrow; \
1983 const float *srca = (const float *)srcarow; \
1984 for (x = 0; x < in->width; x++) { \
1985 float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \
1986 float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \
1987 float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \
1988 r = interp_1d_##name(lut1d, 0, r); \
1989 g = interp_1d_##name(lut1d, 1, g); \
1990 b = interp_1d_##name(lut1d, 2, b); \
1994 if (!direct && in->linesize[3]) \
1995 dsta[x] = srca[x]; \
1997 grow += out->linesize[0]; \
1998 brow += out->linesize[1]; \
1999 rrow += out->linesize[2]; \
2000 arow += out->linesize[3]; \
2001 srcgrow += in->linesize[0]; \
2002 srcbrow += in->linesize[1]; \
2003 srcrrow += in->linesize[2]; \
2004 srcarow += in->linesize[3]; \
2009 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32)
2010 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(
linear, 32)
2011 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine, 32)
2012 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic, 32)
2013 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline, 32)
2015 #define DEFINE_INTERP_FUNC_1D(name, nbits) \
2016 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \
2017 int jobnr, int nb_jobs) \
2020 const LUT1DContext *lut1d = ctx->priv; \
2021 const ThreadData *td = arg; \
2022 const AVFrame *in = td->in; \
2023 const AVFrame *out = td->out; \
2024 const int direct = out == in; \
2025 const int step = lut1d->step; \
2026 const uint8_t r = lut1d->rgba_map[R]; \
2027 const uint8_t g = lut1d->rgba_map[G]; \
2028 const uint8_t b = lut1d->rgba_map[B]; \
2029 const uint8_t a = lut1d->rgba_map[A]; \
2030 const int slice_start = (in->height * jobnr ) / nb_jobs; \
2031 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
2032 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
2033 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
2034 const float factor = (1 << nbits) - 1; \
2035 const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
2036 const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
2037 const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
2039 for (y = slice_start; y < slice_end; y++) { \
2040 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
2041 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
2042 for (x = 0; x < in->width * step; x += step) { \
2043 float rr = src[x + r] * scale_r; \
2044 float gg = src[x + g] * scale_g; \
2045 float bb = src[x + b] * scale_b; \
2046 rr = interp_1d_##name(lut1d, 0, rr); \
2047 gg = interp_1d_##name(lut1d, 1, gg); \
2048 bb = interp_1d_##name(lut1d, 2, bb); \
2049 dst[x + r] = av_clip_uint##nbits(rr * factor); \
2050 dst[x + g] = av_clip_uint##nbits(gg * factor); \
2051 dst[x + b] = av_clip_uint##nbits(bb * factor); \
2052 if (!direct && step == 4) \
2053 dst[x + a] = src[x + a]; \
2055 dstrow += out->linesize[0]; \
2056 srcrow += in ->linesize[0]; \
2061 DEFINE_INTERP_FUNC_1D(nearest, 8)
2062 DEFINE_INTERP_FUNC_1D(
linear, 8)
2063 DEFINE_INTERP_FUNC_1D(cosine, 8)
2064 DEFINE_INTERP_FUNC_1D(cubic, 8)
2065 DEFINE_INTERP_FUNC_1D(spline, 8)
2067 DEFINE_INTERP_FUNC_1D(nearest, 16)
2068 DEFINE_INTERP_FUNC_1D(
linear, 16)
2069 DEFINE_INTERP_FUNC_1D(cosine, 16)
2070 DEFINE_INTERP_FUNC_1D(cubic, 16)
2071 DEFINE_INTERP_FUNC_1D(spline, 16)
2075 int depth, is16bit, isfloat,
planar;
2076 LUT1DContext *lut1d =
inlink->dst->priv;
2079 depth =
desc->comp[0].depth;
2080 is16bit =
desc->comp[0].depth > 8;
2086 #define SET_FUNC_1D(name) do { \
2087 if (planar && !isfloat) { \
2089 case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \
2090 case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \
2091 case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
2092 case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
2093 case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
2094 case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
2096 } else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \
2097 } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \
2098 } else { lut1d->interp = interp_1d_8_##name; } \
2101 switch (lut1d->interpolation) {
2102 case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest);
break;
2103 case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(
linear);
break;
2104 case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine);
break;
2105 case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic);
break;
2106 case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline);
break;
2119 LUT1DContext *lut1d =
ctx->priv;
2121 lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
2124 set_identity_matrix_1d(lut1d, 32);
2135 ext = strrchr(lut1d->file,
'.');
2146 ret = parse_cinespace_1d(
ctx,
f);
2152 if (!
ret && !lut1d->lutsize) {
2165 LUT1DContext *lut1d =
ctx->priv;
2201 static int lut1d_process_command(
AVFilterContext *
ctx,
const char *cmd,
const char *args,
2202 char *res,
int res_len,
int flags)
2204 LUT1DContext *lut1d =
ctx->priv;
2213 set_identity_matrix_1d(lut1d, 32);
2216 return config_input_1d(
ctx->inputs[0]);
2223 .filter_frame = filter_frame_1d,
2224 .config_props = config_input_1d,
2231 .priv_size =
sizeof(LUT1DContext),
2236 .priv_class = &lut1d_class,
2238 .process_command = lut1d_process_command,
static AVFrame * apply_lut(AVFilterLink *inlink, AVFrame *in)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
static int config_input(AVFilterLink *inlink)
#define AV_PIX_FMT_GBRAP16
#define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth)
static float lerpf(float v0, float v1, float f)
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
#define AV_LOG_WARNING
Something somehow does not look correct.
AVPixelFormat
Pixel format.
static int mix(int c0, int c1)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int parse_m3d(AVFilterContext *ctx, FILE *f)
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
#define NEXT_FLOAT_OR_GOTO(value, label)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
int() avfilter_action_func(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A function pointer passed to the AVFilterGraph::execute callback to be executed multiple times,...
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
static struct rgbvec apply_prelut(const Lut3DPreLut *prelut, const struct rgbvec *s)
static struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
#define FILTER_PIXFMTS_ARRAY(array)
static int parse_dat(AVFilterContext *ctx, FILE *f)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
static int skip_line(const char *p)
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
static struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s)
Tetrahedral interpolation.
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
static av_cold int preinit(AVFilterContext *ctx)
static struct rgbvec interp_prism(const LUT3DContext *lut3d, const struct rgbvec *s)
const char * name
Filter name.
#define AVFILTER_DEFINE_CLASS_EXT(name, desc, options)
static int parse_cube(AVFilterContext *ctx, FILE *f)
A link between two filters.
const AVFilter ff_vf_lut3d
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
static int parse_3dl(AVFilterContext *ctx, FILE *f)
#define AV_PIX_FMT_GBRP14
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
#define AV_PIX_FMT_GBRP10
static double val(void *priv, double ch)
static av_always_inline float scale(float x, float s)
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
static struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s)
Interpolate using the 8 vertices of a cube.
A filter pad used for either input or output.
static enum AVPixelFormat pix_fmts[]
static int config_output(AVFilterLink *outlink)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
const AVFilterPad ff_video_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_VIDEO.
#define AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP12
int(* init)(AVBSFContext *ctx)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static char * fget_next_word(char *dst, int max, FILE *f)
#define DEFINE_INTERP_FUNC(name, nbits)
#define FILTER_INPUTS(array)
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
static float prelut_interp_1d_linear(const Lut3DPreLut *prelut, int idx, const float s)
Describe the class of an AVClass context structure.
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
#define fs(width, name, subs,...)
filter_frame For filters that do not use the activate() callback
#define FRAMESYNC_DEFINE_CLASS_EXT(name, context, field, options)
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
#define AV_PIX_FMT_GBRPF32
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
static int set_identity_matrix(AVFilterContext *ctx, int size)
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
#define AV_LOG_INFO
Standard information.
#define AVFILTER_DEFINE_CLASS(fname)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
#define AV_PIX_FMT_BGRA64
#define i(width, name, range_min, range_max)
avfilter_action_func * interp
int w
agreed upon image width
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)
#define AV_PIX_FMT_GBRP12
#define av_malloc_array(a, b)
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
@ INTERPOLATE_TETRAHEDRAL
static struct rgbvec interp_pyramid(const LUT3DContext *lut3d, const struct rgbvec *s)
const char * name
Pad name.
FILE * avpriv_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
static int parse_cinespace(AVFilterContext *ctx, FILE *f)
static float sanitizef(float f)
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
#define NEXT_LINE_OR_GOTO(loop_cond, label)
const AVFilter ff_vf_haldclut
int h
agreed upon image height
#define AV_PIX_FMT_GBRAPF32
static struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s)
Get the nearest defined point.
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
#define NEXT_LINE(loop_cond)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
#define FILTER_OUTPUTS(array)
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
void ff_lut3d_init_x86(LUT3DContext *s, const AVPixFmtDescriptor *desc)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static av_cold int uninit(AVCodecContext *avctx)
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
const AVFilter ff_vf_lut1d
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
int interpolation
interp_mode
static int nearest_sample_index(float *data, float x, int low, int hi)