Go to the documentation of this file.
59 #if !HAVE_MIPS32R6 && !HAVE_MIPS64R6
73 const float *
src, ptrdiff_t sstep,
float *
dst, ptrdiff_t dstep)
80 float in = *
src0 *
c->gain +
s->x[0] *
c->cy[0] +
s->x[1] *
c->cy[1];
81 *dst0 =
s->x[0] + in +
s->x[1] *
c->cx[1];
87 }
else if (
c->order == 4) {
94 float in1, in2, in3, in4;
95 float res1, res2, res3, res4;
99 float src0_0 =
src0[0 ];
100 float src0_1 =
src0[sstep ];
101 float src0_2 =
src0[2*sstep];
102 float src0_3 =
src0[3*sstep];
105 "lwc1 $f0, 0(%[cy]) \n\t"
106 "lwc1 $f4, 0(%[x]) \n\t"
107 "lwc1 $f5, 4(%[x]) \n\t"
108 "lwc1 $f6, 8(%[x]) \n\t"
109 "lwc1 $f7, 12(%[x]) \n\t"
110 "mul.s %[in1], %[src0_0], %[gain] \n\t"
111 "mul.s %[in2], %[src0_1], %[gain] \n\t"
112 "mul.s %[in3], %[src0_2], %[gain] \n\t"
113 "mul.s %[in4], %[src0_3], %[gain] \n\t"
114 "lwc1 $f1, 4(%[cy]) \n\t"
115 "madd.s %[in1], %[in1], $f0, $f4 \n\t"
116 "madd.s %[in2], %[in2], $f0, $f5 \n\t"
117 "madd.s %[in3], %[in3], $f0, $f6 \n\t"
118 "madd.s %[in4], %[in4], $f0, $f7 \n\t"
119 "lwc1 $f2, 8(%[cy]) \n\t"
120 "madd.s %[in1], %[in1], $f1, $f5 \n\t"
121 "madd.s %[in2], %[in2], $f1, $f6 \n\t"
122 "madd.s %[in3], %[in3], $f1, $f7 \n\t"
123 "lwc1 $f3, 12(%[cy]) \n\t"
124 "add.s $f8, $f5, $f7 \n\t"
125 "madd.s %[in1], %[in1], $f2, $f6 \n\t"
126 "madd.s %[in2], %[in2], $f2, $f7 \n\t"
127 "mul.s $f9, $f6, %[six] \n\t"
128 "mul.s $f10, $f7, %[six] \n\t"
129 "madd.s %[in1], %[in1], $f3, $f7 \n\t"
130 "madd.s %[in2], %[in2], $f3, %[in1] \n\t"
131 "madd.s %[in3], %[in3], $f2, %[in1] \n\t"
132 "madd.s %[in4], %[in4], $f1, %[in1] \n\t"
133 "add.s %[res1], $f4, %[in1] \n\t"
134 "swc1 %[in1], 0(%[x]) \n\t"
135 "add.s $f0, $f6, %[in1] \n\t"
136 "madd.s %[in3], %[in3], $f3, %[in2] \n\t"
137 "madd.s %[in4], %[in4], $f2, %[in2] \n\t"
138 "add.s %[res2], $f5, %[in2] \n\t"
139 "madd.s %[res1], %[res1], $f8, %[four] \n\t"
140 "add.s $f8, $f7, %[in2] \n\t"
141 "swc1 %[in2], 4(%[x]) \n\t"
142 "madd.s %[in4], %[in4], $f3, %[in3] \n\t"
143 "add.s %[res3], $f6, %[in3] \n\t"
144 "add.s %[res1], %[res1], $f9 \n\t"
145 "madd.s %[res2], %[res2], $f0, %[four] \n\t"
146 "swc1 %[in3], 8(%[x]) \n\t"
147 "add.s %[res4], $f7, %[in4] \n\t"
148 "madd.s %[res3], %[res3], $f8, %[four] \n\t"
149 "swc1 %[in4], 12(%[x]) \n\t"
150 "add.s %[res2], %[res2], $f10 \n\t"
151 "add.s $f8, %[in1], %[in3] \n\t"
152 "madd.s %[res3], %[res3], %[in1], %[six] \n\t"
153 "madd.s %[res4], %[res4], $f8, %[four] \n\t"
154 "madd.s %[res4], %[res4], %[in2], %[six] \n\t"
156 : [in1]
"=&f"(in1), [in2]
"=&f"(in2),
157 [in3]
"=&f"(in3), [in4]
"=&f"(in4),
158 [res1]
"=&f"(res1), [res2]
"=&f"(res2),
159 [res3]
"=&f"(res3), [res4]
"=&f"(res4)
160 : [src0_0]
"f"(src0_0), [src0_1]
"f"(src0_1),
161 [src0_2]
"f"(src0_2), [src0_3]
"f"(src0_3),
162 [gain]
"f"(gain), [x]
"r"(x), [cy]
"r"(cy),
163 [four]
"f"(four), [six]
"f"(six)
164 :
"$f0",
"$f1",
"$f2",
"$f3",
165 "$f4",
"$f5",
"$f6",
"$f7",
166 "$f8",
"$f9",
"$f10",
172 dst0[2*sstep] = res3;
173 dst0[3*sstep] = res4;
185 in = *
src0 *
c->gain;
186 for(j = 0; j <
c->order; j++)
187 in +=
c->cy[j] *
s->x[j];
188 res =
s->x[0] + in +
s->x[
c->order >> 1] *
c->cx[
c->order >> 1];
189 for(j = 1; j < c->order >> 1; j++)
190 res += (
s->x[j] +
s->x[
c->order - j]) *
c->cx[j];
191 for(j = 0; j < c->order - 1; j++)
192 s->x[j] =
s->x[j + 1];
194 s->x[
c->order - 1] = in;
205 #if !HAVE_MIPS32R6 && !HAVE_MIPS64R6
206 f->filter_flt = iir_filter_flt_mips;
void ff_iir_filter_init_mips(FFIIRFilterContext *f)
IIR filter global parameters.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
#define i(width, name, range_min, range_max)
__asm__(".macro parse_r var r\n\t" "\\var = -1\n\t" _IFC_REG(0) _IFC_REG(1) _IFC_REG(2) _IFC_REG(3) _IFC_REG(4) _IFC_REG(5) _IFC_REG(6) _IFC_REG(7) _IFC_REG(8) _IFC_REG(9) _IFC_REG(10) _IFC_REG(11) _IFC_REG(12) _IFC_REG(13) _IFC_REG(14) _IFC_REG(15) _IFC_REG(16) _IFC_REG(17) _IFC_REG(18) _IFC_REG(19) _IFC_REG(20) _IFC_REG(21) _IFC_REG(22) _IFC_REG(23) _IFC_REG(24) _IFC_REG(25) _IFC_REG(26) _IFC_REG(27) _IFC_REG(28) _IFC_REG(29) _IFC_REG(30) _IFC_REG(31) ".iflt \\var\n\t" ".error \"Unable to parse register name \\r\"\n\t" ".endif\n\t" ".endm")