FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
avf_showspectrum.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012-2013 Clément Bœsch
3  * Copyright (c) 2013 Rudolf Polzer <divverent@xonotic.org>
4  * Copyright (c) 2015 Paul B Mahol
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * audio to spectrum (video) transmedia filter, based on ffplay rdft showmode
26  * (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini).
27  */
28 
29 #include <math.h>
30 
31 #include "libavcodec/avfft.h"
32 #include "libavutil/audio_fifo.h"
33 #include "libavutil/avassert.h"
34 #include "libavutil/avstring.h"
36 #include "libavutil/opt.h"
38 #include "audio.h"
39 #include "video.h"
40 #include "avfilter.h"
41 #include "internal.h"
42 #include "window_func.h"
43 
50 
51 typedef struct {
52  const AVClass *class;
53  int w, h;
59  int sliding; ///< 1 if sliding mode, 0 otherwise
60  int mode; ///< channel display mode
61  int color_mode; ///< display color scheme
62  int scale;
63  float saturation; ///< color saturation multiplier
64  float rotation; ///< color rotation
65  int data;
66  int xpos; ///< x position (current column)
67  FFTContext **fft; ///< Fast Fourier Transform context
68  int fft_bits; ///< number of bits (FFT window size = 1<<fft_bits)
69  FFTComplex **fft_data; ///< bins holder for each (displayed) channels
70  float *window_func_lut; ///< Window function LUT
71  float **magnitudes;
72  float **phases;
73  int win_func;
74  int win_size;
75  double win_scale;
76  float overlap;
77  float gain;
78  int hop_size;
79  float *combine_buffer; ///< color combining buffer (3 * h items)
80  float **color_buffer; ///< color buffer (3 * h * ch items)
82  int64_t pts;
84  int legend;
85  int start_x, start_y;
87 
88 #define OFFSET(x) offsetof(ShowSpectrumContext, x)
89 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
90 
91 static const AVOption showspectrum_options[] = {
92  { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
93  { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
94  { "slide", "set sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_SLIDES-1, FLAGS, "slide" },
95  { "replace", "replace old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, FLAGS, "slide" },
96  { "scroll", "scroll from right to left", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, FLAGS, "slide" },
97  { "fullframe", "return full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, FLAGS, "slide" },
98  { "rscroll", "scroll from left to right", 0, AV_OPT_TYPE_CONST, {.i64=RSCROLL}, 0, 0, FLAGS, "slide" },
99  { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, COMBINED, NB_MODES-1, FLAGS, "mode" },
100  { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
101  { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
102  { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=CHANNEL}, CHANNEL, NB_CLMODES-1, FLAGS, "color" },
103  { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" },
104  { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
105  { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, "color" },
106  { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, "color" },
107  { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, "color" },
108  { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, "color" },
109  { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, "color" },
110  { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, "color" },
111  { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, "color" },
112  { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=SQRT}, LINEAR, NB_SCALES-1, FLAGS, "scale" },
113  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
114  { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" },
115  { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" },
116  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" },
117  { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
118  { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" },
119  { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
120  { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
121  { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" },
122  { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
123  { "hann", "Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
124  { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
125  { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" },
126  { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
127  { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" },
128  { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" },
129  { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" },
130  { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
131  { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" },
132  { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" },
133  { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" },
134  { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" },
135  { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" },
136  { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" },
137  { "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" },
138  { "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" },
139  { "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" },
140  { "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" },
141  { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
142  { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, "orientation" },
143  { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
144  { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl = 0}, 0, 1, FLAGS },
145  { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
146  { "data", "set data mode", OFFSET(data), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_DMODES-1, FLAGS, "data" },
147  { "magnitude", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_MAGNITUDE}, 0, 0, FLAGS, "data" },
148  { "phase", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_PHASE}, 0, 0, FLAGS, "data" },
149  { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
150  { NULL }
151 };
152 
153 AVFILTER_DEFINE_CLASS(showspectrum);
154 
155 static const struct ColorTable {
156  float a, y, u, v;
157 } color_table[][8] = {
158  [INTENSITY] = {
159  { 0, 0, 0, 0 },
160  { 0.13, .03587126228984074, .1573300977624594, -.02548747583751842 },
161  { 0.30, .18572281794568020, .1772436246393981, .17475554840414750 },
162  { 0.60, .28184980583656130, -.1593064119945782, .47132074554608920 },
163  { 0.73, .65830621175547810, -.3716070802232764, .24352759331252930 },
164  { 0.78, .76318535758242900, -.4307467689263783, .16866496622310430 },
165  { 0.91, .95336363636363640, -.2045454545454546, .03313636363636363 },
166  { 1, 1, 0, 0 }},
167  [RAINBOW] = {
168  { 0, 0, 0, 0 },
169  { 0.13, 44/256., (189-128)/256., (138-128)/256. },
170  { 0.25, 29/256., (186-128)/256., (119-128)/256. },
171  { 0.38, 119/256., (194-128)/256., (53-128)/256. },
172  { 0.60, 111/256., (73-128)/256., (59-128)/256. },
173  { 0.73, 205/256., (19-128)/256., (149-128)/256. },
174  { 0.86, 135/256., (83-128)/256., (200-128)/256. },
175  { 1, 73/256., (95-128)/256., (225-128)/256. }},
176  [MORELAND] = {
177  { 0, 44/256., (181-128)/256., (112-128)/256. },
178  { 0.13, 126/256., (177-128)/256., (106-128)/256. },
179  { 0.25, 164/256., (163-128)/256., (109-128)/256. },
180  { 0.38, 200/256., (140-128)/256., (120-128)/256. },
181  { 0.60, 201/256., (117-128)/256., (141-128)/256. },
182  { 0.73, 177/256., (103-128)/256., (165-128)/256. },
183  { 0.86, 136/256., (100-128)/256., (183-128)/256. },
184  { 1, 68/256., (117-128)/256., (203-128)/256. }},
185  [NEBULAE] = {
186  { 0, 10/256., (134-128)/256., (132-128)/256. },
187  { 0.23, 21/256., (137-128)/256., (130-128)/256. },
188  { 0.45, 35/256., (134-128)/256., (134-128)/256. },
189  { 0.57, 51/256., (130-128)/256., (139-128)/256. },
190  { 0.67, 104/256., (116-128)/256., (162-128)/256. },
191  { 0.77, 120/256., (105-128)/256., (188-128)/256. },
192  { 0.87, 140/256., (105-128)/256., (188-128)/256. },
193  { 1, 1, 0, 0 }},
194  [FIRE] = {
195  { 0, 0, 0, 0 },
196  { 0.23, 44/256., (132-128)/256., (127-128)/256. },
197  { 0.45, 62/256., (116-128)/256., (140-128)/256. },
198  { 0.57, 75/256., (105-128)/256., (152-128)/256. },
199  { 0.67, 95/256., (91-128)/256., (166-128)/256. },
200  { 0.77, 126/256., (74-128)/256., (172-128)/256. },
201  { 0.87, 164/256., (73-128)/256., (162-128)/256. },
202  { 1, 1, 0, 0 }},
203  [FIERY] = {
204  { 0, 0, 0, 0 },
205  { 0.23, 36/256., (116-128)/256., (163-128)/256. },
206  { 0.45, 52/256., (102-128)/256., (200-128)/256. },
207  { 0.57, 116/256., (84-128)/256., (196-128)/256. },
208  { 0.67, 157/256., (67-128)/256., (181-128)/256. },
209  { 0.77, 193/256., (40-128)/256., (155-128)/256. },
210  { 0.87, 221/256., (101-128)/256., (134-128)/256. },
211  { 1, 1, 0, 0 }},
212  [FRUIT] = {
213  { 0, 0, 0, 0 },
214  { 0.20, 29/256., (136-128)/256., (119-128)/256. },
215  { 0.30, 60/256., (119-128)/256., (90-128)/256. },
216  { 0.40, 85/256., (91-128)/256., (85-128)/256. },
217  { 0.50, 116/256., (70-128)/256., (105-128)/256. },
218  { 0.60, 151/256., (50-128)/256., (146-128)/256. },
219  { 0.70, 191/256., (63-128)/256., (178-128)/256. },
220  { 1, 98/256., (80-128)/256., (221-128)/256. }},
221  [COOL] = {
222  { 0, 0, 0, 0 },
223  { .15, 0, .5, -.5 },
224  { 1, 1, -.5, .5 }},
225 };
226 
228 {
229  ShowSpectrumContext *s = ctx->priv;
230  int i;
231 
233  if (s->fft) {
234  for (i = 0; i < s->nb_display_channels; i++)
235  av_fft_end(s->fft[i]);
236  }
237  av_freep(&s->fft);
238  if (s->fft_data) {
239  for (i = 0; i < s->nb_display_channels; i++)
240  av_freep(&s->fft_data[i]);
241  }
242  av_freep(&s->fft_data);
243  if (s->color_buffer) {
244  for (i = 0; i < s->nb_display_channels; i++)
245  av_freep(&s->color_buffer[i]);
246  }
247  av_freep(&s->color_buffer);
249  if (s->magnitudes) {
250  for (i = 0; i < s->nb_display_channels; i++)
251  av_freep(&s->magnitudes[i]);
252  }
253  av_freep(&s->magnitudes);
256  if (s->phases) {
257  for (i = 0; i < s->nb_display_channels; i++)
258  av_freep(&s->phases[i]);
259  }
260  av_freep(&s->phases);
261 }
262 
264 {
267  AVFilterLink *inlink = ctx->inputs[0];
268  AVFilterLink *outlink = ctx->outputs[0];
271  int ret;
272 
273  /* set input audio formats */
274  formats = ff_make_format_list(sample_fmts);
275  if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0)
276  return ret;
277 
278  layouts = ff_all_channel_layouts();
279  if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0)
280  return ret;
281 
282  formats = ff_all_samplerates();
283  if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0)
284  return ret;
285 
286  /* set output video format */
287  formats = ff_make_format_list(pix_fmts);
288  if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0)
289  return ret;
290 
291  return 0;
292 }
293 
294 static int config_output(AVFilterLink *outlink)
295 {
296  AVFilterContext *ctx = outlink->src;
297  AVFilterLink *inlink = ctx->inputs[0];
298  ShowSpectrumContext *s = ctx->priv;
299  int i, fft_bits, h, w;
300  float overlap;
301 
302  if (!strcmp(ctx->filter->name, "showspectrumpic"))
303  s->single_pic = 1;
304 
305  outlink->w = s->w;
306  outlink->h = s->h;
307 
308  if (s->legend) {
309  s->start_x = log10(inlink->sample_rate) * 25;
310  s->start_y = 64;
311  outlink->w += s->start_x * 2;
312  outlink->h += s->start_y * 2;
313  }
314 
315  h = (s->mode == COMBINED || s->orientation == HORIZONTAL) ? s->h : s->h / inlink->channels;
316  w = (s->mode == COMBINED || s->orientation == VERTICAL) ? s->w : s->w / inlink->channels;
317  s->channel_height = h;
318  s->channel_width = w;
319 
320  if (s->orientation == VERTICAL) {
321  /* FFT window size (precision) according to the requested output frame height */
322  for (fft_bits = 1; 1 << fft_bits < 2 * h; fft_bits++);
323  } else {
324  /* FFT window size (precision) according to the requested output frame width */
325  for (fft_bits = 1; 1 << fft_bits < 2 * w; fft_bits++);
326  }
327  s->win_size = 1 << fft_bits;
328 
329  if (!s->fft) {
330  s->fft = av_calloc(inlink->channels, sizeof(*s->fft));
331  if (!s->fft)
332  return AVERROR(ENOMEM);
333  }
334 
335  /* (re-)configuration if the video output changed (or first init) */
336  if (fft_bits != s->fft_bits) {
337  AVFrame *outpicref;
338 
339  s->fft_bits = fft_bits;
340 
341  /* FFT buffers: x2 for each (display) channel buffer.
342  * Note: we use free and malloc instead of a realloc-like function to
343  * make sure the buffer is aligned in memory for the FFT functions. */
344  for (i = 0; i < s->nb_display_channels; i++) {
345  av_fft_end(s->fft[i]);
346  av_freep(&s->fft_data[i]);
347  }
348  av_freep(&s->fft_data);
349 
350  s->nb_display_channels = inlink->channels;
351  for (i = 0; i < s->nb_display_channels; i++) {
352  s->fft[i] = av_fft_init(fft_bits, 0);
353  if (!s->fft[i]) {
354  av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
355  "The window size might be too high.\n");
356  return AVERROR(EINVAL);
357  }
358  }
359 
360  s->magnitudes = av_calloc(s->nb_display_channels, sizeof(*s->magnitudes));
361  if (!s->magnitudes)
362  return AVERROR(ENOMEM);
363  for (i = 0; i < s->nb_display_channels; i++) {
364  s->magnitudes[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->magnitudes));
365  if (!s->magnitudes[i])
366  return AVERROR(ENOMEM);
367  }
368 
369  s->phases = av_calloc(s->nb_display_channels, sizeof(*s->phases));
370  if (!s->phases)
371  return AVERROR(ENOMEM);
372  for (i = 0; i < s->nb_display_channels; i++) {
373  s->phases[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->phases));
374  if (!s->phases[i])
375  return AVERROR(ENOMEM);
376  }
377 
378  av_freep(&s->color_buffer);
380  if (!s->color_buffer)
381  return AVERROR(ENOMEM);
382  for (i = 0; i < s->nb_display_channels; i++) {
383  s->color_buffer[i] = av_calloc(s->orientation == VERTICAL ? s->h * 3 : s->w * 3, sizeof(**s->color_buffer));
384  if (!s->color_buffer[i])
385  return AVERROR(ENOMEM);
386  }
387 
388  s->fft_data = av_calloc(s->nb_display_channels, sizeof(*s->fft_data));
389  if (!s->fft_data)
390  return AVERROR(ENOMEM);
391  for (i = 0; i < s->nb_display_channels; i++) {
392  s->fft_data[i] = av_calloc(s->win_size, sizeof(**s->fft_data));
393  if (!s->fft_data[i])
394  return AVERROR(ENOMEM);
395  }
396 
397  /* pre-calc windowing function */
398  s->window_func_lut =
400  sizeof(*s->window_func_lut));
401  if (!s->window_func_lut)
402  return AVERROR(ENOMEM);
404  if (s->overlap == 1)
405  s->overlap = overlap;
406  s->hop_size = (1. - s->overlap) * s->win_size;
407  if (s->hop_size < 1) {
408  av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap);
409  return AVERROR(EINVAL);
410  }
411 
412  for (s->win_scale = 0, i = 0; i < s->win_size; i++) {
413  s->win_scale += s->window_func_lut[i] * s->window_func_lut[i];
414  }
415  s->win_scale = 1. / sqrt(s->win_scale);
416 
417  /* prepare the initial picref buffer (black frame) */
419  s->outpicref = outpicref =
420  ff_get_video_buffer(outlink, outlink->w, outlink->h);
421  if (!outpicref)
422  return AVERROR(ENOMEM);
423  outlink->sample_aspect_ratio = (AVRational){1,1};
424  for (i = 0; i < outlink->h; i++) {
425  memset(outpicref->data[0] + i * outpicref->linesize[0], 0, outlink->w);
426  memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w);
427  memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w);
428  }
430  }
431 
432  if ((s->orientation == VERTICAL && s->xpos >= s->w) ||
433  (s->orientation == HORIZONTAL && s->xpos >= s->h))
434  s->xpos = 0;
435 
436  outlink->frame_rate = av_make_q(inlink->sample_rate, s->win_size * (1.-s->overlap));
437  if (s->orientation == VERTICAL && s->sliding == FULLFRAME)
438  outlink->frame_rate.den *= s->w;
439  if (s->orientation == HORIZONTAL && s->sliding == FULLFRAME)
440  outlink->frame_rate.den *= s->h;
441 
442  if (s->orientation == VERTICAL) {
443  s->combine_buffer =
444  av_realloc_f(s->combine_buffer, s->h * 3,
445  sizeof(*s->combine_buffer));
446  } else {
447  s->combine_buffer =
448  av_realloc_f(s->combine_buffer, s->w * 3,
449  sizeof(*s->combine_buffer));
450  }
451 
452  av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d FFT window size:%d\n",
453  s->w, s->h, s->win_size);
454 
456  s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->win_size);
457  if (!s->fifo)
458  return AVERROR(ENOMEM);
459  return 0;
460 }
461 
462 static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
463 {
464  ShowSpectrumContext *s = ctx->priv;
465  const float *window_func_lut = s->window_func_lut;
466  AVFrame *fin = arg;
467  const int ch = jobnr;
468  int n;
469 
470  /* fill FFT input with the number of samples available */
471  const float *p = (float *)fin->extended_data[ch];
472 
473  for (n = 0; n < s->win_size; n++) {
474  s->fft_data[ch][n].re = p[n] * window_func_lut[n];
475  s->fft_data[ch][n].im = 0;
476  }
477 
478  /* run FFT on each samples set */
479  av_fft_permute(s->fft[ch], s->fft_data[ch]);
480  av_fft_calc(s->fft[ch], s->fft_data[ch]);
481 
482  return 0;
483 }
484 
485 #define RE(y, ch) s->fft_data[ch][y].re
486 #define IM(y, ch) s->fft_data[ch][y].im
487 #define MAGNITUDE(y, ch) hypot(RE(y, ch), IM(y, ch))
488 #define PHASE(y, ch) atan2(IM(y, ch), RE(y, ch))
489 
490 static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
491 {
492  ShowSpectrumContext *s = ctx->priv;
493  const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
494  int y, h = s->orientation == VERTICAL ? s->h : s->w;
495  const float f = s->gain * w;
496  const int ch = jobnr;
497  float *magnitudes = s->magnitudes[ch];
498 
499  for (y = 0; y < h; y++)
500  magnitudes[y] = MAGNITUDE(y, ch) * f;
501 
502  return 0;
503 }
504 
505 static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
506 {
507  ShowSpectrumContext *s = ctx->priv;
508  const int h = s->orientation == VERTICAL ? s->h : s->w;
509  const int ch = jobnr;
510  float *phases = s->phases[ch];
511  int y;
512 
513  for (y = 0; y < h; y++)
514  phases[y] = (PHASE(y, ch) / M_PI + 1) / 2;
515 
516  return 0;
517 }
518 
520 {
521  const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
522  int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
523  const float f = s->gain * w;
524 
525  for (ch = 0; ch < s->nb_display_channels; ch++) {
526  float *magnitudes = s->magnitudes[ch];
527 
528  for (y = 0; y < h; y++)
529  magnitudes[y] += MAGNITUDE(y, ch) * f;
530  }
531 }
532 
533 static void scale_magnitudes(ShowSpectrumContext *s, float scale)
534 {
535  int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
536 
537  for (ch = 0; ch < s->nb_display_channels; ch++) {
538  float *magnitudes = s->magnitudes[ch];
539 
540  for (y = 0; y < h; y++)
541  magnitudes[y] *= scale;
542  }
543 }
544 
546  float *yf, float *uf, float *vf)
547 {
548  switch (s->mode) {
549  case COMBINED:
550  // reduce range by channel count
551  *yf = 256.0f / s->nb_display_channels;
552  switch (s->color_mode) {
553  case RAINBOW:
554  case MORELAND:
555  case NEBULAE:
556  case FIRE:
557  case FIERY:
558  case FRUIT:
559  case COOL:
560  case INTENSITY:
561  *uf = *yf;
562  *vf = *yf;
563  break;
564  case CHANNEL:
565  /* adjust saturation for mixed UV coloring */
566  /* this factor is correct for infinite channels, an approximation otherwise */
567  *uf = *yf * M_PI;
568  *vf = *yf * M_PI;
569  break;
570  default:
571  av_assert0(0);
572  }
573  break;
574  case SEPARATE:
575  // full range
576  *yf = 256.0f;
577  *uf = 256.0f;
578  *vf = 256.0f;
579  break;
580  default:
581  av_assert0(0);
582  }
583 
584  if (s->color_mode == CHANNEL) {
585  if (s->nb_display_channels > 1) {
586  *uf *= 0.5 * sin((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
587  *vf *= 0.5 * cos((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
588  } else {
589  *uf *= 0.5 * sin(M_PI * s->rotation);
590  *vf *= 0.5 * cos(M_PI * s->rotation + M_PI_2);
591  }
592  } else {
593  *uf += *uf * sin(M_PI * s->rotation);
594  *vf += *vf * cos(M_PI * s->rotation + M_PI_2);
595  }
596 
597  *uf *= s->saturation;
598  *vf *= s->saturation;
599 }
600 
602  float yf, float uf, float vf,
603  float a, float *out)
604 {
605  if (s->color_mode > CHANNEL) {
606  const int cm = s->color_mode;
607  float y, u, v;
608  int i;
609 
610  for (i = 1; i < FF_ARRAY_ELEMS(color_table[cm]) - 1; i++)
611  if (color_table[cm][i].a >= a)
612  break;
613  // i now is the first item >= the color
614  // now we know to interpolate between item i - 1 and i
615  if (a <= color_table[cm][i - 1].a) {
616  y = color_table[cm][i - 1].y;
617  u = color_table[cm][i - 1].u;
618  v = color_table[cm][i - 1].v;
619  } else if (a >= color_table[cm][i].a) {
620  y = color_table[cm][i].y;
621  u = color_table[cm][i].u;
622  v = color_table[cm][i].v;
623  } else {
624  float start = color_table[cm][i - 1].a;
625  float end = color_table[cm][i].a;
626  float lerpfrac = (a - start) / (end - start);
627  y = color_table[cm][i - 1].y * (1.0f - lerpfrac)
628  + color_table[cm][i].y * lerpfrac;
629  u = color_table[cm][i - 1].u * (1.0f - lerpfrac)
630  + color_table[cm][i].u * lerpfrac;
631  v = color_table[cm][i - 1].v * (1.0f - lerpfrac)
632  + color_table[cm][i].v * lerpfrac;
633  }
634 
635  out[0] = y * yf;
636  out[1] = u * uf;
637  out[2] = v * vf;
638  } else {
639  out[0] = a * yf;
640  out[1] = a * uf;
641  out[2] = a * vf;
642  }
643 }
644 
646 {
647  int y;
648 
649  for (y = 0; y < size; y++) {
650  s->combine_buffer[3 * y ] = 0;
651  s->combine_buffer[3 * y + 1] = 127.5;
652  s->combine_buffer[3 * y + 2] = 127.5;
653  }
654 }
655 
656 static int plot_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
657 {
658  ShowSpectrumContext *s = ctx->priv;
659  const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
660  const int ch = jobnr;
661  float *magnitudes = s->magnitudes[ch];
662  float *phases = s->phases[ch];
663  float yf, uf, vf;
664  int y;
665 
666  /* decide color range */
667  color_range(s, ch, &yf, &uf, &vf);
668 
669  /* draw the channel */
670  for (y = 0; y < h; y++) {
671  int row = (s->mode == COMBINED) ? y : ch * h + y;
672  float *out = &s->color_buffer[ch][3 * row];
673  float a;
674 
675  switch (s->data) {
676  case D_MAGNITUDE:
677  /* get magnitude */
678  a = magnitudes[y];
679  break;
680  case D_PHASE:
681  /* get phase */
682  a = phases[y];
683  break;
684  default:
685  av_assert0(0);
686  }
687 
688  /* apply scale */
689  switch (s->scale) {
690  case LINEAR:
691  a = av_clipf(a, 0, 1);
692  break;
693  case SQRT:
694  a = av_clipf(sqrt(a), 0, 1);
695  break;
696  case CBRT:
697  a = av_clipf(cbrt(a), 0, 1);
698  break;
699  case FOURTHRT:
700  a = av_clipf(sqrt(sqrt(a)), 0, 1);
701  break;
702  case FIFTHRT:
703  a = av_clipf(pow(a, 0.20), 0, 1);
704  break;
705  case LOG:
706  a = 1 + log10(av_clipd(a, 1e-6, 1)) / 6; // zero = -120dBFS
707  break;
708  default:
709  av_assert0(0);
710  }
711 
712  pick_color(s, yf, uf, vf, a, out);
713  }
714 
715  return 0;
716 }
717 
718 static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples)
719 {
720  AVFilterContext *ctx = inlink->dst;
721  AVFilterLink *outlink = ctx->outputs[0];
722  ShowSpectrumContext *s = ctx->priv;
723  AVFrame *outpicref = s->outpicref;
724  int ret, plane, x, y, z = s->orientation == VERTICAL ? s->h : s->w;
725 
726  /* fill a new spectrum column */
727  /* initialize buffer for combining to black */
728  clear_combine_buffer(s, z);
729 
731 
732  for (y = 0; y < z * 3; y++) {
733  for (x = 0; x < s->nb_display_channels; x++) {
734  s->combine_buffer[y] += s->color_buffer[x][y];
735  }
736  }
737 
739  /* copy to output */
740  if (s->orientation == VERTICAL) {
741  if (s->sliding == SCROLL) {
742  for (plane = 0; plane < 3; plane++) {
743  for (y = 0; y < s->h; y++) {
744  uint8_t *p = outpicref->data[plane] +
745  y * outpicref->linesize[plane];
746  memmove(p, p + 1, s->w - 1);
747  }
748  }
749  s->xpos = s->w - 1;
750  } else if (s->sliding == RSCROLL) {
751  for (plane = 0; plane < 3; plane++) {
752  for (y = 0; y < s->h; y++) {
753  uint8_t *p = outpicref->data[plane] +
754  y * outpicref->linesize[plane];
755  memmove(p + 1, p, s->w - 1);
756  }
757  }
758  s->xpos = 0;
759  }
760  for (plane = 0; plane < 3; plane++) {
761  uint8_t *p = outpicref->data[plane] + s->start_x +
762  (outlink->h - 1 - s->start_y) * outpicref->linesize[plane] +
763  s->xpos;
764  for (y = 0; y < s->h; y++) {
765  *p = lrintf(av_clipf(s->combine_buffer[3 * y + plane], 0, 255));
766  p -= outpicref->linesize[plane];
767  }
768  }
769  } else {
770  if (s->sliding == SCROLL) {
771  for (plane = 0; plane < 3; plane++) {
772  for (y = 1; y < s->h; y++) {
773  memmove(outpicref->data[plane] + (y-1) * outpicref->linesize[plane],
774  outpicref->data[plane] + (y ) * outpicref->linesize[plane],
775  s->w);
776  }
777  }
778  s->xpos = s->h - 1;
779  } else if (s->sliding == RSCROLL) {
780  for (plane = 0; plane < 3; plane++) {
781  for (y = s->h - 1; y >= 1; y--) {
782  memmove(outpicref->data[plane] + (y ) * outpicref->linesize[plane],
783  outpicref->data[plane] + (y-1) * outpicref->linesize[plane],
784  s->w);
785  }
786  }
787  s->xpos = 0;
788  }
789  for (plane = 0; plane < 3; plane++) {
790  uint8_t *p = outpicref->data[plane] + s->start_x +
791  (s->xpos + s->start_y) * outpicref->linesize[plane];
792  for (x = 0; x < s->w; x++) {
793  *p = lrintf(av_clipf(s->combine_buffer[3 * x + plane], 0, 255));
794  p++;
795  }
796  }
797  }
798 
799  if (s->sliding != FULLFRAME || s->xpos == 0)
800  outpicref->pts = insamples->pts;
801 
802  s->xpos++;
803  if (s->orientation == VERTICAL && s->xpos >= s->w)
804  s->xpos = 0;
805  if (s->orientation == HORIZONTAL && s->xpos >= s->h)
806  s->xpos = 0;
807  if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) {
808  ret = ff_filter_frame(outlink, av_frame_clone(s->outpicref));
809  if (ret < 0)
810  return ret;
811  }
812 
813  return s->win_size;
814 }
815 
816 #if CONFIG_SHOWSPECTRUM_FILTER
817 
818 static int request_frame(AVFilterLink *outlink)
819 {
820  ShowSpectrumContext *s = outlink->src->priv;
821  AVFilterLink *inlink = outlink->src->inputs[0];
822  unsigned i;
823  int ret;
824 
825  ret = ff_request_frame(inlink);
826  if (ret == AVERROR_EOF && s->sliding == FULLFRAME && s->xpos > 0 &&
827  s->outpicref) {
828  if (s->orientation == VERTICAL) {
829  for (i = 0; i < outlink->h; i++) {
830  memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos, 0, outlink->w - s->xpos);
831  memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos);
832  memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos);
833  }
834  } else {
835  for (i = s->xpos; i < outlink->h; i++) {
836  memset(s->outpicref->data[0] + i * s->outpicref->linesize[0], 0, outlink->w);
837  memset(s->outpicref->data[1] + i * s->outpicref->linesize[1], 128, outlink->w);
838  memset(s->outpicref->data[2] + i * s->outpicref->linesize[2], 128, outlink->w);
839  }
840  }
841  ret = ff_filter_frame(outlink, s->outpicref);
842  s->outpicref = NULL;
843  }
844 
845  return ret;
846 }
847 
848 static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
849 {
850  AVFilterContext *ctx = inlink->dst;
851  ShowSpectrumContext *s = ctx->priv;
852  AVFrame *fin = NULL;
853  int ret = 0, consumed = 0;
854 
855  if (s->pts == AV_NOPTS_VALUE)
856  s->pts = insamples->pts - av_audio_fifo_size(s->fifo);
857 
858  av_audio_fifo_write(s->fifo, (void **)insamples->extended_data, insamples->nb_samples);
859  av_frame_free(&insamples);
860  while (av_audio_fifo_size(s->fifo) >= s->win_size) {
861  fin = ff_get_audio_buffer(inlink, s->win_size);
862  if (!fin) {
863  ret = AVERROR(ENOMEM);
864  goto fail;
865  }
866 
867  fin->pts = s->pts + consumed;
868  consumed += s->hop_size;
869  ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size);
870  if (ret < 0)
871  goto fail;
872 
873  av_assert0(fin->nb_samples == s->win_size);
874 
876 
877  if (s->data == D_MAGNITUDE)
879 
880  if (s->data == D_PHASE)
882 
883  ret = plot_spectrum_column(inlink, fin);
884  av_frame_free(&fin);
886  if (ret < 0)
887  goto fail;
888  }
889 
890 fail:
891  s->pts = AV_NOPTS_VALUE;
892  av_frame_free(&fin);
893  return ret;
894 }
895 
896 static const AVFilterPad showspectrum_inputs[] = {
897  {
898  .name = "default",
899  .type = AVMEDIA_TYPE_AUDIO,
900  .filter_frame = filter_frame,
901  },
902  { NULL }
903 };
904 
905 static const AVFilterPad showspectrum_outputs[] = {
906  {
907  .name = "default",
908  .type = AVMEDIA_TYPE_VIDEO,
909  .config_props = config_output,
910  .request_frame = request_frame,
911  },
912  { NULL }
913 };
914 
915 AVFilter ff_avf_showspectrum = {
916  .name = "showspectrum",
917  .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."),
918  .uninit = uninit,
919  .query_formats = query_formats,
920  .priv_size = sizeof(ShowSpectrumContext),
921  .inputs = showspectrum_inputs,
922  .outputs = showspectrum_outputs,
923  .priv_class = &showspectrum_class,
925 };
926 #endif // CONFIG_SHOWSPECTRUM_FILTER
927 
928 #if CONFIG_SHOWSPECTRUMPIC_FILTER
929 
930 static const AVOption showspectrumpic_options[] = {
931  { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
932  { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
933  { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_MODES-1, FLAGS, "mode" },
934  { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
935  { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
936  { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=INTENSITY}, 0, NB_CLMODES-1, FLAGS, "color" },
937  { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" },
938  { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
939  { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, "color" },
940  { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, "color" },
941  { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, "color" },
942  { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, "color" },
943  { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, "color" },
944  { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, "color" },
945  { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, "color" },
946  { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=LOG}, 0, NB_SCALES-1, FLAGS, "scale" },
947  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
948  { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" },
949  { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" },
950  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" },
951  { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
952  { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" },
953  { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
954  { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
955  { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" },
956  { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
957  { "hann", "Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
958  { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
959  { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" },
960  { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
961  { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" },
962  { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" },
963  { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" },
964  { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
965  { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" },
966  { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" },
967  { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" },
968  { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" },
969  { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" },
970  { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" },
971  { "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" },
972  { "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" },
973  { "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" },
974  { "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" },
975  { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
976  { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, "orientation" },
977  { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
978  { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
979  { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
980  { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
981  { NULL }
982 };
983 
984 AVFILTER_DEFINE_CLASS(showspectrumpic);
985 
986 static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o)
987 {
988  const uint8_t *font;
989  int font_height;
990  int i;
991 
992  font = avpriv_cga_font, font_height = 8;
993 
994  for (i = 0; txt[i]; i++) {
995  int char_y, mask;
996 
997  if (o) {
998  for (char_y = font_height - 1; char_y >= 0; char_y--) {
999  uint8_t *p = pic->data[0] + (y + i * 10) * pic->linesize[0] + x;
1000  for (mask = 0x80; mask; mask >>= 1) {
1001  if (font[txt[i] * font_height + font_height - 1 - char_y] & mask)
1002  p[char_y] = ~p[char_y];
1003  p += pic->linesize[0];
1004  }
1005  }
1006  } else {
1007  uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8);
1008  for (char_y = 0; char_y < font_height; char_y++) {
1009  for (mask = 0x80; mask; mask >>= 1) {
1010  if (font[txt[i] * font_height + char_y] & mask)
1011  *p = ~(*p);
1012  p++;
1013  }
1014  p += pic->linesize[0] - 8;
1015  }
1016  }
1017  }
1018 }
1019 
1020 static int showspectrumpic_request_frame(AVFilterLink *outlink)
1021 {
1022  AVFilterContext *ctx = outlink->src;
1023  ShowSpectrumContext *s = ctx->priv;
1024  AVFilterLink *inlink = ctx->inputs[0];
1025  int ret, samples;
1026 
1027  ret = ff_request_frame(inlink);
1028  samples = av_audio_fifo_size(s->fifo);
1029  if (ret == AVERROR_EOF && s->outpicref && samples > 0) {
1030  int consumed = 0;
1031  int y, x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
1032  int ch, spf, spb;
1033  AVFrame *fin;
1034 
1035  spf = s->win_size * (samples / ((s->win_size * sz) * ceil(samples / (float)(s->win_size * sz))));
1036  spf = FFMAX(1, spf);
1037 
1038  spb = (samples / (spf * sz)) * spf;
1039 
1040  fin = ff_get_audio_buffer(inlink, s->win_size);
1041  if (!fin)
1042  return AVERROR(ENOMEM);
1043 
1044  while (x < sz) {
1045  ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size);
1046  if (ret < 0) {
1047  av_frame_free(&fin);
1048  return ret;
1049  }
1050 
1051  av_audio_fifo_drain(s->fifo, spf);
1052 
1053  if (ret < s->win_size) {
1054  for (ch = 0; ch < s->nb_display_channels; ch++) {
1055  memset(fin->extended_data[ch] + ret * sizeof(float), 0,
1056  (s->win_size - ret) * sizeof(float));
1057  }
1058  }
1059 
1061  acalc_magnitudes(s);
1062 
1063  consumed += spf;
1064  if (consumed >= spb) {
1065  int h = s->orientation == VERTICAL ? s->h : s->w;
1066 
1067  scale_magnitudes(s, 1. / (consumed / spf));
1068  plot_spectrum_column(inlink, fin);
1069  consumed = 0;
1070  x++;
1071  for (ch = 0; ch < s->nb_display_channels; ch++)
1072  memset(s->magnitudes[ch], 0, h * sizeof(float));
1073  }
1074  }
1075 
1076  av_frame_free(&fin);
1077  s->outpicref->pts = 0;
1078 
1079  if (s->legend) {
1080  int multi = (s->mode == SEPARATE && s->color_mode == CHANNEL);
1081  float spp = samples / (float)sz;
1082  uint8_t *dst;
1083 
1084  drawtext(s->outpicref, 2, outlink->h - 10, "CREATED BY LIBAVFILTER", 0);
1085 
1086  dst = s->outpicref->data[0] + (s->start_y - 1) * s->outpicref->linesize[0] + s->start_x - 1;
1087  for (x = 0; x < s->w + 1; x++)
1088  dst[x] = 200;
1089  dst = s->outpicref->data[0] + (s->start_y + s->h) * s->outpicref->linesize[0] + s->start_x - 1;
1090  for (x = 0; x < s->w + 1; x++)
1091  dst[x] = 200;
1092  for (y = 0; y < s->h + 2; y++) {
1093  dst = s->outpicref->data[0] + (y + s->start_y - 1) * s->outpicref->linesize[0];
1094  dst[s->start_x - 1] = 200;
1095  dst[s->start_x + s->w] = 200;
1096  }
1097  if (s->orientation == VERTICAL) {
1098  int h = s->mode == SEPARATE ? s->h / s->nb_display_channels : s->h;
1099  for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
1100  for (y = 0; y < h; y += 20) {
1101  dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0];
1102  dst[s->start_x - 2] = 200;
1103  dst[s->start_x + s->w + 1] = 200;
1104  }
1105  for (y = 0; y < h; y += 40) {
1106  dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0];
1107  dst[s->start_x - 3] = 200;
1108  dst[s->start_x + s->w + 2] = 200;
1109  }
1110  dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x;
1111  for (x = 0; x < s->w; x+=40)
1112  dst[x] = 200;
1113  dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x;
1114  for (x = 0; x < s->w; x+=80)
1115  dst[x] = 200;
1116  dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x;
1117  for (x = 0; x < s->w; x+=40) {
1118  dst[x] = 200;
1119  }
1120  dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x;
1121  for (x = 0; x < s->w; x+=80) {
1122  dst[x] = 200;
1123  }
1124  for (y = 0; y < h; y += 40) {
1125  float hertz = y * (inlink->sample_rate / 2) / (float)(1 << (int)ceil(log2(h)));
1126  char *units;
1127 
1128  if (hertz == 0)
1129  units = av_asprintf("DC");
1130  else
1131  units = av_asprintf("%.2f", hertz);
1132  if (!units)
1133  return AVERROR(ENOMEM);
1134 
1135  drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, h * (ch + 1) + s->start_y - y - 4, units, 0);
1136  av_free(units);
1137  }
1138  }
1139 
1140  for (x = 0; x < s->w; x+=80) {
1141  float seconds = x * spp / inlink->sample_rate;
1142  char *units;
1143 
1144  if (x == 0)
1145  units = av_asprintf("0");
1146  else if (log10(seconds) > 6)
1147  units = av_asprintf("%.2fh", seconds / (60 * 60));
1148  else if (log10(seconds) > 3)
1149  units = av_asprintf("%.2fm", seconds / 60);
1150  else
1151  units = av_asprintf("%.2fs", seconds);
1152  if (!units)
1153  return AVERROR(ENOMEM);
1154 
1155  drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->h + s->start_y + 6, units, 0);
1156  drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->start_y - 12, units, 0);
1157  av_free(units);
1158  }
1159 
1160  drawtext(s->outpicref, outlink->w / 2 - 4 * 4, outlink->h - s->start_y / 2, "TIME", 0);
1161  drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 14 * 4, "FREQUENCY (Hz)", 1);
1162  } else {
1163  int w = s->mode == SEPARATE ? s->w / s->nb_display_channels : s->w;
1164  for (y = 0; y < s->h; y += 20) {
1165  dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
1166  dst[s->start_x - 2] = 200;
1167  dst[s->start_x + s->w + 1] = 200;
1168  }
1169  for (y = 0; y < s->h; y += 40) {
1170  dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
1171  dst[s->start_x - 3] = 200;
1172  dst[s->start_x + s->w + 2] = 200;
1173  }
1174  for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
1175  dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
1176  for (x = 0; x < w; x+=40)
1177  dst[x] = 200;
1178  dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x + w * ch;
1179  for (x = 0; x < w; x+=80)
1180  dst[x] = 200;
1181  dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x + w * ch;
1182  for (x = 0; x < w; x+=40) {
1183  dst[x] = 200;
1184  }
1185  dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
1186  for (x = 0; x < w; x+=80) {
1187  dst[x] = 200;
1188  }
1189  for (x = 0; x < w; x += 80) {
1190  float hertz = x * (inlink->sample_rate / 2) / (float)(1 << (int)ceil(log2(w)));
1191  char *units;
1192 
1193  if (hertz == 0)
1194  units = av_asprintf("DC");
1195  else
1196  units = av_asprintf("%.2f", hertz);
1197  if (!units)
1198  return AVERROR(ENOMEM);
1199 
1200  drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->start_y - 12, units, 0);
1201  drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->h + s->start_y + 6, units, 0);
1202  av_free(units);
1203  }
1204  }
1205  for (y = 0; y < s->h; y+=40) {
1206  float seconds = y * spp / inlink->sample_rate;
1207  char *units;
1208 
1209  if (x == 0)
1210  units = av_asprintf("0");
1211  else if (log10(seconds) > 6)
1212  units = av_asprintf("%.2fh", seconds / (60 * 60));
1213  else if (log10(seconds) > 3)
1214  units = av_asprintf("%.2fm", seconds / 60);
1215  else
1216  units = av_asprintf("%.2fs", seconds);
1217  if (!units)
1218  return AVERROR(ENOMEM);
1219 
1220  drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, s->start_y + y - 4, units, 0);
1221  av_free(units);
1222  }
1223  drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 4 * 4, "TIME", 1);
1224  drawtext(s->outpicref, outlink->w / 2 - 14 * 4, outlink->h - s->start_y / 2, "FREQUENCY (Hz)", 0);
1225  }
1226 
1227  for (ch = 0; ch < (multi ? s->nb_display_channels : 1); ch++) {
1228  int h = multi ? s->h / s->nb_display_channels : s->h;
1229 
1230  for (y = 0; y < h; y++) {
1231  float out[3] = { 0., 127.5, 127.5};
1232  int chn;
1233 
1234  for (chn = 0; chn < (s->mode == SEPARATE ? 1 : s->nb_display_channels); chn++) {
1235  float yf, uf, vf;
1236  int channel = (multi) ? s->nb_display_channels - ch - 1 : chn;
1237  float lout[3];
1238 
1239  color_range(s, channel, &yf, &uf, &vf);
1240  pick_color(s, yf, uf, vf, y / (float)h, lout);
1241  out[0] += lout[0];
1242  out[1] += lout[1];
1243  out[2] += lout[2];
1244  }
1245  memset(s->outpicref->data[0]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0] + s->w + s->start_x + 20, av_clip_uint8(out[0]), 10);
1246  memset(s->outpicref->data[1]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[1] + s->w + s->start_x + 20, av_clip_uint8(out[1]), 10);
1247  memset(s->outpicref->data[2]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[2] + s->w + s->start_x + 20, av_clip_uint8(out[2]), 10);
1248  }
1249 
1250  for (y = 0; ch == 0 && y < h; y += h / 10) {
1251  float value = 120.0 * log10(1. - y / (float)h);
1252  char *text;
1253 
1254  if (value < -120)
1255  break;
1256  text = av_asprintf("%.0f dB", value);
1257  if (!text)
1258  continue;
1259  drawtext(s->outpicref, s->w + s->start_x + 35, s->start_y + y - 5, text, 0);
1260  av_free(text);
1261  }
1262  }
1263  }
1264 
1265  ret = ff_filter_frame(outlink, s->outpicref);
1266  s->outpicref = NULL;
1267  }
1268 
1269  return ret;
1270 }
1271 
1272 static int showspectrumpic_filter_frame(AVFilterLink *inlink, AVFrame *insamples)
1273 {
1274  AVFilterContext *ctx = inlink->dst;
1275  ShowSpectrumContext *s = ctx->priv;
1276  int ret;
1277 
1278  ret = av_audio_fifo_write(s->fifo, (void **)insamples->extended_data, insamples->nb_samples);
1279  av_frame_free(&insamples);
1280  return ret;
1281 }
1282 
1283 static const AVFilterPad showspectrumpic_inputs[] = {
1284  {
1285  .name = "default",
1286  .type = AVMEDIA_TYPE_AUDIO,
1287  .filter_frame = showspectrumpic_filter_frame,
1288  },
1289  { NULL }
1290 };
1291 
1292 static const AVFilterPad showspectrumpic_outputs[] = {
1293  {
1294  .name = "default",
1295  .type = AVMEDIA_TYPE_VIDEO,
1296  .config_props = config_output,
1297  .request_frame = showspectrumpic_request_frame,
1298  },
1299  { NULL }
1300 };
1301 
1302 AVFilter ff_avf_showspectrumpic = {
1303  .name = "showspectrumpic",
1304  .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output single picture."),
1305  .uninit = uninit,
1306  .query_formats = query_formats,
1307  .priv_size = sizeof(ShowSpectrumContext),
1308  .inputs = showspectrumpic_inputs,
1309  .outputs = showspectrumpic_outputs,
1310  .priv_class = &showspectrumpic_class,
1312 };
1313 
1314 #endif // CONFIG_SHOWSPECTRUMPIC_FILTER
int plane
Definition: avisynth_c.h:422
float, planar
Definition: samplefmt.h:69
#define NULL
Definition: coverity.c:32
const char * s
Definition: avisynth_c.h:768
AVAudioFifo * av_audio_fifo_alloc(enum AVSampleFormat sample_fmt, int channels, int nb_samples)
Allocate an AVAudioFifo.
Definition: audio_fifo.c:59
#define av_realloc_f(p, o, n)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:187
AVOption.
Definition: opt.h:246
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
av_cold void av_fft_end(FFTContext *s)
Definition: avfft.c:48
float rotation
color rotation
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:67
Main libavfilter public API header.
FFTComplex ** fft_data
bins holder for each (displayed) channels
void av_audio_fifo_free(AVAudioFifo *af)
Free an AVAudioFifo.
Definition: audio_fifo.c:45
float * window_func_lut
Window function LUT.
FFTSample re
Definition: avfft.h:38
color_range
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc().
Definition: avfft.c:38
int fft_bits
number of bits (FFT window size = 1<<fft_bits)
static int query_formats(AVFilterContext *ctx)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:92
static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o)
int sliding
1 if sliding mode, 0 otherwise
int mode
channel display mode
#define log2(x)
Definition: libm.h:404
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
Definition: mem.c:230
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:283
DisplayScale
const char * name
Pad name.
Definition: internal.h:60
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:331
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_channel_layouts_ref(AVFilterChannelLayouts *f, AVFilterChannelLayouts **ref)
Add *ref as a new reference to f.
Definition: formats.c:435
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1125
uint8_t
#define av_cold
Definition: attributes.h:82
static const AVOption showspectrum_options[]
AVOptions.
static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:271
static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static int flags
Definition: log.c:57
#define AVERROR_EOF
End of file.
Definition: error.h:55
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
#define lrintf(x)
Definition: libm_mips.h:70
ptrdiff_t size
Definition: opengl_enc.c:101
#define av_log(a,...)
SlideMode
#define cm
Definition: dvbsubdec.c:37
void av_frame_set_color_range(AVFrame *frame, enum AVColorRange val)
A filter pad used for either input or output.
Definition: internal.h:54
static int plot_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define PHASE(y, ch)
const uint8_t avpriv_cga_font[2048]
Definition: xga_font_data.c:29
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
Definition: audio.c:86
static const uint16_t mask[17]
Definition: lzw.c:38
#define AVERROR(e)
Definition: error.h:43
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:163
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:179
float ** color_buffer
color buffer (3 * h * ch items)
void * priv
private data for use by the filter
Definition: avfilter.h:338
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:116
float saturation
color saturation multiplier
#define cbrt
Definition: tablegen.h:35
const char * arg
Definition: jacosubdec.c:66
float * combine_buffer
color combining buffer (3 * h items)
simple assert() macros that are a bit more flexible than ISO C assert().
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT.
Definition: avfft.c:28
#define FFMAX(a, b)
Definition: common.h:94
#define fail()
Definition: checkasm.h:89
Context for an Audio FIFO Buffer.
Definition: audio_fifo.c:34
char * av_asprintf(const char *fmt,...)
Definition: avstring.c:113
int av_audio_fifo_size(AVAudioFifo *af)
Get the current number of samples in the AVAudioFifo available for reading.
Definition: audio_fifo.c:228
Definition: fft.h:88
audio channel layout utility functions
static int request_frame(AVFilterLink *outlink)
Definition: aeval.c:274
int ff_formats_ref(AVFilterFormats *f, AVFilterFormats **ref)
Add *ref as a new reference to formats.
Definition: formats.c:440
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
#define M_PI_2
Definition: mathematics.h:55
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Definition: aeval.c:421
AVFormatContext * ctx
Definition: movenc.c:48
ColorMode
static void acalc_magnitudes(ShowSpectrumContext *s)
#define FLAGS
int n
Definition: avisynth_c.h:684
#define MAGNITUDE(y, ch)
static const AVFilterPad outputs[]
Definition: af_afftfilt.c:386
AVFilterChannelLayouts * ff_all_channel_layouts(void)
Construct an empty AVFilterChannelLayouts/AVFilterFormats struct – representing any channel layout (w...
Definition: formats.c:401
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
Definition: frame.c:485
#define FF_ARRAY_ELEMS(a)
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:476
A list of supported channel layouts.
Definition: formats.h:85
Orientation
static const AVFilterPad inputs[]
Definition: af_afftfilt.c:376
static int config_output(AVFilterLink *outlink)
static void color_range(ShowSpectrumContext *s, int ch, float *yf, float *uf, float *vf)
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
static const struct ColorTable color_table[][8]
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:218
static AVRational av_make_q(int num, int den)
Create an AVRational.
Definition: rational.h:71
FFT functions.
Describe the class of an AVClass context structure.
Definition: log.h:67
Filter definition.
Definition: avfilter.h:144
void ff_generate_window_func(float *lut, int N, int win_func, float *overlap)
Definition: window_func.c:26
AVFILTER_DEFINE_CLASS(showspectrum)
Rational number (pair of numerator and denominator).
Definition: rational.h:58
const char * name
Filter name.
Definition: avfilter.h:148
#define u(width,...)
offset must point to two consecutive integers
Definition: opt.h:233
DataMode
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:335
enum MovChannelLayoutTag * layouts
Definition: mov_chan.c:434
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:262
AVFilterFormats * ff_all_samplerates(void)
Definition: formats.c:395
int av_frame_make_writable(AVFrame *frame)
Ensure that the frame data is writable, avoiding data copy if possible.
Definition: frame.c:553
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
Definition: avfilter.h:363
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:201
int av_audio_fifo_write(AVAudioFifo *af, void **data, int nb_samples)
Write data to an AVAudioFifo.
Definition: audio_fifo.c:112
static av_cold void uninit(AVFilterContext *ctx)
int av_audio_fifo_drain(AVAudioFifo *af, int nb_samples)
Drain data from an AVAudioFifo.
Definition: audio_fifo.c:201
static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples)
int
FFTSample im
Definition: avfft.h:38
if(ret< 0)
Definition: vf_mcdeint.c:282
channel
Use these values when setting the channel map with ebur128_set_channel().
Definition: ebur128.h:39
FFTContext ** fft
Fast Fourier Transform context.
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:76
int den
Denominator.
Definition: rational.h:60
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(constuint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(constint16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(constint32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(constint64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(constfloat *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(constdouble *) pi *(INT64_C(1)<< 63)))#defineFMT_PAIR_FUNC(out, in) staticconv_func_type *constfmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};staticvoidcpy1(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, len);}staticvoidcpy2(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 2 *len);}staticvoidcpy4(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 4 *len);}staticvoidcpy8(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, constint *ch_map, intflags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) returnNULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) returnNULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case1:ctx->simd_f=cpy1;break;case2:ctx->simd_f=cpy2;break;case4:ctx->simd_f=cpy4;break;case8:ctx->simd_f=cpy8;break;}}if(HAVE_YASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);returnctx;}voidswri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}intswri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, intlen){intch;intoff=0;constintos=(out->planar?1:out->ch_count)*out->bps;unsignedmisaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){intplanes=in->planar?in->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){intplanes=out->planar?out->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){intplanes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
avfilter_execute_func * execute
Definition: internal.h:155
#define av_free(p)
Audio FIFO Buffer.
A list of supported formats for one end of a filter link.
Definition: formats.h:64
int av_audio_fifo_peek(AVAudioFifo *af, void **data, int nb_samples)
Peek data from an AVAudioFifo.
Definition: audio_fifo.c:138
An instance of a filter.
Definition: avfilter.h:323
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:701
#define OFFSET(x)
FILE * out
Definition: movenc.c:54
#define av_freep(p)
void INT64 start
Definition: avisynth_c.h:690
#define M_PI
Definition: mathematics.h:52
static void scale_magnitudes(ShowSpectrumContext *s, float scale)
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
Definition: avfilter.c:405
formats
Definition: signature.h:48
static void pick_color(ShowSpectrumContext *s, float yf, float uf, float vf, float a, float *out)
internal API functions
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:234
int xpos
x position (current column)
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init().
Definition: avfft.c:43
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
static void clear_combine_buffer(ShowSpectrumContext *s, int size)
mode
Use these values in ebur128_init (or'ed).
Definition: ebur128.h:83
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:244
const AVFilter * filter
the AVFilter of which this is an instance
Definition: avfilter.h:326
for(j=16;j >0;--j)
#define AV_NOPTS_VALUE
Undefined timestamp value.
Definition: avutil.h:248
CGA/EGA/VGA ROM font data.
int color_mode
display color scheme
DisplayMode