FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vf_paletteuse.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2015 Stupeflix
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * Use a palette to downsample an input video stream.
24  */
25 
26 #include "libavutil/bprint.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/opt.h"
29 #include "libavutil/qsort.h"
30 #include "dualinput.h"
31 #include "avfilter.h"
32 
41 };
42 
48 };
49 
50 enum diff_mode {
54 };
55 
56 struct color_node {
59  int split;
61 };
62 
63 #define NBITS 5
64 #define CACHE_SIZE (1<<(3*NBITS))
65 
66 struct cached_color {
67  uint32_t color;
69 };
70 
71 struct cache_node {
74 };
75 
76 struct PaletteUseContext;
77 
79  int x_start, int y_start, int width, int height);
80 
81 typedef struct PaletteUseContext {
82  const AVClass *class;
84  struct cache_node cache[CACHE_SIZE]; /* lookup cache */
85  struct color_node map[AVPALETTE_COUNT]; /* 3D-Tree (KD-Tree with K=3) for reverse colormap */
88  int dither;
89  int new;
92  int ordered_dither[8*8];
93  int diff_mode;
96 
97  /* debug options */
98  char *dot_filename;
101  uint64_t total_mean_err;
104 
105 #define OFFSET(x) offsetof(PaletteUseContext, x)
106 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
107 static const AVOption paletteuse_options[] = {
108  { "dither", "select dithering mode", OFFSET(dither), AV_OPT_TYPE_INT, {.i64=DITHERING_SIERRA2_4A}, 0, NB_DITHERING-1, FLAGS, "dithering_mode" },
109  { "bayer", "ordered 8x8 bayer dithering (deterministic)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BAYER}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
110  { "heckbert", "dithering as defined by Paul Heckbert in 1982 (simple error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_HECKBERT}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
111  { "floyd_steinberg", "Floyd and Steingberg dithering (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_FLOYD_STEINBERG}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
112  { "sierra2", "Frankie Sierra dithering v2 (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
113  { "sierra2_4a", "Frankie Sierra dithering v2 \"Lite\" (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2_4A}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
114  { "bayer_scale", "set scale for bayer dithering", OFFSET(bayer_scale), AV_OPT_TYPE_INT, {.i64=2}, 0, 5, FLAGS },
115  { "diff_mode", "set frame difference mode", OFFSET(diff_mode), AV_OPT_TYPE_INT, {.i64=DIFF_MODE_NONE}, 0, NB_DIFF_MODE-1, FLAGS, "diff_mode" },
116  { "rectangle", "process smallest different rectangle", 0, AV_OPT_TYPE_CONST, {.i64=DIFF_MODE_RECTANGLE}, INT_MIN, INT_MAX, FLAGS, "diff_mode" },
117 
118  /* following are the debug options, not part of the official API */
119  { "debug_kdtree", "save Graphviz graph of the kdtree in specified file", OFFSET(dot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, CHAR_MIN, CHAR_MAX, FLAGS },
120  { "color_search", "set reverse colormap color search method", OFFSET(color_search_method), AV_OPT_TYPE_INT, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, 0, NB_COLOR_SEARCHES-1, FLAGS, "search" },
121  { "nns_iterative", "iterative search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
122  { "nns_recursive", "recursive search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_RECURSIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
123  { "bruteforce", "brute-force into the palette", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_BRUTEFORCE}, INT_MIN, INT_MAX, FLAGS, "search" },
124  { "mean_err", "compute and print mean error", OFFSET(calc_mean_err), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
125  { "debug_accuracy", "test color search accuracy", OFFSET(debug_accuracy), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
126  { "new", "take new palette for each output frame", OFFSET(new), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
127  { NULL }
128 };
129 
130 AVFILTER_DEFINE_CLASS(paletteuse);
131 
133 {
134  static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
135  static const enum AVPixelFormat inpal_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
136  static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_PAL8, AV_PIX_FMT_NONE};
137  int ret;
139  AVFilterFormats *inpal = ff_make_format_list(inpal_fmts);
141  if (!in || !inpal || !out) {
142  av_freep(&in);
143  av_freep(&inpal);
144  av_freep(&out);
145  return AVERROR(ENOMEM);
146  }
147  if ((ret = ff_formats_ref(in , &ctx->inputs[0]->out_formats)) < 0 ||
148  (ret = ff_formats_ref(inpal, &ctx->inputs[1]->out_formats)) < 0 ||
149  (ret = ff_formats_ref(out , &ctx->outputs[0]->in_formats)) < 0)
150  return ret;
151  return 0;
152 }
153 
154 static av_always_inline int dither_color(uint32_t px, int er, int eg, int eb, int scale, int shift)
155 {
156  return av_clip_uint8((px >> 16 & 0xff) + ((er * scale) / (1<<shift))) << 16
157  | av_clip_uint8((px >> 8 & 0xff) + ((eg * scale) / (1<<shift))) << 8
158  | av_clip_uint8((px & 0xff) + ((eb * scale) / (1<<shift)));
159 }
160 
161 static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2)
162 {
163  // XXX: try L*a*b with CIE76 (dL*dL + da*da + db*db)
164  const int dr = c1[0] - c2[0];
165  const int dg = c1[1] - c2[1];
166  const int db = c1[2] - c2[2];
167  return dr*dr + dg*dg + db*db;
168 }
169 
171 {
172  int i, pal_id = -1, min_dist = INT_MAX;
173 
174  for (i = 0; i < AVPALETTE_COUNT; i++) {
175  const uint32_t c = palette[i];
176 
177  if ((c & 0xff000000) == 0xff000000) { // ignore transparent entry
178  const uint8_t palrgb[] = {
179  palette[i]>>16 & 0xff,
180  palette[i]>> 8 & 0xff,
181  palette[i] & 0xff,
182  };
183  const int d = diff(palrgb, rgb);
184  if (d < min_dist) {
185  pal_id = i;
186  min_dist = d;
187  }
188  }
189  }
190  return pal_id;
191 }
192 
193 /* Recursive form, simpler but a bit slower. Kept for reference. */
195  int node_pos;
196  int dist_sqd;
197 };
198 
199 static void colormap_nearest_node(const struct color_node *map,
200  const int node_pos,
201  const uint8_t *target,
202  struct nearest_color *nearest)
203 {
204  const struct color_node *kd = map + node_pos;
205  const int s = kd->split;
206  int dx, nearer_kd_id, further_kd_id;
207  const uint8_t *current = kd->val;
208  const int current_to_target = diff(target, current);
209 
210  if (current_to_target < nearest->dist_sqd) {
211  nearest->node_pos = node_pos;
212  nearest->dist_sqd = current_to_target;
213  }
214 
215  if (kd->left_id != -1 || kd->right_id != -1) {
216  dx = target[s] - current[s];
217 
218  if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
219  else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
220 
221  if (nearer_kd_id != -1)
222  colormap_nearest_node(map, nearer_kd_id, target, nearest);
223 
224  if (further_kd_id != -1 && dx*dx < nearest->dist_sqd)
225  colormap_nearest_node(map, further_kd_id, target, nearest);
226  }
227 }
228 
230 {
231  struct nearest_color res = {.dist_sqd = INT_MAX, .node_pos = -1};
232  colormap_nearest_node(node, 0, rgb, &res);
233  return node[res.node_pos].palette_id;
234 }
235 
236 struct stack_node {
237  int color_id;
238  int dx2;
239 };
240 
241 static av_always_inline uint8_t colormap_nearest_iterative(const struct color_node *root, const uint8_t *target)
242 {
243  int pos = 0, best_node_id = -1, best_dist = INT_MAX, cur_color_id = 0;
244  struct stack_node nodes[16];
245  struct stack_node *node = &nodes[0];
246 
247  for (;;) {
248 
249  const struct color_node *kd = &root[cur_color_id];
250  const uint8_t *current = kd->val;
251  const int current_to_target = diff(target, current);
252 
253  /* Compare current color node to the target and update our best node if
254  * it's actually better. */
255  if (current_to_target < best_dist) {
256  best_node_id = cur_color_id;
257  if (!current_to_target)
258  goto end; // exact match, we can return immediately
259  best_dist = current_to_target;
260  }
261 
262  /* Check if it's not a leaf */
263  if (kd->left_id != -1 || kd->right_id != -1) {
264  const int split = kd->split;
265  const int dx = target[split] - current[split];
266  int nearer_kd_id, further_kd_id;
267 
268  /* Define which side is the most interesting. */
269  if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
270  else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
271 
272  if (nearer_kd_id != -1) {
273  if (further_kd_id != -1) {
274  /* Here, both paths are defined, so we push a state for
275  * when we are going back. */
276  node->color_id = further_kd_id;
277  node->dx2 = dx*dx;
278  pos++;
279  node++;
280  }
281  /* We can now update current color with the most probable path
282  * (no need to create a state since there is nothing to save
283  * anymore). */
284  cur_color_id = nearer_kd_id;
285  continue;
286  } else if (dx*dx < best_dist) {
287  /* The nearest path isn't available, so there is only one path
288  * possible and it's the least probable. We enter it only if the
289  * distance from the current point to the hyper rectangle is
290  * less than our best distance. */
291  cur_color_id = further_kd_id;
292  continue;
293  }
294  }
295 
296  /* Unstack as much as we can, typically as long as the least probable
297  * branch aren't actually probable. */
298  do {
299  if (--pos < 0)
300  goto end;
301  node--;
302  } while (node->dx2 >= best_dist);
303 
304  /* We got a node where the least probable branch might actually contain
305  * a relevant color. */
306  cur_color_id = node->color_id;
307  }
308 
309 end:
310  return root[best_node_id].palette_id;
311 }
312 
313 #define COLORMAP_NEAREST(search, palette, root, target) \
314  search == COLOR_SEARCH_NNS_ITERATIVE ? colormap_nearest_iterative(root, target) : \
315  search == COLOR_SEARCH_NNS_RECURSIVE ? colormap_nearest_recursive(root, target) : \
316  colormap_nearest_bruteforce(palette, target)
317 
318 /**
319  * Check if the requested color is in the cache already. If not, find it in the
320  * color tree and cache it.
321  * Note: r, g, and b are the component of c but are passed as well to avoid
322  * recomputing them (they are generally computed by the caller for other uses).
323  */
324 static av_always_inline int color_get(struct cache_node *cache, uint32_t color,
326  const struct color_node *map,
327  const uint32_t *palette,
328  const enum color_search_method search_method)
329 {
330  int i;
331  const uint8_t rgb[] = {r, g, b};
332  const uint8_t rhash = r & ((1<<NBITS)-1);
333  const uint8_t ghash = g & ((1<<NBITS)-1);
334  const uint8_t bhash = b & ((1<<NBITS)-1);
335  const unsigned hash = rhash<<(NBITS*2) | ghash<<NBITS | bhash;
336  struct cache_node *node = &cache[hash];
337  struct cached_color *e;
338 
339  for (i = 0; i < node->nb_entries; i++) {
340  e = &node->entries[i];
341  if (e->color == color)
342  return e->pal_entry;
343  }
344 
345  e = av_dynarray2_add((void**)&node->entries, &node->nb_entries,
346  sizeof(*node->entries), NULL);
347  if (!e)
348  return AVERROR(ENOMEM);
349  e->color = color;
350  e->pal_entry = COLORMAP_NEAREST(search_method, palette, map, rgb);
351  return e->pal_entry;
352 }
353 
355  uint32_t c, const struct color_node *map,
356  const uint32_t *palette,
357  int *er, int *eg, int *eb,
358  const enum color_search_method search_method)
359 {
360  const uint8_t r = c >> 16 & 0xff;
361  const uint8_t g = c >> 8 & 0xff;
362  const uint8_t b = c & 0xff;
363  const int dstx = color_get(cache, c, r, g, b, map, palette, search_method);
364  const uint32_t dstc = palette[dstx];
365  *er = r - (dstc >> 16 & 0xff);
366  *eg = g - (dstc >> 8 & 0xff);
367  *eb = b - (dstc & 0xff);
368  return dstx;
369 }
370 
372  int x_start, int y_start, int w, int h,
373  enum dithering_mode dither,
374  const enum color_search_method search_method)
375 {
376  int x, y;
377  const struct color_node *map = s->map;
378  struct cache_node *cache = s->cache;
379  const uint32_t *palette = s->palette;
380  const int src_linesize = in ->linesize[0] >> 2;
381  const int dst_linesize = out->linesize[0];
382  uint32_t *src = ((uint32_t *)in ->data[0]) + y_start*src_linesize;
383  uint8_t *dst = out->data[0] + y_start*dst_linesize;
384 
385  w += x_start;
386  h += y_start;
387 
388  for (y = y_start; y < h; y++) {
389  for (x = x_start; x < w; x++) {
390  int er, eg, eb;
391 
392  if (dither == DITHERING_BAYER) {
393  const int d = s->ordered_dither[(y & 7)<<3 | (x & 7)];
394  const uint8_t r8 = src[x] >> 16 & 0xff;
395  const uint8_t g8 = src[x] >> 8 & 0xff;
396  const uint8_t b8 = src[x] & 0xff;
397  const uint8_t r = av_clip_uint8(r8 + d);
398  const uint8_t g = av_clip_uint8(g8 + d);
399  const uint8_t b = av_clip_uint8(b8 + d);
400  const uint32_t c = r<<16 | g<<8 | b;
401  const int color = color_get(cache, c, r, g, b, map, palette, search_method);
402 
403  if (color < 0)
404  return color;
405  dst[x] = color;
406 
407  } else if (dither == DITHERING_HECKBERT) {
408  const int right = x < w - 1, down = y < h - 1;
409  const int color = get_dst_color_err(cache, src[x], map, palette, &er, &eg, &eb, search_method);
410 
411  if (color < 0)
412  return color;
413  dst[x] = color;
414 
415  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 3, 3);
416  if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 3, 3);
417  if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 2, 3);
418 
419  } else if (dither == DITHERING_FLOYD_STEINBERG) {
420  const int right = x < w - 1, down = y < h - 1, left = x > x_start;
421  const int color = get_dst_color_err(cache, src[x], map, palette, &er, &eg, &eb, search_method);
422 
423  if (color < 0)
424  return color;
425  dst[x] = color;
426 
427  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 7, 4);
428  if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 3, 4);
429  if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 5, 4);
430  if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 4);
431 
432  } else if (dither == DITHERING_SIERRA2) {
433  const int right = x < w - 1, down = y < h - 1, left = x > x_start;
434  const int right2 = x < w - 2, left2 = x > x_start + 1;
435  const int color = get_dst_color_err(cache, src[x], map, palette, &er, &eg, &eb, search_method);
436 
437  if (color < 0)
438  return color;
439  dst[x] = color;
440 
441  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 4, 4);
442  if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 3, 4);
443 
444  if (down) {
445  if (left2) src[ src_linesize + x - 2] = dither_color(src[ src_linesize + x - 2], er, eg, eb, 1, 4);
446  if (left) src[ src_linesize + x - 1] = dither_color(src[ src_linesize + x - 1], er, eg, eb, 2, 4);
447  src[ src_linesize + x ] = dither_color(src[ src_linesize + x ], er, eg, eb, 3, 4);
448  if (right) src[ src_linesize + x + 1] = dither_color(src[ src_linesize + x + 1], er, eg, eb, 2, 4);
449  if (right2) src[ src_linesize + x + 2] = dither_color(src[ src_linesize + x + 2], er, eg, eb, 1, 4);
450  }
451 
452  } else if (dither == DITHERING_SIERRA2_4A) {
453  const int right = x < w - 1, down = y < h - 1, left = x > x_start;
454  const int color = get_dst_color_err(cache, src[x], map, palette, &er, &eg, &eb, search_method);
455 
456  if (color < 0)
457  return color;
458  dst[x] = color;
459 
460  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 2, 2);
461  if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 2);
462  if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 1, 2);
463 
464  } else {
465  const uint8_t r = src[x] >> 16 & 0xff;
466  const uint8_t g = src[x] >> 8 & 0xff;
467  const uint8_t b = src[x] & 0xff;
468  const int color = color_get(cache, src[x] & 0xffffff, r, g, b, map, palette, search_method);
469 
470  if (color < 0)
471  return color;
472  dst[x] = color;
473  }
474  }
475  src += src_linesize;
476  dst += dst_linesize;
477  }
478  return 0;
479 }
480 
481 #define INDENT 4
482 static void disp_node(AVBPrint *buf,
483  const struct color_node *map,
484  int parent_id, int node_id,
485  int depth)
486 {
487  const struct color_node *node = &map[node_id];
488  const uint32_t fontcolor = node->val[0] > 0x50 &&
489  node->val[1] > 0x50 &&
490  node->val[2] > 0x50 ? 0 : 0xffffff;
491  av_bprintf(buf, "%*cnode%d ["
492  "label=\"%c%02X%c%02X%c%02X%c\" "
493  "fillcolor=\"#%02x%02x%02x\" "
494  "fontcolor=\"#%06"PRIX32"\"]\n",
495  depth*INDENT, ' ', node->palette_id,
496  "[ "[node->split], node->val[0],
497  "][ "[node->split], node->val[1],
498  " ]["[node->split], node->val[2],
499  " ]"[node->split],
500  node->val[0], node->val[1], node->val[2],
501  fontcolor);
502  if (parent_id != -1)
503  av_bprintf(buf, "%*cnode%d -> node%d\n", depth*INDENT, ' ',
504  map[parent_id].palette_id, node->palette_id);
505  if (node->left_id != -1) disp_node(buf, map, node_id, node->left_id, depth + 1);
506  if (node->right_id != -1) disp_node(buf, map, node_id, node->right_id, depth + 1);
507 }
508 
509 // debug_kdtree=kdtree.dot -> dot -Tpng kdtree.dot > kdtree.png
510 static int disp_tree(const struct color_node *node, const char *fname)
511 {
512  AVBPrint buf;
513  FILE *f = av_fopen_utf8(fname, "w");
514 
515  if (!f) {
516  int ret = AVERROR(errno);
517  av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
518  fname, av_err2str(ret));
519  return ret;
520  }
521 
523 
524  av_bprintf(&buf, "digraph {\n");
525  av_bprintf(&buf, " node [style=filled fontsize=10 shape=box]\n");
526  disp_node(&buf, node, -1, 0, 0);
527  av_bprintf(&buf, "}\n");
528 
529  fwrite(buf.str, 1, buf.len, f);
530  fclose(f);
531  av_bprint_finalize(&buf, NULL);
532  return 0;
533 }
534 
535 static int debug_accuracy(const struct color_node *node, const uint32_t *palette,
536  const enum color_search_method search_method)
537 {
538  int r, g, b, ret = 0;
539 
540  for (r = 0; r < 256; r++) {
541  for (g = 0; g < 256; g++) {
542  for (b = 0; b < 256; b++) {
543  const uint8_t rgb[] = {r, g, b};
544  const int r1 = COLORMAP_NEAREST(search_method, palette, node, rgb);
545  const int r2 = colormap_nearest_bruteforce(palette, rgb);
546  if (r1 != r2) {
547  const uint32_t c1 = palette[r1];
548  const uint32_t c2 = palette[r2];
549  const uint8_t palrgb1[] = { c1>>16 & 0xff, c1>> 8 & 0xff, c1 & 0xff };
550  const uint8_t palrgb2[] = { c2>>16 & 0xff, c2>> 8 & 0xff, c2 & 0xff };
551  const int d1 = diff(palrgb1, rgb);
552  const int d2 = diff(palrgb2, rgb);
553  if (d1 != d2) {
555  "/!\\ %02X%02X%02X: %d ! %d (%06"PRIX32" ! %06"PRIX32") / dist: %d ! %d\n",
556  r, g, b, r1, r2, c1 & 0xffffff, c2 & 0xffffff, d1, d2);
557  ret = 1;
558  }
559  }
560  }
561  }
562  }
563  return ret;
564 }
565 
566 struct color {
567  uint32_t value;
569 };
570 
571 struct color_rect {
574 };
575 
576 typedef int (*cmp_func)(const void *, const void *);
577 
578 #define DECLARE_CMP_FUNC(name, pos) \
579 static int cmp_##name(const void *pa, const void *pb) \
580 { \
581  const struct color *a = pa; \
582  const struct color *b = pb; \
583  return (a->value >> (8 * (2 - (pos))) & 0xff) \
584  - (b->value >> (8 * (2 - (pos))) & 0xff); \
585 }
586 
590 
591 static const cmp_func cmp_funcs[] = {cmp_r, cmp_g, cmp_b};
592 
593 static int get_next_color(const uint8_t *color_used, const uint32_t *palette,
594  int *component, const struct color_rect *box)
595 {
596  int wr, wg, wb;
597  int i, longest = 0;
598  unsigned nb_color = 0;
599  struct color_rect ranges;
600  struct color tmp_pal[256];
601  cmp_func cmpf;
602 
603  ranges.min[0] = ranges.min[1] = ranges.min[2] = 0xff;
604  ranges.max[0] = ranges.max[1] = ranges.max[2] = 0x00;
605 
606  for (i = 0; i < AVPALETTE_COUNT; i++) {
607  const uint32_t c = palette[i];
608  const uint8_t r = c >> 16 & 0xff;
609  const uint8_t g = c >> 8 & 0xff;
610  const uint8_t b = c & 0xff;
611 
612  if (color_used[i] ||
613  r < box->min[0] || g < box->min[1] || b < box->min[2] ||
614  r > box->max[0] || g > box->max[1] || b > box->max[2])
615  continue;
616 
617  if (r < ranges.min[0]) ranges.min[0] = r;
618  if (g < ranges.min[1]) ranges.min[1] = g;
619  if (b < ranges.min[2]) ranges.min[2] = b;
620 
621  if (r > ranges.max[0]) ranges.max[0] = r;
622  if (g > ranges.max[1]) ranges.max[1] = g;
623  if (b > ranges.max[2]) ranges.max[2] = b;
624 
625  tmp_pal[nb_color].value = c;
626  tmp_pal[nb_color].pal_id = i;
627 
628  nb_color++;
629  }
630 
631  if (!nb_color)
632  return -1;
633 
634  /* define longest axis that will be the split component */
635  wr = ranges.max[0] - ranges.min[0];
636  wg = ranges.max[1] - ranges.min[1];
637  wb = ranges.max[2] - ranges.min[2];
638  if (wr >= wg && wr >= wb) longest = 0;
639  if (wg >= wr && wg >= wb) longest = 1;
640  if (wb >= wr && wb >= wg) longest = 2;
641  cmpf = cmp_funcs[longest];
642  *component = longest;
643 
644  /* sort along this axis to get median */
645  AV_QSORT(tmp_pal, nb_color, struct color, cmpf);
646 
647  return tmp_pal[nb_color >> 1].pal_id;
648 }
649 
650 static int colormap_insert(struct color_node *map,
651  uint8_t *color_used,
652  int *nb_used,
653  const uint32_t *palette,
654  const struct color_rect *box)
655 {
656  uint32_t c;
657  int component, cur_id;
658  int node_left_id = -1, node_right_id = -1;
659  struct color_node *node;
660  struct color_rect box1, box2;
661  const int pal_id = get_next_color(color_used, palette, &component, box);
662 
663  if (pal_id < 0)
664  return -1;
665 
666  /* create new node with that color */
667  cur_id = (*nb_used)++;
668  c = palette[pal_id];
669  node = &map[cur_id];
670  node->split = component;
671  node->palette_id = pal_id;
672  node->val[0] = c>>16 & 0xff;
673  node->val[1] = c>> 8 & 0xff;
674  node->val[2] = c & 0xff;
675 
676  color_used[pal_id] = 1;
677 
678  /* get the two boxes this node creates */
679  box1 = box2 = *box;
680  box1.max[component] = node->val[component];
681  box2.min[component] = node->val[component] + 1;
682 
683  node_left_id = colormap_insert(map, color_used, nb_used, palette, &box1);
684 
685  if (box2.min[component] <= box2.max[component])
686  node_right_id = colormap_insert(map, color_used, nb_used, palette, &box2);
687 
688  node->left_id = node_left_id;
689  node->right_id = node_right_id;
690 
691  return cur_id;
692 }
693 
694 static int cmp_pal_entry(const void *a, const void *b)
695 {
696  const int c1 = *(const uint32_t *)a & 0xffffff;
697  const int c2 = *(const uint32_t *)b & 0xffffff;
698  return c1 - c2;
699 }
700 
702 {
703  int i, nb_used = 0;
704  uint8_t color_used[AVPALETTE_COUNT] = {0};
705  uint32_t last_color = 0;
706  struct color_rect box;
707 
708  /* disable transparent colors and dups */
709  qsort(s->palette, AVPALETTE_COUNT, sizeof(*s->palette), cmp_pal_entry);
710  for (i = 0; i < AVPALETTE_COUNT; i++) {
711  const uint32_t c = s->palette[i];
712  if (i != 0 && c == last_color) {
713  color_used[i] = 1;
714  continue;
715  }
716  last_color = c;
717  if ((c & 0xff000000) != 0xff000000) {
718  color_used[i] = 1; // ignore transparent color(s)
719  continue;
720  }
721  }
722 
723  box.min[0] = box.min[1] = box.min[2] = 0x00;
724  box.max[0] = box.max[1] = box.max[2] = 0xff;
725 
726  colormap_insert(s->map, color_used, &nb_used, s->palette, &box);
727 
728  if (s->dot_filename)
729  disp_tree(s->map, s->dot_filename);
730 
731  if (s->debug_accuracy) {
733  av_log(NULL, AV_LOG_INFO, "Accuracy check passed\n");
734  }
735 }
736 
737 static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1,
738  const AVFrame *in2, int frame_count)
739 {
740  int x, y;
741  const uint32_t *palette = s->palette;
742  uint32_t *src1 = (uint32_t *)in1->data[0];
743  uint8_t *src2 = in2->data[0];
744  const int src1_linesize = in1->linesize[0] >> 2;
745  const int src2_linesize = in2->linesize[0];
746  const float div = in1->width * in1->height * 3;
747  unsigned mean_err = 0;
748 
749  for (y = 0; y < in1->height; y++) {
750  for (x = 0; x < in1->width; x++) {
751  const uint32_t c1 = src1[x];
752  const uint32_t c2 = palette[src2[x]];
753  const uint8_t rgb1[] = {c1 >> 16 & 0xff, c1 >> 8 & 0xff, c1 & 0xff};
754  const uint8_t rgb2[] = {c2 >> 16 & 0xff, c2 >> 8 & 0xff, c2 & 0xff};
755  mean_err += diff(rgb1, rgb2);
756  }
757  src1 += src1_linesize;
758  src2 += src2_linesize;
759  }
760 
761  s->total_mean_err += mean_err;
762 
763  av_log(NULL, AV_LOG_INFO, "MEP:%.3f TotalMEP:%.3f\n",
764  mean_err / div, s->total_mean_err / (div * frame_count));
765 }
766 
768  const AVFrame *prv_src, const AVFrame *cur_src,
769  const AVFrame *prv_dst, AVFrame *cur_dst,
770  int *xp, int *yp, int *wp, int *hp)
771 {
772  int x_start = 0, y_start = 0;
773  int width = cur_src->width;
774  int height = cur_src->height;
775 
776  if (prv_src && diff_mode == DIFF_MODE_RECTANGLE) {
777  int y;
778  int x_end = cur_src->width - 1,
779  y_end = cur_src->height - 1;
780  const uint32_t *prv_srcp = (const uint32_t *)prv_src->data[0];
781  const uint32_t *cur_srcp = (const uint32_t *)cur_src->data[0];
782  const uint8_t *prv_dstp = prv_dst->data[0];
783  uint8_t *cur_dstp = cur_dst->data[0];
784 
785  const int prv_src_linesize = prv_src->linesize[0] >> 2;
786  const int cur_src_linesize = cur_src->linesize[0] >> 2;
787  const int prv_dst_linesize = prv_dst->linesize[0];
788  const int cur_dst_linesize = cur_dst->linesize[0];
789 
790  /* skip common lines */
791  while (y_start < y_end && !memcmp(prv_srcp + y_start*prv_src_linesize,
792  cur_srcp + y_start*cur_src_linesize,
793  cur_src->width * 4)) {
794  memcpy(cur_dstp + y_start*cur_dst_linesize,
795  prv_dstp + y_start*prv_dst_linesize,
796  cur_dst->width);
797  y_start++;
798  }
799  while (y_end > y_start && !memcmp(prv_srcp + y_end*prv_src_linesize,
800  cur_srcp + y_end*cur_src_linesize,
801  cur_src->width * 4)) {
802  memcpy(cur_dstp + y_end*cur_dst_linesize,
803  prv_dstp + y_end*prv_dst_linesize,
804  cur_dst->width);
805  y_end--;
806  }
807 
808  height = y_end + 1 - y_start;
809 
810  /* skip common columns */
811  while (x_start < x_end) {
812  int same_column = 1;
813  for (y = y_start; y <= y_end; y++) {
814  if (prv_srcp[y*prv_src_linesize + x_start] != cur_srcp[y*cur_src_linesize + x_start]) {
815  same_column = 0;
816  break;
817  }
818  }
819  if (!same_column)
820  break;
821  x_start++;
822  }
823  while (x_end > x_start) {
824  int same_column = 1;
825  for (y = y_start; y <= y_end; y++) {
826  if (prv_srcp[y*prv_src_linesize + x_end] != cur_srcp[y*cur_src_linesize + x_end]) {
827  same_column = 0;
828  break;
829  }
830  }
831  if (!same_column)
832  break;
833  x_end--;
834  }
835  width = x_end + 1 - x_start;
836 
837  if (x_start) {
838  for (y = y_start; y <= y_end; y++)
839  memcpy(cur_dstp + y*cur_dst_linesize,
840  prv_dstp + y*prv_dst_linesize, x_start);
841  }
842  if (x_end != cur_src->width - 1) {
843  const int copy_len = cur_src->width - 1 - x_end;
844  for (y = y_start; y <= y_end; y++)
845  memcpy(cur_dstp + y*cur_dst_linesize + x_end + 1,
846  prv_dstp + y*prv_dst_linesize + x_end + 1,
847  copy_len);
848  }
849  }
850  *xp = x_start;
851  *yp = y_start;
852  *wp = width;
853  *hp = height;
854 }
855 
857 {
858  int x, y, w, h;
859  AVFilterContext *ctx = inlink->dst;
860  PaletteUseContext *s = ctx->priv;
861  AVFilterLink *outlink = inlink->dst->outputs[0];
862 
863  AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
864  if (!out) {
865  av_frame_free(&in);
866  return NULL;
867  }
868  av_frame_copy_props(out, in);
869 
871  s->last_out, out, &x, &y, &w, &h);
872  av_frame_free(&s->last_in);
873  av_frame_free(&s->last_out);
874  s->last_in = av_frame_clone(in);
875  s->last_out = av_frame_clone(out);
876  if (!s->last_in || !s->last_out ||
878  av_frame_free(&in);
879  av_frame_free(&out);
880  return NULL;
881  }
882 
883  ff_dlog(ctx, "%dx%d rect: (%d;%d) -> (%d,%d) [area:%dx%d]\n",
884  w, h, x, y, x+w, y+h, in->width, in->height);
885 
886  if (s->set_frame(s, out, in, x, y, w, h) < 0) {
887  av_frame_free(&out);
888  return NULL;
889  }
890  memcpy(out->data[1], s->palette, AVPALETTE_SIZE);
891  if (s->calc_mean_err)
892  debug_mean_error(s, in, out, inlink->frame_count_out);
893  av_frame_free(&in);
894  return out;
895 }
896 
897 static int config_output(AVFilterLink *outlink)
898 {
899  int ret;
900  AVFilterContext *ctx = outlink->src;
901  PaletteUseContext *s = ctx->priv;
902 
903  outlink->w = ctx->inputs[0]->w;
904  outlink->h = ctx->inputs[0]->h;
905 
906  outlink->time_base = ctx->inputs[0]->time_base;
907  if ((ret = ff_dualinput_init(ctx, &s->dinput)) < 0)
908  return ret;
909  return 0;
910 }
911 
913 {
914  AVFilterContext *ctx = inlink->dst;
915 
916  if (inlink->w * inlink->h != AVPALETTE_COUNT) {
917  av_log(ctx, AV_LOG_ERROR,
918  "Palette input must contain exactly %d pixels. "
919  "Specified input has %dx%d=%d pixels\n",
920  AVPALETTE_COUNT, inlink->w, inlink->h,
921  inlink->w * inlink->h);
922  return AVERROR(EINVAL);
923  }
924  return 0;
925 }
926 
927 static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
928 {
929  int i, x, y;
930  const uint32_t *p = (const uint32_t *)palette_frame->data[0];
931  const int p_linesize = palette_frame->linesize[0] >> 2;
932 
933  if (s->new) {
934  memset(s->palette, 0, sizeof(s->palette));
935  memset(s->map, 0, sizeof(s->map));
936  for (i = 0; i < CACHE_SIZE; i++)
937  av_freep(&s->cache[i].entries);
938  memset(s->cache, 0, sizeof(s->cache));
939  }
940 
941  i = 0;
942  for (y = 0; y < palette_frame->height; y++) {
943  for (x = 0; x < palette_frame->width; x++)
944  s->palette[i++] = p[x];
945  p += p_linesize;
946  }
947 
948  load_colormap(s);
949 
950  if (!s->new)
951  s->palette_loaded = 1;
952 }
953 
955  const AVFrame *second)
956 {
957  AVFilterLink *inlink = ctx->inputs[0];
958  PaletteUseContext *s = ctx->priv;
959  if (!s->palette_loaded) {
960  load_palette(s, second);
961  }
962  return apply_palette(inlink, main);
963 }
964 
965 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
966 {
967  PaletteUseContext *s = inlink->dst->priv;
968  return ff_dualinput_filter_frame(&s->dinput, inlink, in);
969 }
970 
971 #define DEFINE_SET_FRAME(color_search, name, value) \
972 static int set_frame_##name(PaletteUseContext *s, AVFrame *out, AVFrame *in, \
973  int x_start, int y_start, int w, int h) \
974 { \
975  return set_frame(s, out, in, x_start, y_start, w, h, value, color_search); \
976 }
977 
978 #define DEFINE_SET_FRAME_COLOR_SEARCH(color_search, color_search_macro) \
979  DEFINE_SET_FRAME(color_search_macro, color_search##_##none, DITHERING_NONE) \
980  DEFINE_SET_FRAME(color_search_macro, color_search##_##bayer, DITHERING_BAYER) \
981  DEFINE_SET_FRAME(color_search_macro, color_search##_##heckbert, DITHERING_HECKBERT) \
982  DEFINE_SET_FRAME(color_search_macro, color_search##_##floyd_steinberg, DITHERING_FLOYD_STEINBERG) \
983  DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2, DITHERING_SIERRA2) \
984  DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2_4a, DITHERING_SIERRA2_4A) \
985 
989 
990 #define DITHERING_ENTRIES(color_search) { \
991  set_frame_##color_search##_none, \
992  set_frame_##color_search##_bayer, \
993  set_frame_##color_search##_heckbert, \
994  set_frame_##color_search##_floyd_steinberg, \
995  set_frame_##color_search##_sierra2, \
996  set_frame_##color_search##_sierra2_4a, \
997 }
998 
1000  DITHERING_ENTRIES(nns_iterative),
1001  DITHERING_ENTRIES(nns_recursive),
1002  DITHERING_ENTRIES(bruteforce),
1003 };
1004 
1005 static int dither_value(int p)
1006 {
1007  const int q = p ^ (p >> 3);
1008  return (p & 4) >> 2 | (q & 4) >> 1 \
1009  | (p & 2) << 1 | (q & 2) << 2 \
1010  | (p & 1) << 4 | (q & 1) << 5;
1011 }
1012 
1014 {
1015  PaletteUseContext *s = ctx->priv;
1016  s->dinput.repeatlast = 1; // only 1 frame in the palette
1019 
1020  s->set_frame = set_frame_lut[s->color_search_method][s->dither];
1021 
1022  if (s->dither == DITHERING_BAYER) {
1023  int i;
1024  const int delta = 1 << (5 - s->bayer_scale); // to avoid too much luma
1025 
1026  for (i = 0; i < FF_ARRAY_ELEMS(s->ordered_dither); i++)
1027  s->ordered_dither[i] = (dither_value(i) >> s->bayer_scale) - delta;
1028  }
1029 
1030  return 0;
1031 }
1032 
1033 static int request_frame(AVFilterLink *outlink)
1034 {
1035  PaletteUseContext *s = outlink->src->priv;
1036  return ff_dualinput_request_frame(&s->dinput, outlink);
1037 }
1038 
1040 {
1041  int i;
1042  PaletteUseContext *s = ctx->priv;
1043 
1045  for (i = 0; i < CACHE_SIZE; i++)
1046  av_freep(&s->cache[i].entries);
1047  av_frame_free(&s->last_in);
1048  av_frame_free(&s->last_out);
1049 }
1050 
1051 static const AVFilterPad paletteuse_inputs[] = {
1052  {
1053  .name = "default",
1054  .type = AVMEDIA_TYPE_VIDEO,
1055  .filter_frame = filter_frame,
1056  .needs_writable = 1, // for error diffusal dithering
1057  },{
1058  .name = "palette",
1059  .type = AVMEDIA_TYPE_VIDEO,
1060  .config_props = config_input_palette,
1061  .filter_frame = filter_frame,
1062  },
1063  { NULL }
1064 };
1065 
1067  {
1068  .name = "default",
1069  .type = AVMEDIA_TYPE_VIDEO,
1070  .config_props = config_output,
1071  .request_frame = request_frame,
1072  },
1073  { NULL }
1074 };
1075 
1077  .name = "paletteuse",
1078  .description = NULL_IF_CONFIG_SMALL("Use a palette to downsample an input video stream."),
1079  .priv_size = sizeof(PaletteUseContext),
1081  .init = init,
1082  .uninit = uninit,
1083  .inputs = paletteuse_inputs,
1084  .outputs = paletteuse_outputs,
1085  .priv_class = &paletteuse_class,
1086 };
diff_mode
Definition: vf_paletteuse.c:50
int(* cmp_func)(const void *, const void *)
uint64_t total_mean_err
AVFILTER_DEFINE_CLASS(paletteuse)
#define NULL
Definition: coverity.c:32
const char * s
Definition: avisynth_c.h:768
void av_bprintf(AVBPrint *buf, const char *fmt,...)
Definition: bprint.c:94
static int shift(int a, int b)
Definition: sonic.c:82
static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
static AVFrame * load_apply_palette(AVFilterContext *ctx, AVFrame *main, const AVFrame *second)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:187
AVOption.
Definition: opt.h:246
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
color_search_method
Definition: vf_paletteuse.c:43
Main libavfilter public API header.
static AVFrame * apply_palette(AVFilterLink *inlink, AVFrame *in)
const char * g
Definition: vf_curves.c:112
dithering_mode
Definition: vf_paletteuse.c:33
static int query_formats(AVFilterContext *ctx)
FILE * av_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
Definition: file_open.c:154
const char * b
Definition: vf_curves.c:113
static const AVFilterPad paletteuse_outputs[]
static int debug_accuracy(const struct color_node *node, const uint32_t *palette, const enum color_search_method search_method)
static av_always_inline int dither_color(uint32_t px, int er, int eg, int eb, int scale, int shift)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:92
#define src
Definition: vp8dsp.c:254
static av_cold int init(AVFilterContext *ctx)
int av_bprint_finalize(AVBPrint *buf, char **ret_str)
Finalize a print buffer.
Definition: bprint.c:235
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:283
const char * name
Pad name.
Definition: internal.h:60
int ff_dualinput_filter_frame(FFDualInputContext *s, AVFilterLink *inlink, AVFrame *in)
Definition: dualinput.c:76
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:331
int(* set_frame_func)(struct PaletteUseContext *s, AVFrame *out, AVFrame *in, int x_start, int y_start, int width, int height)
Definition: vf_paletteuse.c:78
AVFilter ff_vf_paletteuse
uint8_t
#define av_cold
Definition: attributes.h:82
float delta
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:73
AVOptions.
uint8_t pal_id
#define INDENT
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
Definition: log.c:94
#define AVPALETTE_SIZE
Definition: pixfmt.h:32
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
uint32_t color
Definition: vf_paletteuse.c:67
static const cmp_func cmp_funcs[]
static int config_input_palette(AVFilterLink *inlink)
#define height
static const uint64_t c1
Definition: murmur3.c:49
#define ff_dlog(a,...)
uint32_t palette[AVPALETTE_COUNT]
Definition: vf_paletteuse.c:86
void ff_dualinput_uninit(FFDualInputContext *s)
Definition: dualinput.c:87
static const AVOption paletteuse_options[]
#define av_log(a,...)
uint8_t val[3]
Definition: vf_paletteuse.c:57
A filter pad used for either input or output.
Definition: internal.h:54
uint8_t hash[HASH_SIZE]
Definition: movenc.c:57
#define DEFINE_SET_FRAME_COLOR_SEARCH(color_search, color_search_macro)
static int disp_tree(const struct color_node *node, const char *fname)
set_frame_func set_frame
Definition: vf_paletteuse.c:90
int width
width and height of the video frame
Definition: frame.h:239
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint8_t max[3]
#define AV_BPRINT_SIZE_UNLIMITED
#define AVERROR(e)
Definition: error.h:43
static void colormap_nearest_node(const struct color_node *map, const int node_pos, const uint8_t *target, struct nearest_color *nearest)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:163
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:179
void av_bprint_init(AVBPrint *buf, unsigned size_init, unsigned size_max)
Definition: bprint.c:69
const char * r
Definition: vf_curves.c:111
static const uint8_t dither[8][8]
Definition: vf_fspp.c:57
void * priv
private data for use by the filter
Definition: avfilter.h:338
static const set_frame_func set_frame_lut[NB_COLOR_SEARCHES][NB_DITHERING]
static int request_frame(AVFilterLink *outlink)
int depth
Definition: v4l.c:62
static int dither_value(int p)
static char * split(char *message, char delim)
Definition: af_channelmap.c:81
static av_always_inline uint8_t colormap_nearest_iterative(const struct color_node *root, const uint8_t *target)
common internal API header
int skip_initial_unpaired
Skip initial frames that do not have a 2nd input.
Definition: dualinput.h:38
static void disp_node(AVBPrint *buf, const struct color_node *map, int parent_id, int node_id, int depth)
#define width
int ff_formats_ref(AVFilterFormats *f, AVFilterFormats **ref)
Add *ref as a new reference to formats.
Definition: formats.c:440
static void set_processing_window(enum diff_mode diff_mode, const AVFrame *prv_src, const AVFrame *cur_src, const AVFrame *prv_dst, AVFrame *cur_dst, int *xp, int *yp, int *wp, int *hp)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
Definition: error.h:119
AVFormatContext * ctx
Definition: movenc.c:48
#define NBITS
Definition: vf_paletteuse.c:63
uint8_t min[3]
static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2)
AVFrame *(* process)(AVFilterContext *ctx, AVFrame *main, const AVFrame *second)
Definition: dualinput.h:35
static const AVFilterPad outputs[]
Definition: af_afftfilt.c:386
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
Definition: frame.c:485
#define FF_ARRAY_ELEMS(a)
static av_always_inline int get_dst_color_err(struct cache_node *cache, uint32_t c, const struct color_node *map, const uint32_t *palette, int *er, int *eg, int *eb, const enum color_search_method search_method)
static int config_output(AVFilterLink *outlink)
#define src1
Definition: h264pred.c:139
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
static const AVFilterPad inputs[]
Definition: af_afftfilt.c:376
static int cmp_pal_entry(const void *a, const void *b)
void * av_dynarray2_add(void **tab_ptr, int *nb_ptr, size_t elem_size, const uint8_t *elem_data)
Add an element of size elem_size to a dynamic array.
Definition: mem.c:308
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:218
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:326
AVFrame * last_out
Definition: vf_paletteuse.c:95
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
int repeatlast
repeat last second frame
Definition: dualinput.h:37
void * buf
Definition: avisynth_c.h:690
Describe the class of an AVClass context structure.
Definition: log.h:67
#define DITHERING_ENTRIES(color_search)
Filter definition.
Definition: avfilter.h:144
static int get_next_color(const uint8_t *color_used, const uint32_t *palette, int *component, const struct color_rect *box)
const char * name
Filter name.
Definition: avfilter.h:148
static void load_colormap(PaletteUseContext *s)
static int colormap_insert(struct color_node *map, uint8_t *color_used, int *nb_used, const uint32_t *palette, const struct color_rect *box)
const VDPAUPixFmtMap * map
#define DECLARE_CMP_FUNC(name, pos)
#define OFFSET(x)
int ff_dualinput_init(AVFilterContext *ctx, FFDualInputContext *s)
Definition: dualinput.c:43
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:335
#define AVPALETTE_COUNT
Definition: pixfmt.h:33
#define COLORMAP_NEAREST(search, palette, root, target)
int av_frame_make_writable(AVFrame *frame)
Ensure that the frame data is writable, avoiding data copy if possible.
Definition: frame.c:553
#define FLAGS
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:201
FFDualInputContext dinput
Definition: vf_paletteuse.c:83
int palette
Definition: v4l.c:61
int
uint8_t pal_entry
Definition: vf_paletteuse.c:68
struct cache_node cache[CACHE_SIZE]
Definition: vf_paletteuse.c:84
if(ret< 0)
Definition: vf_mcdeint.c:282
static double c[64]
struct cached_color * entries
Definition: vf_paletteuse.c:72
static const uint64_t c2
Definition: murmur3.c:50
static av_always_inline uint8_t colormap_nearest_recursive(const struct color_node *node, const uint8_t *rgb)
static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFrame *in, int x_start, int y_start, int w, int h, enum dithering_mode dither, const enum color_search_method search_method)
static av_cold void uninit(AVFilterContext *ctx)
static av_always_inline uint8_t colormap_nearest_bruteforce(const uint32_t *palette, const uint8_t *rgb)
Double input streams helper for filters.
A list of supported formats for one end of a filter link.
Definition: formats.h:64
static av_always_inline int color_get(struct cache_node *cache, uint32_t color, uint8_t r, uint8_t g, uint8_t b, const struct color_node *map, const uint32_t *palette, const enum color_search_method search_method)
Check if the requested color is in the cache already.
An instance of a filter.
Definition: avfilter.h:323
int ff_dualinput_request_frame(FFDualInputContext *s, AVFilterLink *outlink)
Definition: dualinput.c:82
uint8_t palette_id
Definition: vf_paletteuse.c:58
int height
Definition: frame.h:239
FILE * out
Definition: movenc.c:54
#define av_freep(p)
#define av_always_inline
Definition: attributes.h:39
static const AVFilterPad paletteuse_inputs[]
int main(int argc, char **argv)
Definition: main.c:22
#define CACHE_SIZE
Definition: vf_paletteuse.c:64
struct color_node map[AVPALETTE_COUNT]
Definition: vf_paletteuse.c:85
float min
uint32_t value
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
for(j=16;j >0;--j)
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:596
int ordered_dither[8 *8]
Definition: vf_paletteuse.c:92
static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1, const AVFrame *in2, int frame_count)