FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_MMAP
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
136  [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
137  [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
138  [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
139  [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
140  [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
141  [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
142  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
143  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
144  [AV_PIX_FMT_YUV440P] = { 1, 1 },
145  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
146  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
147  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
148  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
149  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
151  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
152  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
153  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
154  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
155  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
156  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
157  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
158  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
159  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
163  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
164  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
165  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
166  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
167  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
168  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
169  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
170  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
171  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
172  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
173  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
174  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
175  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
176  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
177  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
178  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
179  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
180  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
181  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
182  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
183  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
185  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
186  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
187  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
188  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
189  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
190  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
191  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
192  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
193  [AV_PIX_FMT_YA8] = { 1, 1 },
194  [AV_PIX_FMT_YA16BE] = { 1, 1 },
195  [AV_PIX_FMT_YA16LE] = { 1, 1 },
196  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
197  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
198  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
199  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
200  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
216  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
217  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
218  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
219  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
220  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
221  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
222  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
223  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
224  [AV_PIX_FMT_GBRP] = { 1, 1 },
225  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
228  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
229  [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
231  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
232  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
233  [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
234  [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
235  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
236  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
237  [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
238  [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
239  [AV_PIX_FMT_GBRAP] = { 1, 1 },
240  [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
241  [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
242  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
243  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
244  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
245  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
246  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
247  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
248  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
249  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
250  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
251  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
252  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
253  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
254  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
255  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
256  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
257  [AV_PIX_FMT_P010LE] = { 1, 1 },
258  [AV_PIX_FMT_P010BE] = { 1, 1 },
259  [AV_PIX_FMT_P016LE] = { 1, 1 },
260  [AV_PIX_FMT_P016BE] = { 1, 1 },
261  [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
262  [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
263 };
264 
266 {
267  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
268  format_entries[pix_fmt].is_supported_in : 0;
269 }
270 
272 {
273  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
274  format_entries[pix_fmt].is_supported_out : 0;
275 }
276 
278 {
279  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
280  format_entries[pix_fmt].is_supported_endianness : 0;
281 }
282 
283 static double getSplineCoeff(double a, double b, double c, double d,
284  double dist)
285 {
286  if (dist <= 1.0)
287  return ((d * dist + c) * dist + b) * dist + a;
288  else
289  return getSplineCoeff(0.0,
290  b + 2.0 * c + 3.0 * d,
291  c + 3.0 * d,
292  -b - 3.0 * c - 6.0 * d,
293  dist - 1.0);
294 }
295 
296 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
297 {
298  if (pos == -1 || pos <= -513) {
299  pos = (128 << chr_subsample) - 128;
300  }
301  pos += 128; // relative to ideal left edge
302  return pos >> chr_subsample;
303 }
304 
305 typedef struct {
306  int flag; ///< flag associated to the algorithm
307  const char *description; ///< human-readable description
308  int size_factor; ///< size factor used when initing the filters
310 
312  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
313  { SWS_BICUBIC, "bicubic", 4 },
314  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
315  { SWS_BILINEAR, "bilinear", 2 },
316  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
317  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
318  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
319  { SWS_POINT, "nearest neighbor / point", -1 },
320  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
321  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
322  { SWS_X, "experimental", 8 },
323 };
324 
325 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
326  int *outFilterSize, int xInc, int srcW,
327  int dstW, int filterAlign, int one,
328  int flags, int cpu_flags,
329  SwsVector *srcFilter, SwsVector *dstFilter,
330  double param[2], int srcPos, int dstPos)
331 {
332  int i;
333  int filterSize;
334  int filter2Size;
335  int minFilterSize;
336  int64_t *filter = NULL;
337  int64_t *filter2 = NULL;
338  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
339  int ret = -1;
340 
341  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
342 
343  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
344  FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
345 
346  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
347  int i;
348  filterSize = 1;
350  dstW, sizeof(*filter) * filterSize, fail);
351 
352  for (i = 0; i < dstW; i++) {
353  filter[i * filterSize] = fone;
354  (*filterPos)[i] = i;
355  }
356  } else if (flags & SWS_POINT) { // lame looking point sampling mode
357  int i;
358  int64_t xDstInSrc;
359  filterSize = 1;
361  dstW, sizeof(*filter) * filterSize, fail);
362 
363  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
364  for (i = 0; i < dstW; i++) {
365  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
366 
367  (*filterPos)[i] = xx;
368  filter[i] = fone;
369  xDstInSrc += xInc;
370  }
371  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
372  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
373  int i;
374  int64_t xDstInSrc;
375  filterSize = 2;
377  dstW, sizeof(*filter) * filterSize, fail);
378 
379  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
380  for (i = 0; i < dstW; i++) {
381  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
382  int j;
383 
384  (*filterPos)[i] = xx;
385  // bilinear upscale / linear interpolate / area averaging
386  for (j = 0; j < filterSize; j++) {
387  int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
388  if (coeff < 0)
389  coeff = 0;
390  filter[i * filterSize + j] = coeff;
391  xx++;
392  }
393  xDstInSrc += xInc;
394  }
395  } else {
396  int64_t xDstInSrc;
397  int sizeFactor = -1;
398 
399  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
400  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
401  sizeFactor = scale_algorithms[i].size_factor;
402  break;
403  }
404  }
405  if (flags & SWS_LANCZOS)
406  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
407  av_assert0(sizeFactor > 0);
408 
409  if (xInc <= 1 << 16)
410  filterSize = 1 + sizeFactor; // upscale
411  else
412  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
413 
414  filterSize = FFMIN(filterSize, srcW - 2);
415  filterSize = FFMAX(filterSize, 1);
416 
418  dstW, sizeof(*filter) * filterSize, fail);
419 
420  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
421  for (i = 0; i < dstW; i++) {
422  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
423  int j;
424  (*filterPos)[i] = xx;
425  for (j = 0; j < filterSize; j++) {
426  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
427  double floatd;
428  int64_t coeff;
429 
430  if (xInc > 1 << 16)
431  d = d * dstW / srcW;
432  floatd = d * (1.0 / (1 << 30));
433 
434  if (flags & SWS_BICUBIC) {
435  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
436  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
437 
438  if (d >= 1LL << 31) {
439  coeff = 0.0;
440  } else {
441  int64_t dd = (d * d) >> 30;
442  int64_t ddd = (dd * d) >> 30;
443 
444  if (d < 1LL << 30)
445  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
446  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
447  (6 * (1 << 24) - 2 * B) * (1 << 30);
448  else
449  coeff = (-B - 6 * C) * ddd +
450  (6 * B + 30 * C) * dd +
451  (-12 * B - 48 * C) * d +
452  (8 * B + 24 * C) * (1 << 30);
453  }
454  coeff /= (1LL<<54)/fone;
455  } else if (flags & SWS_X) {
456  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
457  double c;
458 
459  if (floatd < 1.0)
460  c = cos(floatd * M_PI);
461  else
462  c = -1.0;
463  if (c < 0.0)
464  c = -pow(-c, A);
465  else
466  c = pow(c, A);
467  coeff = (c * 0.5 + 0.5) * fone;
468  } else if (flags & SWS_AREA) {
469  int64_t d2 = d - (1 << 29);
470  if (d2 * xInc < -(1LL << (29 + 16)))
471  coeff = 1.0 * (1LL << (30 + 16));
472  else if (d2 * xInc < (1LL << (29 + 16)))
473  coeff = -d2 * xInc + (1LL << (29 + 16));
474  else
475  coeff = 0.0;
476  coeff *= fone >> (30 + 16);
477  } else if (flags & SWS_GAUSS) {
478  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
479  coeff = exp2(-p * floatd * floatd) * fone;
480  } else if (flags & SWS_SINC) {
481  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
482  } else if (flags & SWS_LANCZOS) {
483  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
484  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
485  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
486  if (floatd > p)
487  coeff = 0;
488  } else if (flags & SWS_BILINEAR) {
489  coeff = (1 << 30) - d;
490  if (coeff < 0)
491  coeff = 0;
492  coeff *= fone >> 30;
493  } else if (flags & SWS_SPLINE) {
494  double p = -2.196152422706632;
495  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
496  } else {
497  av_assert0(0);
498  }
499 
500  filter[i * filterSize + j] = coeff;
501  xx++;
502  }
503  xDstInSrc += 2 * xInc;
504  }
505  }
506 
507  /* apply src & dst Filter to filter -> filter2
508  * av_free(filter);
509  */
510  av_assert0(filterSize > 0);
511  filter2Size = filterSize;
512  if (srcFilter)
513  filter2Size += srcFilter->length - 1;
514  if (dstFilter)
515  filter2Size += dstFilter->length - 1;
516  av_assert0(filter2Size > 0);
517  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
518 
519  for (i = 0; i < dstW; i++) {
520  int j, k;
521 
522  if (srcFilter) {
523  for (k = 0; k < srcFilter->length; k++) {
524  for (j = 0; j < filterSize; j++)
525  filter2[i * filter2Size + k + j] +=
526  srcFilter->coeff[k] * filter[i * filterSize + j];
527  }
528  } else {
529  for (j = 0; j < filterSize; j++)
530  filter2[i * filter2Size + j] = filter[i * filterSize + j];
531  }
532  // FIXME dstFilter
533 
534  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
535  }
536  av_freep(&filter);
537 
538  /* try to reduce the filter-size (step1 find size and shift left) */
539  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
540  minFilterSize = 0;
541  for (i = dstW - 1; i >= 0; i--) {
542  int min = filter2Size;
543  int j;
544  int64_t cutOff = 0.0;
545 
546  /* get rid of near zero elements on the left by shifting left */
547  for (j = 0; j < filter2Size; j++) {
548  int k;
549  cutOff += FFABS(filter2[i * filter2Size]);
550 
551  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
552  break;
553 
554  /* preserve monotonicity because the core can't handle the
555  * filter otherwise */
556  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
557  break;
558 
559  // move filter coefficients left
560  for (k = 1; k < filter2Size; k++)
561  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
562  filter2[i * filter2Size + k - 1] = 0;
563  (*filterPos)[i]++;
564  }
565 
566  cutOff = 0;
567  /* count near zeros on the right */
568  for (j = filter2Size - 1; j > 0; j--) {
569  cutOff += FFABS(filter2[i * filter2Size + j]);
570 
571  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
572  break;
573  min--;
574  }
575 
576  if (min > minFilterSize)
577  minFilterSize = min;
578  }
579 
580  if (PPC_ALTIVEC(cpu_flags)) {
581  // we can handle the special case 4, so we don't want to go the full 8
582  if (minFilterSize < 5)
583  filterAlign = 4;
584 
585  /* We really don't want to waste our time doing useless computation, so
586  * fall back on the scalar C code for very small filters.
587  * Vectorizing is worth it only if you have a decent-sized vector. */
588  if (minFilterSize < 3)
589  filterAlign = 1;
590  }
591 
592  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
593  // special case for unscaled vertical filtering
594  if (minFilterSize == 1 && filterAlign == 2)
595  filterAlign = 1;
596  }
597 
598  av_assert0(minFilterSize > 0);
599  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
600  av_assert0(filterSize > 0);
601  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
602  if (!filter)
603  goto fail;
604  if (filterSize >= MAX_FILTER_SIZE * 16 /
605  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
606  ret = RETCODE_USE_CASCADE;
607  goto fail;
608  }
609  *outFilterSize = filterSize;
610 
611  if (flags & SWS_PRINT_INFO)
613  "SwScaler: reducing / aligning filtersize %d -> %d\n",
614  filter2Size, filterSize);
615  /* try to reduce the filter-size (step2 reduce it) */
616  for (i = 0; i < dstW; i++) {
617  int j;
618 
619  for (j = 0; j < filterSize; j++) {
620  if (j >= filter2Size)
621  filter[i * filterSize + j] = 0;
622  else
623  filter[i * filterSize + j] = filter2[i * filter2Size + j];
624  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
625  filter[i * filterSize + j] = 0;
626  }
627  }
628 
629  // FIXME try to align filterPos if possible
630 
631  // fix borders
632  for (i = 0; i < dstW; i++) {
633  int j;
634  if ((*filterPos)[i] < 0) {
635  // move filter coefficients left to compensate for filterPos
636  for (j = 1; j < filterSize; j++) {
637  int left = FFMAX(j + (*filterPos)[i], 0);
638  filter[i * filterSize + left] += filter[i * filterSize + j];
639  filter[i * filterSize + j] = 0;
640  }
641  (*filterPos)[i]= 0;
642  }
643 
644  if ((*filterPos)[i] + filterSize > srcW) {
645  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
646  int64_t acc = 0;
647 
648  for (j = filterSize - 1; j >= 0; j--) {
649  if ((*filterPos)[i] + j >= srcW) {
650  acc += filter[i * filterSize + j];
651  filter[i * filterSize + j] = 0;
652  }
653  }
654  for (j = filterSize - 1; j >= 0; j--) {
655  if (j < shift) {
656  filter[i * filterSize + j] = 0;
657  } else {
658  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
659  }
660  }
661 
662  (*filterPos)[i]-= shift;
663  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
664  }
665  av_assert0((*filterPos)[i] >= 0);
666  av_assert0((*filterPos)[i] < srcW);
667  if ((*filterPos)[i] + filterSize > srcW) {
668  for (j = 0; j < filterSize; j++) {
669  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
670  }
671  }
672  }
673 
674  // Note the +1 is for the MMX scaler which reads over the end
675  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
676  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
677  (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
678 
679  /* normalize & store in outFilter */
680  for (i = 0; i < dstW; i++) {
681  int j;
682  int64_t error = 0;
683  int64_t sum = 0;
684 
685  for (j = 0; j < filterSize; j++) {
686  sum += filter[i * filterSize + j];
687  }
688  sum = (sum + one / 2) / one;
689  if (!sum) {
690  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
691  sum = 1;
692  }
693  for (j = 0; j < *outFilterSize; j++) {
694  int64_t v = filter[i * filterSize + j] + error;
695  int intV = ROUNDED_DIV(v, sum);
696  (*outFilter)[i * (*outFilterSize) + j] = intV;
697  error = v - intV * sum;
698  }
699  }
700 
701  (*filterPos)[dstW + 0] =
702  (*filterPos)[dstW + 1] =
703  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
704  * read over the end */
705  for (i = 0; i < *outFilterSize; i++) {
706  int k = (dstW - 1) * (*outFilterSize) + i;
707  (*outFilter)[k + 1 * (*outFilterSize)] =
708  (*outFilter)[k + 2 * (*outFilterSize)] =
709  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
710  }
711 
712  ret = 0;
713 
714 fail:
715  if(ret < 0)
716  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
717  av_free(filter);
718  av_free(filter2);
719  return ret;
720 }
721 
722 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
723 {
724  int64_t W, V, Z, Cy, Cu, Cv;
725  int64_t vr = table[0];
726  int64_t ub = table[1];
727  int64_t ug = -table[2];
728  int64_t vg = -table[3];
729  int64_t ONE = 65536;
730  int64_t cy = ONE;
732  int i;
733  static const int8_t map[] = {
734  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
735  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
736  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
737  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
738  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
739  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
740  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
741  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
742  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
743  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
744  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
745  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
748  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
749  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
752  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
753  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
756  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
757  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
758  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
759  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
760  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
761  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
762  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
763  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
764  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
765  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
766  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
767  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
768  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
769  };
770 
771  dstRange = 0; //FIXME range = 1 is handled elsewhere
772 
773  if (!dstRange) {
774  cy = cy * 255 / 219;
775  } else {
776  vr = vr * 224 / 255;
777  ub = ub * 224 / 255;
778  ug = ug * 224 / 255;
779  vg = vg * 224 / 255;
780  }
781  W = ROUNDED_DIV(ONE*ONE*ug, ub);
782  V = ROUNDED_DIV(ONE*ONE*vg, vr);
783  Z = ONE*ONE-W-V;
784 
785  Cy = ROUNDED_DIV(cy*Z, ONE);
786  Cu = ROUNDED_DIV(ub*Z, ONE);
787  Cv = ROUNDED_DIV(vr*Z, ONE);
788 
789  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
790  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
791  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
792 
793  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
794  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
795  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
796 
797  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
798  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
799  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
800 
801  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
802  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
803  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
804  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
805  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
806  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
807  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
808  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
809  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
810  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
811  }
812  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
813  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
814 }
815 
816 static void fill_xyztables(struct SwsContext *c)
817 {
818  int i;
819  double xyzgamma = XYZ_GAMMA;
820  double rgbgamma = 1.0 / RGB_GAMMA;
821  double xyzgammainv = 1.0 / XYZ_GAMMA;
822  double rgbgammainv = RGB_GAMMA;
823  static const int16_t xyz2rgb_matrix[3][4] = {
824  {13270, -6295, -2041},
825  {-3969, 7682, 170},
826  { 228, -835, 4329} };
827  static const int16_t rgb2xyz_matrix[3][4] = {
828  {1689, 1464, 739},
829  { 871, 2929, 296},
830  { 79, 488, 3891} };
831  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
832 
833  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
834  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
835  c->xyzgamma = xyzgamma_tab;
836  c->rgbgamma = rgbgamma_tab;
837  c->xyzgammainv = xyzgammainv_tab;
838  c->rgbgammainv = rgbgammainv_tab;
839 
840  if (rgbgamma_tab[4095])
841  return;
842 
843  /* set gamma vectors */
844  for (i = 0; i < 4096; i++) {
845  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
846  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
847  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
848  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
849  }
850 }
851 
852 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
853  int srcRange, const int table[4], int dstRange,
854  int brightness, int contrast, int saturation)
855 {
856  const AVPixFmtDescriptor *desc_dst;
857  const AVPixFmtDescriptor *desc_src;
858  int need_reinit = 0;
859 
860  handle_formats(c);
861  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
862  desc_src = av_pix_fmt_desc_get(c->srcFormat);
863 
864  if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
865  dstRange = 0;
866  if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
867  srcRange = 0;
868 
869  if (c->srcRange != srcRange ||
870  c->dstRange != dstRange ||
871  c->brightness != brightness ||
872  c->contrast != contrast ||
873  c->saturation != saturation ||
874  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
875  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
876  )
877  need_reinit = 1;
878 
879  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
880  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
881 
882 
883 
884  c->brightness = brightness;
885  c->contrast = contrast;
886  c->saturation = saturation;
887  c->srcRange = srcRange;
888  c->dstRange = dstRange;
889 
890  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
891  //and what we have in ticket 2939 looks better with this check
892  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
894 
895  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
896  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
897 
899  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
900 
901  if (!need_reinit)
902  return 0;
903 
904  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
905  if (!c->cascaded_context[0] &&
906  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
907  c->srcW && c->srcH && c->dstW && c->dstH) {
908  enum AVPixelFormat tmp_format;
909  int tmp_width, tmp_height;
910  int srcW = c->srcW;
911  int srcH = c->srcH;
912  int dstW = c->dstW;
913  int dstH = c->dstH;
914  int ret;
915  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
916 
917  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
918  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
919  tmp_format = AV_PIX_FMT_BGRA64;
920  } else {
921  tmp_format = AV_PIX_FMT_BGR48;
922  }
923  } else {
924  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
925  tmp_format = AV_PIX_FMT_BGRA;
926  } else {
927  tmp_format = AV_PIX_FMT_BGR24;
928  }
929  }
930 
931  if (srcW*srcH > dstW*dstH) {
932  tmp_width = dstW;
933  tmp_height = dstH;
934  } else {
935  tmp_width = srcW;
936  tmp_height = srcH;
937  }
938 
940  tmp_width, tmp_height, tmp_format, 64);
941  if (ret < 0)
942  return ret;
943 
944  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
945  tmp_width, tmp_height, tmp_format,
946  c->flags, c->param);
947  if (!c->cascaded_context[0])
948  return -1;
949 
951  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
952  if (ret < 0)
953  return ret;
954  //we set both src and dst depending on that the RGB side will be ignored
956  srcRange, table, dstRange,
957  brightness, contrast, saturation);
958 
959  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
960  dstW, dstH, c->dstFormat,
961  c->flags, NULL, NULL, c->param);
962  if (!c->cascaded_context[1])
963  return -1;
965  srcRange, table, dstRange,
966  0, 1 << 16, 1 << 16);
967  return 0;
968  }
969  return -1;
970  }
971 
972  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
973  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
974  contrast, saturation);
975  // FIXME factorize
976 
977  if (ARCH_PPC)
978  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
979  contrast, saturation);
980  }
981 
982  fill_rgb2yuv_table(c, table, dstRange);
983 
984  return 0;
985 }
986 
987 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
988  int *srcRange, int **table, int *dstRange,
989  int *brightness, int *contrast, int *saturation)
990 {
991  if (!c )
992  return -1;
993 
994  *inv_table = c->srcColorspaceTable;
995  *table = c->dstColorspaceTable;
996  *srcRange = c->srcRange;
997  *dstRange = c->dstRange;
998  *brightness = c->brightness;
999  *contrast = c->contrast;
1000  *saturation = c->saturation;
1001 
1002  return 0;
1003 }
1004 
1006 {
1007  switch (*format) {
1008  case AV_PIX_FMT_YUVJ420P:
1009  *format = AV_PIX_FMT_YUV420P;
1010  return 1;
1011  case AV_PIX_FMT_YUVJ411P:
1012  *format = AV_PIX_FMT_YUV411P;
1013  return 1;
1014  case AV_PIX_FMT_YUVJ422P:
1015  *format = AV_PIX_FMT_YUV422P;
1016  return 1;
1017  case AV_PIX_FMT_YUVJ444P:
1018  *format = AV_PIX_FMT_YUV444P;
1019  return 1;
1020  case AV_PIX_FMT_YUVJ440P:
1021  *format = AV_PIX_FMT_YUV440P;
1022  return 1;
1023  case AV_PIX_FMT_GRAY8:
1024  case AV_PIX_FMT_YA8:
1025  case AV_PIX_FMT_GRAY9LE:
1026  case AV_PIX_FMT_GRAY9BE:
1027  case AV_PIX_FMT_GRAY10LE:
1028  case AV_PIX_FMT_GRAY10BE:
1029  case AV_PIX_FMT_GRAY12LE:
1030  case AV_PIX_FMT_GRAY12BE:
1031  case AV_PIX_FMT_GRAY14LE:
1032  case AV_PIX_FMT_GRAY14BE:
1033  case AV_PIX_FMT_GRAY16LE:
1034  case AV_PIX_FMT_GRAY16BE:
1035  case AV_PIX_FMT_YA16BE:
1036  case AV_PIX_FMT_YA16LE:
1037  return 1;
1038  default:
1039  return 0;
1040  }
1041 }
1042 
1044 {
1045  switch (*format) {
1046  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1047  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1048  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1049  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1050  default: return 0;
1051  }
1052 }
1053 
1055 {
1056  switch (*format) {
1057  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1058  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1059  default: return 0;
1060  }
1061 }
1062 
1064 {
1065  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1066  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1067  c->srcXYZ |= handle_xyz(&c->srcFormat);
1068  c->dstXYZ |= handle_xyz(&c->dstFormat);
1069  if (c->srcXYZ || c->dstXYZ)
1070  fill_xyztables(c);
1071 }
1072 
1074 {
1075  SwsContext *c = av_mallocz(sizeof(SwsContext));
1076 
1077  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1078 
1079  if (c) {
1082  }
1083 
1084  return c;
1085 }
1086 
1087 static uint16_t * alloc_gamma_tbl(double e)
1088 {
1089  int i = 0;
1090  uint16_t * tbl;
1091  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1092  if (!tbl)
1093  return NULL;
1094 
1095  for (i = 0; i < 65536; ++i) {
1096  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1097  }
1098  return tbl;
1099 }
1100 
1102 {
1103  switch(fmt) {
1104  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1105  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1106  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1107  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1108  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1109 
1113 
1114  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1115 
1118 
1121 
1124 
1129 
1130  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1131  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1132 
1151 
1152 // case AV_PIX_FMT_AYUV64LE:
1153 // case AV_PIX_FMT_AYUV64BE:
1154 // case AV_PIX_FMT_PAL8:
1155  default: return AV_PIX_FMT_NONE;
1156  }
1157 }
1158 
1160  SwsFilter *dstFilter)
1161 {
1162  int i;
1163  int usesVFilter, usesHFilter;
1164  int unscaled;
1165  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1166  int srcW = c->srcW;
1167  int srcH = c->srcH;
1168  int dstW = c->dstW;
1169  int dstH = c->dstH;
1170  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1171  int flags, cpu_flags;
1172  enum AVPixelFormat srcFormat = c->srcFormat;
1173  enum AVPixelFormat dstFormat = c->dstFormat;
1174  const AVPixFmtDescriptor *desc_src;
1175  const AVPixFmtDescriptor *desc_dst;
1176  int ret = 0;
1177  enum AVPixelFormat tmpFmt;
1178  static const float float_mult = 1.0f / 255.0f;
1179 
1180  cpu_flags = av_get_cpu_flags();
1181  flags = c->flags;
1182  emms_c();
1183  if (!rgb15to16)
1185 
1186  unscaled = (srcW == dstW && srcH == dstH);
1187 
1188  c->srcRange |= handle_jpeg(&c->srcFormat);
1189  c->dstRange |= handle_jpeg(&c->dstFormat);
1190 
1191  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1192  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1193 
1194  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1195  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1196  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1197  c->dstRange, 0, 1 << 16, 1 << 16);
1198 
1199  handle_formats(c);
1200  srcFormat = c->srcFormat;
1201  dstFormat = c->dstFormat;
1202  desc_src = av_pix_fmt_desc_get(srcFormat);
1203  desc_dst = av_pix_fmt_desc_get(dstFormat);
1204 
1205  // If the source has no alpha then disable alpha blendaway
1206  if (c->src0Alpha)
1208 
1209  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1210  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1211  if (!sws_isSupportedInput(srcFormat)) {
1212  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1213  av_get_pix_fmt_name(srcFormat));
1214  return AVERROR(EINVAL);
1215  }
1216  if (!sws_isSupportedOutput(dstFormat)) {
1217  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1218  av_get_pix_fmt_name(dstFormat));
1219  return AVERROR(EINVAL);
1220  }
1221  }
1222  av_assert2(desc_src && desc_dst);
1223 
1224  i = flags & (SWS_POINT |
1225  SWS_AREA |
1226  SWS_BILINEAR |
1228  SWS_BICUBIC |
1229  SWS_X |
1230  SWS_GAUSS |
1231  SWS_LANCZOS |
1232  SWS_SINC |
1233  SWS_SPLINE |
1234  SWS_BICUBLIN);
1235 
1236  /* provide a default scaler if not set by caller */
1237  if (!i) {
1238  if (dstW < srcW && dstH < srcH)
1239  flags |= SWS_BICUBIC;
1240  else if (dstW > srcW && dstH > srcH)
1241  flags |= SWS_BICUBIC;
1242  else
1243  flags |= SWS_BICUBIC;
1244  c->flags = flags;
1245  } else if (i & (i - 1)) {
1246  av_log(c, AV_LOG_ERROR,
1247  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1248  return AVERROR(EINVAL);
1249  }
1250  /* sanity check */
1251  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1252  /* FIXME check if these are enough and try to lower them after
1253  * fixing the relevant parts of the code */
1254  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1255  srcW, srcH, dstW, dstH);
1256  return AVERROR(EINVAL);
1257  }
1258  if (flags & SWS_FAST_BILINEAR) {
1259  if (srcW < 8 || dstW < 8) {
1260  flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1261  c->flags = flags;
1262  }
1263  }
1264 
1265  if (!dstFilter)
1266  dstFilter = &dummyFilter;
1267  if (!srcFilter)
1268  srcFilter = &dummyFilter;
1269 
1270  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1271  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1272  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1273  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1274  c->vRounder = 4 * 0x0001000100010001ULL;
1275 
1276  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1277  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1278  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1279  (dstFilter->chrV && dstFilter->chrV->length > 1);
1280  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1281  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1282  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1283  (dstFilter->chrH && dstFilter->chrH->length > 1);
1284 
1287 
1288  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1289  if (dstW&1) {
1290  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1291  flags |= SWS_FULL_CHR_H_INT;
1292  c->flags = flags;
1293  }
1294 
1295  if ( c->chrSrcHSubSample == 0
1296  && c->chrSrcVSubSample == 0
1297  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1298  && !(c->flags & SWS_FAST_BILINEAR)
1299  ) {
1300  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1301  flags |= SWS_FULL_CHR_H_INT;
1302  c->flags = flags;
1303  }
1304  }
1305 
1306  if (c->dither == SWS_DITHER_AUTO) {
1307  if (flags & SWS_ERROR_DIFFUSION)
1308  c->dither = SWS_DITHER_ED;
1309  }
1310 
1311  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1312  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1313  dstFormat == AV_PIX_FMT_BGR8 ||
1314  dstFormat == AV_PIX_FMT_RGB8) {
1315  if (c->dither == SWS_DITHER_AUTO)
1317  if (!(flags & SWS_FULL_CHR_H_INT)) {
1319  av_log(c, AV_LOG_DEBUG,
1320  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1321  av_get_pix_fmt_name(dstFormat));
1322  flags |= SWS_FULL_CHR_H_INT;
1323  c->flags = flags;
1324  }
1325  }
1326  if (flags & SWS_FULL_CHR_H_INT) {
1327  if (c->dither == SWS_DITHER_BAYER) {
1328  av_log(c, AV_LOG_DEBUG,
1329  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1330  av_get_pix_fmt_name(dstFormat));
1331  c->dither = SWS_DITHER_ED;
1332  }
1333  }
1334  }
1335  if (isPlanarRGB(dstFormat)) {
1336  if (!(flags & SWS_FULL_CHR_H_INT)) {
1337  av_log(c, AV_LOG_DEBUG,
1338  "%s output is not supported with half chroma resolution, switching to full\n",
1339  av_get_pix_fmt_name(dstFormat));
1340  flags |= SWS_FULL_CHR_H_INT;
1341  c->flags = flags;
1342  }
1343  }
1344 
1345  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1346  * chroma interpolation */
1347  if (flags & SWS_FULL_CHR_H_INT &&
1348  isAnyRGB(dstFormat) &&
1349  !isPlanarRGB(dstFormat) &&
1350  dstFormat != AV_PIX_FMT_RGBA64LE &&
1351  dstFormat != AV_PIX_FMT_RGBA64BE &&
1352  dstFormat != AV_PIX_FMT_BGRA64LE &&
1353  dstFormat != AV_PIX_FMT_BGRA64BE &&
1354  dstFormat != AV_PIX_FMT_RGB48LE &&
1355  dstFormat != AV_PIX_FMT_RGB48BE &&
1356  dstFormat != AV_PIX_FMT_BGR48LE &&
1357  dstFormat != AV_PIX_FMT_BGR48BE &&
1358  dstFormat != AV_PIX_FMT_RGBA &&
1359  dstFormat != AV_PIX_FMT_ARGB &&
1360  dstFormat != AV_PIX_FMT_BGRA &&
1361  dstFormat != AV_PIX_FMT_ABGR &&
1362  dstFormat != AV_PIX_FMT_RGB24 &&
1363  dstFormat != AV_PIX_FMT_BGR24 &&
1364  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1365  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1366  dstFormat != AV_PIX_FMT_BGR8 &&
1367  dstFormat != AV_PIX_FMT_RGB8
1368  ) {
1370  "full chroma interpolation for destination format '%s' not yet implemented\n",
1371  av_get_pix_fmt_name(dstFormat));
1372  flags &= ~SWS_FULL_CHR_H_INT;
1373  c->flags = flags;
1374  }
1375  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1376  c->chrDstHSubSample = 1;
1377 
1378  // drop some chroma lines if the user wants it
1379  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1381  c->chrSrcVSubSample += c->vChrDrop;
1382 
1383  /* drop every other pixel for chroma calculation unless user
1384  * wants full chroma */
1385  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1386  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1387  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1388  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1389  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1390  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1391  srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
1392  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1393  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1394  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1395  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1396  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1397  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1398  (flags & SWS_FAST_BILINEAR)))
1399  c->chrSrcHSubSample = 1;
1400 
1401  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1402  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1403  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1404  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1405  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1406 
1407  FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1408 
1409  c->srcBpc = desc_src->comp[0].depth;
1410  if (c->srcBpc < 8)
1411  c->srcBpc = 8;
1412  c->dstBpc = desc_dst->comp[0].depth;
1413  if (c->dstBpc < 8)
1414  c->dstBpc = 8;
1415  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1416  c->srcBpc = 16;
1417  if (c->dstBpc == 16)
1418  dst_stride <<= 1;
1419 
1420  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1421  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1422  c->chrDstW >= c->chrSrcW &&
1423  (srcW & 15) == 0;
1424  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1425 
1426  && (flags & SWS_FAST_BILINEAR)) {
1427  if (flags & SWS_PRINT_INFO)
1428  av_log(c, AV_LOG_INFO,
1429  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1430  }
1431  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1432  c->canMMXEXTBeUsed = 0;
1433  } else
1434  c->canMMXEXTBeUsed = 0;
1435 
1436  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1437  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1438 
1439  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1440  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1441  * correct scaling.
1442  * n-2 is the last chrominance sample available.
1443  * This is not perfect, but no one should notice the difference, the more
1444  * correct variant would be like the vertical one, but that would require
1445  * some special code for the first and last pixel */
1446  if (flags & SWS_FAST_BILINEAR) {
1447  if (c->canMMXEXTBeUsed) {
1448  c->lumXInc += 20;
1449  c->chrXInc += 20;
1450  }
1451  // we don't use the x86 asm scaler if MMX is available
1452  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1453  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1454  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1455  }
1456  }
1457 
1458  // hardcoded for now
1459  c->gamma_value = 2.2;
1460  tmpFmt = AV_PIX_FMT_RGBA64LE;
1461 
1462 
1463  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1464  SwsContext *c2;
1465  c->cascaded_context[0] = NULL;
1466 
1468  srcW, srcH, tmpFmt, 64);
1469  if (ret < 0)
1470  return ret;
1471 
1472  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1473  srcW, srcH, tmpFmt,
1474  flags, NULL, NULL, c->param);
1475  if (!c->cascaded_context[0]) {
1476  return -1;
1477  }
1478 
1479  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1480  dstW, dstH, tmpFmt,
1481  flags, srcFilter, dstFilter, c->param);
1482 
1483  if (!c->cascaded_context[1])
1484  return -1;
1485 
1486  c2 = c->cascaded_context[1];
1487  c2->is_internal_gamma = 1;
1488  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1489  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1490  if (!c2->gamma || !c2->inv_gamma)
1491  return AVERROR(ENOMEM);
1492 
1493  // is_internal_flag is set after creating the context
1494  // to properly create the gamma convert FilterDescriptor
1495  // we have to re-initialize it
1496  ff_free_filters(c2);
1497  if (ff_init_filters(c2) < 0) {
1498  sws_freeContext(c2);
1499  return -1;
1500  }
1501 
1502  c->cascaded_context[2] = NULL;
1503  if (dstFormat != tmpFmt) {
1505  dstW, dstH, tmpFmt, 64);
1506  if (ret < 0)
1507  return ret;
1508 
1509  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1510  dstW, dstH, dstFormat,
1511  flags, NULL, NULL, c->param);
1512  if (!c->cascaded_context[2])
1513  return -1;
1514  }
1515  return 0;
1516  }
1517 
1518  if (isBayer(srcFormat)) {
1519  if (!unscaled ||
1520  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1521  enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1522 
1524  srcW, srcH, tmpFormat, 64);
1525  if (ret < 0)
1526  return ret;
1527 
1528  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1529  srcW, srcH, tmpFormat,
1530  flags, srcFilter, NULL, c->param);
1531  if (!c->cascaded_context[0])
1532  return -1;
1533 
1534  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1535  dstW, dstH, dstFormat,
1536  flags, NULL, dstFilter, c->param);
1537  if (!c->cascaded_context[1])
1538  return -1;
1539  return 0;
1540  }
1541  }
1542 
1543  if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
1544  for (i = 0; i < 256; ++i){
1545  c->uint2float_lut[i] = (float)i * float_mult;
1546  }
1547  }
1548 
1549  // float will be converted to uint16_t
1550  if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
1551  (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
1552  dstFormat != AV_PIX_FMT_GRAY8))){
1553  c->srcBpc = 16;
1554  }
1555 
1556  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1557  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1558 
1559  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
1560  if (!unscaled ||
1561  dstFormat != tmpFormat ||
1562  usesHFilter || usesVFilter ||
1563  c->srcRange != c->dstRange
1564  ) {
1565  c->cascaded_mainindex = 1;
1567  srcW, srcH, tmpFormat, 64);
1568  if (ret < 0)
1569  return ret;
1570 
1571  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1572  srcW, srcH, tmpFormat,
1573  flags, c->param);
1574  if (!c->cascaded_context[0])
1575  return -1;
1577  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1578  if (ret < 0)
1579  return ret;
1580 
1581  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1582  dstW, dstH, dstFormat,
1583  flags, c->param);
1584  if (!c->cascaded_context[1])
1585  return -1;
1586 
1587  c->cascaded_context[1]->srcRange = c->srcRange;
1588  c->cascaded_context[1]->dstRange = c->dstRange;
1589  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1590  if (ret < 0)
1591  return ret;
1592 
1593  return 0;
1594  }
1595  }
1596 
1597 #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
1598 #define USE_MMAP 1
1599 #else
1600 #define USE_MMAP 0
1601 #endif
1602 
1603  /* precalculate horizontal scaler filter coefficients */
1604  {
1605 #if HAVE_MMXEXT_INLINE
1606 // can't downscale !!!
1607  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1609  NULL, NULL, 8);
1611  NULL, NULL, NULL, 4);
1612 
1613 #if USE_MMAP
1615  PROT_READ | PROT_WRITE,
1616  MAP_PRIVATE | MAP_ANONYMOUS,
1617  -1, 0);
1619  PROT_READ | PROT_WRITE,
1620  MAP_PRIVATE | MAP_ANONYMOUS,
1621  -1, 0);
1622 #elif HAVE_VIRTUALALLOC
1623  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1625  MEM_COMMIT,
1626  PAGE_EXECUTE_READWRITE);
1627  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1629  MEM_COMMIT,
1630  PAGE_EXECUTE_READWRITE);
1631 #else
1634 #endif
1635 
1636 #ifdef MAP_ANONYMOUS
1637  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1638 #else
1640 #endif
1641  {
1642  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1643  return AVERROR(ENOMEM);
1644  }
1645 
1646  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1647  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1648  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1649  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1650 
1652  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1654  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1655 
1656 #if USE_MMAP
1657  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1658  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1659  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1660  goto fail;
1661  }
1662 #endif
1663  } else
1664 #endif /* HAVE_MMXEXT_INLINE */
1665  {
1666  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1667  PPC_ALTIVEC(cpu_flags) ? 8 :
1668  have_neon(cpu_flags) ? 8 : 1;
1669 
1670  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1671  &c->hLumFilterSize, c->lumXInc,
1672  srcW, dstW, filterAlign, 1 << 14,
1673  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1674  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1675  c->param,
1676  get_local_pos(c, 0, 0, 0),
1677  get_local_pos(c, 0, 0, 0))) < 0)
1678  goto fail;
1679  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1680  &c->hChrFilterSize, c->chrXInc,
1681  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1682  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1683  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1684  c->param,
1686  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1687  goto fail;
1688  }
1689  } // initialize horizontal stuff
1690 
1691  /* precalculate vertical scaler filter coefficients */
1692  {
1693  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1694  PPC_ALTIVEC(cpu_flags) ? 8 :
1695  have_neon(cpu_flags) ? 2 : 1;
1696 
1697  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1698  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1699  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1700  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1701  c->param,
1702  get_local_pos(c, 0, 0, 1),
1703  get_local_pos(c, 0, 0, 1))) < 0)
1704  goto fail;
1705  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1706  c->chrYInc, c->chrSrcH, c->chrDstH,
1707  filterAlign, (1 << 12),
1708  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1709  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1710  c->param,
1712  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1713 
1714  goto fail;
1715 
1716 #if HAVE_ALTIVEC
1717  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1718  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1719 
1720  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1721  int j;
1722  short *p = (short *)&c->vYCoeffsBank[i];
1723  for (j = 0; j < 8; j++)
1724  p[j] = c->vLumFilter[i];
1725  }
1726 
1727  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1728  int j;
1729  short *p = (short *)&c->vCCoeffsBank[i];
1730  for (j = 0; j < 8; j++)
1731  p[j] = c->vChrFilter[i];
1732  }
1733 #endif
1734  }
1735 
1736  for (i = 0; i < 4; i++)
1737  FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1738 
1739  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1740 
1741  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1742  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1743  c->uv_offx2 = dst_stride + 16;
1744 
1745  av_assert0(c->chrDstH <= dstH);
1746 
1747  if (flags & SWS_PRINT_INFO) {
1748  const char *scaler = NULL, *cpucaps;
1749 
1750  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1751  if (flags & scale_algorithms[i].flag) {
1752  scaler = scale_algorithms[i].description;
1753  break;
1754  }
1755  }
1756  if (!scaler)
1757  scaler = "ehh flags invalid?!";
1758  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1759  scaler,
1760  av_get_pix_fmt_name(srcFormat),
1761 #ifdef DITHER1XBPP
1762  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1763  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1764  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1765  "dithered " : "",
1766 #else
1767  "",
1768 #endif
1769  av_get_pix_fmt_name(dstFormat));
1770 
1771  if (INLINE_MMXEXT(cpu_flags))
1772  cpucaps = "MMXEXT";
1773  else if (INLINE_AMD3DNOW(cpu_flags))
1774  cpucaps = "3DNOW";
1775  else if (INLINE_MMX(cpu_flags))
1776  cpucaps = "MMX";
1777  else if (PPC_ALTIVEC(cpu_flags))
1778  cpucaps = "AltiVec";
1779  else
1780  cpucaps = "C";
1781 
1782  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1783 
1784  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1785  av_log(c, AV_LOG_DEBUG,
1786  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1787  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1788  av_log(c, AV_LOG_DEBUG,
1789  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1790  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1791  c->chrXInc, c->chrYInc);
1792  }
1793 
1794  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1795  if (unscaled && !usesHFilter && !usesVFilter &&
1797  isALPHA(srcFormat) &&
1798  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1799  alphaless_fmt(srcFormat) == dstFormat
1800  ) {
1802 
1803  if (flags & SWS_PRINT_INFO)
1804  av_log(c, AV_LOG_INFO,
1805  "using alpha blendaway %s -> %s special converter\n",
1806  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1807  return 0;
1808  }
1809 
1810  /* unscaled special cases */
1811  if (unscaled && !usesHFilter && !usesVFilter &&
1812  (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
1813  isFloat(srcFormat) || isFloat(dstFormat))){
1815 
1816  if (c->swscale) {
1817  if (flags & SWS_PRINT_INFO)
1818  av_log(c, AV_LOG_INFO,
1819  "using unscaled %s -> %s special converter\n",
1820  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1821  return 0;
1822  }
1823  }
1824 
1825  c->swscale = ff_getSwsFunc(c);
1826  return ff_init_filters(c);
1827 fail: // FIXME replace things by appropriate error codes
1828  if (ret == RETCODE_USE_CASCADE) {
1829  int tmpW = sqrt(srcW * (int64_t)dstW);
1830  int tmpH = sqrt(srcH * (int64_t)dstH);
1831  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1832 
1833  if (isALPHA(srcFormat))
1834  tmpFormat = AV_PIX_FMT_YUVA420P;
1835 
1836  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1837  return AVERROR(EINVAL);
1838 
1840  tmpW, tmpH, tmpFormat, 64);
1841  if (ret < 0)
1842  return ret;
1843 
1844  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1845  tmpW, tmpH, tmpFormat,
1846  flags, srcFilter, NULL, c->param);
1847  if (!c->cascaded_context[0])
1848  return -1;
1849 
1850  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1851  dstW, dstH, dstFormat,
1852  flags, NULL, dstFilter, c->param);
1853  if (!c->cascaded_context[1])
1854  return -1;
1855  return 0;
1856  }
1857  return -1;
1858 }
1859 
1860 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1861  int dstW, int dstH, enum AVPixelFormat dstFormat,
1862  int flags, const double *param)
1863 {
1864  SwsContext *c;
1865 
1866  if (!(c = sws_alloc_context()))
1867  return NULL;
1868 
1869  c->flags = flags;
1870  c->srcW = srcW;
1871  c->srcH = srcH;
1872  c->dstW = dstW;
1873  c->dstH = dstH;
1874  c->srcFormat = srcFormat;
1875  c->dstFormat = dstFormat;
1876 
1877  if (param) {
1878  c->param[0] = param[0];
1879  c->param[1] = param[1];
1880  }
1881 
1882  return c;
1883 }
1884 
1885 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1886  int dstW, int dstH, enum AVPixelFormat dstFormat,
1887  int flags, SwsFilter *srcFilter,
1888  SwsFilter *dstFilter, const double *param)
1889 {
1890  SwsContext *c;
1891 
1892  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1893  dstW, dstH, dstFormat,
1894  flags, param);
1895  if (!c)
1896  return NULL;
1897 
1898  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1899  sws_freeContext(c);
1900  return NULL;
1901  }
1902 
1903  return c;
1904 }
1905 
1906 static int isnan_vec(SwsVector *a)
1907 {
1908  int i;
1909  for (i=0; i<a->length; i++)
1910  if (isnan(a->coeff[i]))
1911  return 1;
1912  return 0;
1913 }
1914 
1915 static void makenan_vec(SwsVector *a)
1916 {
1917  int i;
1918  for (i=0; i<a->length; i++)
1919  a->coeff[i] = NAN;
1920 }
1921 
1922 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1923  float lumaSharpen, float chromaSharpen,
1924  float chromaHShift, float chromaVShift,
1925  int verbose)
1926 {
1927  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1928  if (!filter)
1929  return NULL;
1930 
1931  if (lumaGBlur != 0.0) {
1932  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1933  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1934  } else {
1935  filter->lumH = sws_getIdentityVec();
1936  filter->lumV = sws_getIdentityVec();
1937  }
1938 
1939  if (chromaGBlur != 0.0) {
1940  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1941  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1942  } else {
1943  filter->chrH = sws_getIdentityVec();
1944  filter->chrV = sws_getIdentityVec();
1945  }
1946 
1947  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1948  goto fail;
1949 
1950  if (chromaSharpen != 0.0) {
1951  SwsVector *id = sws_getIdentityVec();
1952  if (!id)
1953  goto fail;
1954  sws_scaleVec(filter->chrH, -chromaSharpen);
1955  sws_scaleVec(filter->chrV, -chromaSharpen);
1956  sws_addVec(filter->chrH, id);
1957  sws_addVec(filter->chrV, id);
1958  sws_freeVec(id);
1959  }
1960 
1961  if (lumaSharpen != 0.0) {
1962  SwsVector *id = sws_getIdentityVec();
1963  if (!id)
1964  goto fail;
1965  sws_scaleVec(filter->lumH, -lumaSharpen);
1966  sws_scaleVec(filter->lumV, -lumaSharpen);
1967  sws_addVec(filter->lumH, id);
1968  sws_addVec(filter->lumV, id);
1969  sws_freeVec(id);
1970  }
1971 
1972  if (chromaHShift != 0.0)
1973  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1974 
1975  if (chromaVShift != 0.0)
1976  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1977 
1978  sws_normalizeVec(filter->chrH, 1.0);
1979  sws_normalizeVec(filter->chrV, 1.0);
1980  sws_normalizeVec(filter->lumH, 1.0);
1981  sws_normalizeVec(filter->lumV, 1.0);
1982 
1983  if (isnan_vec(filter->chrH) ||
1984  isnan_vec(filter->chrV) ||
1985  isnan_vec(filter->lumH) ||
1986  isnan_vec(filter->lumV))
1987  goto fail;
1988 
1989  if (verbose)
1990  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1991  if (verbose)
1992  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1993 
1994  return filter;
1995 
1996 fail:
1997  sws_freeVec(filter->lumH);
1998  sws_freeVec(filter->lumV);
1999  sws_freeVec(filter->chrH);
2000  sws_freeVec(filter->chrV);
2001  av_freep(&filter);
2002  return NULL;
2003 }
2004 
2006 {
2007  SwsVector *vec;
2008 
2009  if(length <= 0 || length > INT_MAX/ sizeof(double))
2010  return NULL;
2011 
2012  vec = av_malloc(sizeof(SwsVector));
2013  if (!vec)
2014  return NULL;
2015  vec->length = length;
2016  vec->coeff = av_malloc(sizeof(double) * length);
2017  if (!vec->coeff)
2018  av_freep(&vec);
2019  return vec;
2020 }
2021 
2022 SwsVector *sws_getGaussianVec(double variance, double quality)
2023 {
2024  const int length = (int)(variance * quality + 0.5) | 1;
2025  int i;
2026  double middle = (length - 1) * 0.5;
2027  SwsVector *vec;
2028 
2029  if(variance < 0 || quality < 0)
2030  return NULL;
2031 
2032  vec = sws_allocVec(length);
2033 
2034  if (!vec)
2035  return NULL;
2036 
2037  for (i = 0; i < length; i++) {
2038  double dist = i - middle;
2039  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2040  sqrt(2 * variance * M_PI);
2041  }
2042 
2043  sws_normalizeVec(vec, 1.0);
2044 
2045  return vec;
2046 }
2047 
2048 /**
2049  * Allocate and return a vector with length coefficients, all
2050  * with the same value c.
2051  */
2052 #if !FF_API_SWS_VECTOR
2053 static
2054 #endif
2056 {
2057  int i;
2058  SwsVector *vec = sws_allocVec(length);
2059 
2060  if (!vec)
2061  return NULL;
2062 
2063  for (i = 0; i < length; i++)
2064  vec->coeff[i] = c;
2065 
2066  return vec;
2067 }
2068 
2069 /**
2070  * Allocate and return a vector with just one coefficient, with
2071  * value 1.0.
2072  */
2073 #if !FF_API_SWS_VECTOR
2074 static
2075 #endif
2077 {
2078  return sws_getConstVec(1.0, 1);
2079 }
2080 
2081 static double sws_dcVec(SwsVector *a)
2082 {
2083  int i;
2084  double sum = 0;
2085 
2086  for (i = 0; i < a->length; i++)
2087  sum += a->coeff[i];
2088 
2089  return sum;
2090 }
2091 
2092 void sws_scaleVec(SwsVector *a, double scalar)
2093 {
2094  int i;
2095 
2096  for (i = 0; i < a->length; i++)
2097  a->coeff[i] *= scalar;
2098 }
2099 
2101 {
2102  sws_scaleVec(a, height / sws_dcVec(a));
2103 }
2104 
2105 #if FF_API_SWS_VECTOR
2107 {
2108  int length = a->length + b->length - 1;
2109  int i, j;
2110  SwsVector *vec = sws_getConstVec(0.0, length);
2111 
2112  if (!vec)
2113  return NULL;
2114 
2115  for (i = 0; i < a->length; i++) {
2116  for (j = 0; j < b->length; j++) {
2117  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2118  }
2119  }
2120 
2121  return vec;
2122 }
2123 #endif
2124 
2126 {
2127  int length = FFMAX(a->length, b->length);
2128  int i;
2129  SwsVector *vec = sws_getConstVec(0.0, length);
2130 
2131  if (!vec)
2132  return NULL;
2133 
2134  for (i = 0; i < a->length; i++)
2135  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2136  for (i = 0; i < b->length; i++)
2137  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2138 
2139  return vec;
2140 }
2141 
2142 #if FF_API_SWS_VECTOR
2144 {
2145  int length = FFMAX(a->length, b->length);
2146  int i;
2147  SwsVector *vec = sws_getConstVec(0.0, length);
2148 
2149  if (!vec)
2150  return NULL;
2151 
2152  for (i = 0; i < a->length; i++)
2153  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2154  for (i = 0; i < b->length; i++)
2155  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2156 
2157  return vec;
2158 }
2159 #endif
2160 
2161 /* shift left / or right if "shift" is negative */
2163 {
2164  int length = a->length + FFABS(shift) * 2;
2165  int i;
2166  SwsVector *vec = sws_getConstVec(0.0, length);
2167 
2168  if (!vec)
2169  return NULL;
2170 
2171  for (i = 0; i < a->length; i++) {
2172  vec->coeff[i + (length - 1) / 2 -
2173  (a->length - 1) / 2 - shift] = a->coeff[i];
2174  }
2175 
2176  return vec;
2177 }
2178 
2179 #if !FF_API_SWS_VECTOR
2180 static
2181 #endif
2183 {
2184  SwsVector *shifted = sws_getShiftedVec(a, shift);
2185  if (!shifted) {
2186  makenan_vec(a);
2187  return;
2188  }
2189  av_free(a->coeff);
2190  a->coeff = shifted->coeff;
2191  a->length = shifted->length;
2192  av_free(shifted);
2193 }
2194 
2195 #if !FF_API_SWS_VECTOR
2196 static
2197 #endif
2199 {
2200  SwsVector *sum = sws_sumVec(a, b);
2201  if (!sum) {
2202  makenan_vec(a);
2203  return;
2204  }
2205  av_free(a->coeff);
2206  a->coeff = sum->coeff;
2207  a->length = sum->length;
2208  av_free(sum);
2209 }
2210 
2211 #if FF_API_SWS_VECTOR
2213 {
2214  SwsVector *diff = sws_diffVec(a, b);
2215  if (!diff) {
2216  makenan_vec(a);
2217  return;
2218  }
2219  av_free(a->coeff);
2220  a->coeff = diff->coeff;
2221  a->length = diff->length;
2222  av_free(diff);
2223 }
2224 
2226 {
2227  SwsVector *conv = sws_getConvVec(a, b);
2228  if (!conv) {
2229  makenan_vec(a);
2230  return;
2231  }
2232  av_free(a->coeff);
2233  a->coeff = conv->coeff;
2234  a->length = conv->length;
2235  av_free(conv);
2236 }
2237 
2239 {
2240  SwsVector *vec = sws_allocVec(a->length);
2241 
2242  if (!vec)
2243  return NULL;
2244 
2245  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2246 
2247  return vec;
2248 }
2249 #endif
2250 
2251 /**
2252  * Print with av_log() a textual representation of the vector a
2253  * if log_level <= av_log_level.
2254  */
2255 #if !FF_API_SWS_VECTOR
2256 static
2257 #endif
2258 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2259 {
2260  int i;
2261  double max = 0;
2262  double min = 0;
2263  double range;
2264 
2265  for (i = 0; i < a->length; i++)
2266  if (a->coeff[i] > max)
2267  max = a->coeff[i];
2268 
2269  for (i = 0; i < a->length; i++)
2270  if (a->coeff[i] < min)
2271  min = a->coeff[i];
2272 
2273  range = max - min;
2274 
2275  for (i = 0; i < a->length; i++) {
2276  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2277  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2278  for (; x > 0; x--)
2279  av_log(log_ctx, log_level, " ");
2280  av_log(log_ctx, log_level, "|\n");
2281  }
2282 }
2283 
2285 {
2286  if (!a)
2287  return;
2288  av_freep(&a->coeff);
2289  a->length = 0;
2290  av_free(a);
2291 }
2292 
2294 {
2295  if (!filter)
2296  return;
2297 
2298  sws_freeVec(filter->lumH);
2299  sws_freeVec(filter->lumV);
2300  sws_freeVec(filter->chrH);
2301  sws_freeVec(filter->chrV);
2302  av_free(filter);
2303 }
2304 
2306 {
2307  int i;
2308  if (!c)
2309  return;
2310 
2311  for (i = 0; i < 4; i++)
2312  av_freep(&c->dither_error[i]);
2313 
2314  av_freep(&c->vLumFilter);
2315  av_freep(&c->vChrFilter);
2316  av_freep(&c->hLumFilter);
2317  av_freep(&c->hChrFilter);
2318 #if HAVE_ALTIVEC
2319  av_freep(&c->vYCoeffsBank);
2320  av_freep(&c->vCCoeffsBank);
2321 #endif
2322 
2323  av_freep(&c->vLumFilterPos);
2324  av_freep(&c->vChrFilterPos);
2325  av_freep(&c->hLumFilterPos);
2326  av_freep(&c->hChrFilterPos);
2327 
2328 #if HAVE_MMX_INLINE
2329 #if USE_MMAP
2330  if (c->lumMmxextFilterCode)
2332  if (c->chrMmxextFilterCode)
2334 #elif HAVE_VIRTUALALLOC
2335  if (c->lumMmxextFilterCode)
2336  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2337  if (c->chrMmxextFilterCode)
2338  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2339 #else
2342 #endif
2345 #endif /* HAVE_MMX_INLINE */
2346 
2347  av_freep(&c->yuvTable);
2349 
2353  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2354  av_freep(&c->cascaded_tmp[0]);
2355  av_freep(&c->cascaded1_tmp[0]);
2356 
2357  av_freep(&c->gamma);
2358  av_freep(&c->inv_gamma);
2359 
2360  ff_free_filters(c);
2361 
2362  av_free(c);
2363 }
2364 
2365 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2366  int srcH, enum AVPixelFormat srcFormat,
2367  int dstW, int dstH,
2368  enum AVPixelFormat dstFormat, int flags,
2369  SwsFilter *srcFilter,
2370  SwsFilter *dstFilter,
2371  const double *param)
2372 {
2373  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2375  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2376  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2377 
2378  if (!param)
2379  param = default_param;
2380 
2381  if (context &&
2382  (context->srcW != srcW ||
2383  context->srcH != srcH ||
2384  context->srcFormat != srcFormat ||
2385  context->dstW != dstW ||
2386  context->dstH != dstH ||
2387  context->dstFormat != dstFormat ||
2388  context->flags != flags ||
2389  context->param[0] != param[0] ||
2390  context->param[1] != param[1])) {
2391 
2392  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2393  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2394  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2395  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2396  sws_freeContext(context);
2397  context = NULL;
2398  }
2399 
2400  if (!context) {
2401  if (!(context = sws_alloc_context()))
2402  return NULL;
2403  context->srcW = srcW;
2404  context->srcH = srcH;
2405  context->srcFormat = srcFormat;
2406  context->dstW = dstW;
2407  context->dstH = dstH;
2408  context->dstFormat = dstFormat;
2409  context->flags = flags;
2410  context->param[0] = param[0];
2411  context->param[1] = param[1];
2412 
2413  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2414  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2415  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2416  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2417 
2418  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2419  sws_freeContext(context);
2420  return NULL;
2421  }
2422  }
2423  return context;
2424 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:81
SwsVector * chrV
Definition: swscale.h:119
IEEE-754 single precision Y, 32bpp, big-endian.
Definition: pixfmt.h:340
uint8_t is_supported_out
Definition: utils.c:94
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:291
#define NULL
Definition: coverity.c:32
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:271
static const FormatEntry format_entries[AV_PIX_FMT_NB]
Definition: utils.c:98
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:166
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:275
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:252
static enum AVPixelFormat pix_fmt
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2125
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
static int shift(int a, int b)
Definition: sonic.c:82
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1043
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:245
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:70
static const char * format[]
Definition: af_aiir.c:330
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2446
int chrSrcH
Height of source chroma planes.
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:167
#define SWS_X
Definition: swscale.h:61
int ff_free_filters(SwsContext *c)
Definition: slice.c:377
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
#define RV_IDX
#define SWS_BICUBIC
Definition: swscale.h:60
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:722
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:249
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:159
#define BV_IDX
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:120
#define C
8 bits gray, 8 bits alpha
Definition: pixfmt.h:143
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:208
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
const char * fmt
Definition: avisynth_c.h:769
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
SwsVector * lumV
Definition: swscale.h:117
int16_t * rgbgamma
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:84
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:296
SwsAlphaBlend alphablend
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:987
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:192
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:162
int acc
Definition: yuv2rgb.c:554
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2398
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:2022
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:250
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples */
Definition: pixfmt.h:262
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1305
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples */
Definition: pixfmt.h:263
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:773
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:207
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:108
#define SWS_BICUBLIN
Definition: swscale.h:64
int16_t * rgbgammainv
const char * b
Definition: vf_curves.c:116
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:283
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:395
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:270
#define GV_IDX
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
int av_log2(unsigned v)
Definition: intmath.c:26
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:374
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:189
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
Convenience header that includes libavutil's core.
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:1005
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:277
static int isnan_vec(SwsVector *a)
Definition: utils.c:1906
int16_t * xyzgammainv
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:111
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:71
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:255
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:156
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:140
static atomic_int cpu_flags
Definition: cpu.c:50
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples */
Definition: pixfmt.h:260
#define RGB_GAMMA
#define SWS_PRINT_INFO
Definition: swscale.h:75
Y , 12bpp, little-endian.
Definition: pixfmt.h:296
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2542
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:254
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:131
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:87
Macro definitions for various function/variable attributes.
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:106
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:85
#define SWS_BILINEAR
Definition: swscale.h:59
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:179
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2225
#define RU_IDX
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:216
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:190
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhd.c:153
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1087
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
ptrdiff_t uv_off
offset (in pixels) between u and v planes
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
int length
number of coefficients in the vector
Definition: swscale.h:111
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1159
#define SWS_LANCZOS
Definition: swscale.h:67
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:77
AVOptions.
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:103
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2238
int vChrFilterSize
Vertical filter size for chroma pixels.
#define f(width, name)
Definition: cbs_vp9.c:255
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:268
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:269
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:205
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:139
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:251
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:79
int cascaded_tmpStride[4]
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:105
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:191
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:2055
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:276
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:174
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
Definition: pixfmt.h:100
Y , 9bpp, little-endian.
Definition: pixfmt.h:316
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1885
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:194
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:370
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int16_t rgb2xyz_matrix[3][4]
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:392
Y , 10bpp, little-endian.
Definition: pixfmt.h:298
external API header
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale.c:51
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:278
uint16_t * inv_gamma
#define A(x)
Definition: vp56_arith.h:28
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:264
#define FFALIGN(x, a)
Definition: macros.h:48
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
#define av_log(a,...)
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
float uint2float_lut[256]
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2162
static const uint16_t table[]
Definition: prosumer.c:203
uint64_t vRounder
#define ROUNDED_DIV(a, b)
Definition: common.h:56
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
int * dither_error[4]
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:157
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1922
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:170
#define INLINE_MMX(flags)
Definition: cpu.h:86
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:165
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:176
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
16 bits gray, 16 bits alpha (big-endian)
Definition: pixfmt.h:212
like NV12, with 16bpp per component, big-endian
Definition: pixfmt.h:301
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:136
#define AVERROR(e)
Definition: error.h:43
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:598
const char * description
human-readable description
Definition: utils.c:307
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2474
#define B
Definition: huffyuvdsp.h:32
#define PPC_ALTIVEC(flags)
Definition: cpu.h:25
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:87
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2212
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2258
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:182
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:161
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:568
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:89
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:365
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:248
GLsizei GLsizei * length
Definition: opengl_enc.c:115
like NV12, with 16bpp per component, little-endian
Definition: pixfmt.h:300
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:134
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:382
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
Definition: pixfmt.h:285
#define SWS_CS_DEFAULT
Definition: swscale.h:95
#define X86_MMX(flags)
Definition: cpu.h:30
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:183
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2092
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:116
#define fail()
Definition: checkasm.h:117
int8_t exp
Definition: eval.c:72
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:149
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
uint8_t * cascaded1_tmp[4]
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2100
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:184
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2365
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define RETCODE_USE_CASCADE
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1101
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2293
int hChrFilterSize
Horizontal filter size for chroma pixels.
int16_t * xyzgamma
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:2005
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:377
as above, but U and V bytes are swapped
Definition: pixfmt.h:90
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:287
#define RGB2YUV_SHIFT
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:290
#define APCK_SIZE
#define have_neon(flags)
Definition: cpu.h:26
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:398
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:363
#define NAN
Definition: mathematics.h:64
#define FFMIN(a, b)
Definition: common.h:96
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:88
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
#define SWS_GAUSS
Definition: swscale.h:65
SwsVector * chrH
Definition: swscale.h:118
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:84
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:137
int32_t
#define RY_IDX
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2182
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2305
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:188
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:210
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:180
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:243
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:200
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:158
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:540
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1860
unsigned swscale_version(void)
Definition: utils.c:75
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
Definition: pixfmt.h:284
double gamma_value
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:852
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:378
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:167
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:148
#define DITHER1XBPP
static void error(const char *err)
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:110
uint8_t * cascaded_tmp[4]
#define FF_ARRAY_ELEMS(a)
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:311
int cascaded1_tmpStride[4]
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:288
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:390
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define isGray(x)
Definition: swscale.c:40
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:372
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:888
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:83
double * coeff
pointer to the list of coefficients
Definition: swscale.h:110
int flag
flag associated to the algorithm
Definition: utils.c:306
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:132
int dstColorspaceTable[4]
#define AV_PIX_FMT_GRAYF32
Definition: pixfmt.h:411
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:325
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
const AVClass * av_class
info on struct for av_log
int16_t xyz2rgb_matrix[3][4]
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
#define DITHER32_INT
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:267
void sws_freeVec(SwsVector *a)
Definition: utils.c:2284
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:172
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:31
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:271
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:192
int chrDstH
Height of destination chroma planes.
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:67
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:277
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:257
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:85
Replacements for frequently missing libm functions.
#define SWS_AREA
Definition: swscale.h:63
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:379
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:193
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2143
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:67
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:195
#define W(a, i, v)
Definition: jpegls.h:124
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
Y , 16bpp, big-endian.
Definition: pixfmt.h:97
#define isnan(x)
Definition: libm.h:340
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:83
byte swapping routines
static void handle_formats(SwsContext *c)
Definition: utils.c:1063
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:244
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
Y , 9bpp, big-endian.
Definition: pixfmt.h:315
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:256
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:178
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:376
const VDPAUPixFmtMap * map
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:113
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:93
#define SWS_POINT
Definition: swscale.h:62
int ff_init_filters(SwsContext *c)
Definition: slice.c:249
Y , 14bpp, little-endian.
Definition: pixfmt.h:338
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:265
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1073
#define GY_IDX
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:371
#define SWS_SPLINE
Definition: swscale.h:68
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:396
#define SWS_SINC
Definition: swscale.h:66
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:187
#define flags(name, subs,...)
Definition: cbs_av1.c:596
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:380
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:107
#define SWS_BITEXACT
Definition: swscale.h:84
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:266
Y , 10bpp, big-endian.
Definition: pixfmt.h:297
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:142
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:163
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:135
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1054
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:158
Definition: vc1_parser.c:48
SwsDither dither
uint8_t is_supported_in
Definition: utils.c:93
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:76
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2198
#define INLINE_MMXEXT(flags)
Definition: cpu.h:87
int
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2081
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:247
Y , 8bpp.
Definition: pixfmt.h:74
double param[2]
Input parameters for scaling algorithms that need them.
#define exp2(x)
Definition: libm.h:288
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:75
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:140
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:171
#define flag(name)
Definition: cbs_av1.c:588
static double c[64]
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:102
#define AV_WL16(p, v)
Definition: intreadwrite.h:412
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:133
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples */
Definition: pixfmt.h:261
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:86
static const uint64_t c2
Definition: murmur3.c:50
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:73
#define XYZ_GAMMA
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:185
struct SwsContext * cascaded_context[3]
#define SWS_PARAM_DEFAULT
Definition: swscale.h:73
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:81
uint16_t * gamma
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
#define MAX_FILTER_SIZE
static av_always_inline int diff(const uint32_t a, const uint32_t b)
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:199
#define av_free(p)
int size_factor
size factor used when initing the filters
Definition: utils.c:308
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:253
int srcFormatBpp
Number of bits per pixel of the source pixel format.
Y , 14bpp, big-endian.
Definition: pixfmt.h:337
const AVClass ff_sws_context_class
Definition: options.c:87
Y , 16bpp, little-endian.
Definition: pixfmt.h:98
uint8_t is_supported_endianness
Definition: utils.c:95
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:258
#define lrint
Definition: tablegen.h:53
16 bits gray, 16 bits alpha (little-endian)
Definition: pixfmt.h:213
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:265
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2076
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:186
Y , 12bpp, big-endian.
Definition: pixfmt.h:295
static int height
Definition: utils.c:158
int32_t input_rgb2yuv_table[16+40 *4]
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:112
number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of...
Definition: pixfmt.h:343
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
#define av_freep(p)
#define GU_IDX
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:99
#define M_PI
Definition: mathematics.h:52
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:175
static void makenan_vec(SwsVector *a)
Definition: utils.c:1915
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define av_malloc_array(a, b)
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:141
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2362
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:181
#define BY_IDX
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
int depth
Number of bits in the component.
Definition: pixdesc.h:58
IEEE-754 single precision Y, 32bpp, little-endian.
Definition: pixfmt.h:341
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:217
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:82
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:816
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:242
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:391
#define BU_IDX
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:164
for(j=16;j >0;--j)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:246
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:149
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:173
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2106
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:206
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:279
#define V
Definition: avdct.c:30
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:160
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86