FFmpeg
snowdec.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "snow_dwt.h"
26 #include "internal.h"
27 #include "snow.h"
28 
29 #include "rangecoder.h"
30 #include "mathops.h"
31 
32 #include "mpegvideo.h"
33 #include "h263.h"
34 
35 static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
36  Plane *p= &s->plane[plane_index];
37  const int mb_w= s->b_width << s->block_max_depth;
38  const int mb_h= s->b_height << s->block_max_depth;
39  int x, y, mb_x;
40  int block_size = MB_SIZE >> s->block_max_depth;
41  int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
42  int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
43  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
44  int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
45  int ref_stride= s->current_picture->linesize[plane_index];
46  uint8_t *dst8= s->current_picture->data[plane_index];
47  int w= p->width;
48  int h= p->height;
49 
50  if(s->keyframe || (s->avctx->debug&512)){
51  if(mb_y==mb_h)
52  return;
53 
54  if(add){
55  for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
56 // DWTELEM * line = slice_buffer_get_line(sb, y);
57  IDWTELEM * line = sb->line[y];
58  for(x=0; x<w; x++){
59 // int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
60  int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
61  v >>= FRAC_BITS;
62  if(v&(~255)) v= ~(v>>31);
63  dst8[x + y*ref_stride]= v;
64  }
65  }
66  }else{
67  for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
68 // DWTELEM * line = slice_buffer_get_line(sb, y);
69  IDWTELEM * line = sb->line[y];
70  for(x=0; x<w; x++){
71  line[x] -= 128 << FRAC_BITS;
72 // buf[x + y*w]-= 128<<FRAC_BITS;
73  }
74  }
75  }
76 
77  return;
78  }
79 
80  for(mb_x=0; mb_x<=mb_w; mb_x++){
81  add_yblock(s, 1, sb, old_buffer, dst8, obmc,
82  block_w*mb_x - block_w/2,
83  block_h*mb_y - block_h/2,
84  block_w, block_h,
85  w, h,
86  w, ref_stride, obmc_stride,
87  mb_x - 1, mb_y - 1,
88  add, 0, plane_index);
89  }
90 
91  if(s->avmv && mb_y < mb_h && plane_index == 0)
92  for(mb_x=0; mb_x<mb_w; mb_x++){
93  AVMotionVector *avmv = s->avmv + s->avmv_index;
94  const int b_width = s->b_width << s->block_max_depth;
95  const int b_stride= b_width;
96  BlockNode *bn= &s->block[mb_x + mb_y*b_stride];
97 
98  if (bn->type)
99  continue;
100 
101  s->avmv_index++;
102 
103  avmv->w = block_w;
104  avmv->h = block_h;
105  avmv->dst_x = block_w*mb_x - block_w/2;
106  avmv->dst_y = block_h*mb_y - block_h/2;
107  avmv->motion_scale = 8;
108  avmv->motion_x = bn->mx * s->mv_scale;
109  avmv->motion_y = bn->my * s->mv_scale;
110  avmv->src_x = avmv->dst_x + avmv->motion_x / 8;
111  avmv->src_y = avmv->dst_y + avmv->motion_y / 8;
112  avmv->source= -1 - bn->ref;
113  avmv->flags = 0;
114  }
115 }
116 
117 static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
118  const int w= b->width;
119  int y;
120  const int qlog= av_clip(s->qlog + (int64_t)b->qlog, 0, QROOT*16);
121  int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
122  int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
123  int new_index = 0;
124 
125  if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){
126  qadd= 0;
127  qmul= 1<<QEXPSHIFT;
128  }
129 
130  /* If we are on the second or later slice, restore our index. */
131  if (start_y != 0)
132  new_index = save_state[0];
133 
134 
135  for(y=start_y; y<h; y++){
136  int x = 0;
137  int v;
139  memset(line, 0, b->width*sizeof(IDWTELEM));
140  v = b->x_coeff[new_index].coeff;
141  x = b->x_coeff[new_index++].x;
142  while(x < w){
143  register int t= (int)( (v>>1)*(unsigned)qmul + qadd)>>QEXPSHIFT;
144  register int u= -(v&1);
145  line[x] = (t^u) - u;
146 
147  v = b->x_coeff[new_index].coeff;
148  x = b->x_coeff[new_index++].x;
149  }
150  }
151 
152  /* Save our variables for the next slice. */
153  save_state[0] = new_index;
154 
155  return;
156 }
157 
158 static int decode_q_branch(SnowContext *s, int level, int x, int y){
159  const int w= s->b_width << s->block_max_depth;
160  const int rem_depth= s->block_max_depth - level;
161  const int index= (x + y*w) << rem_depth;
162  int trx= (x+1)<<rem_depth;
163  const BlockNode *left = x ? &s->block[index-1] : &null_block;
164  const BlockNode *top = y ? &s->block[index-w] : &null_block;
165  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
166  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
167  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
168  int res;
169 
170  if(s->keyframe){
172  return 0;
173  }
174 
175  if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
176  int type, mx, my;
177  int l = left->color[0];
178  int cb= left->color[1];
179  int cr= left->color[2];
180  unsigned ref = 0;
181  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
182  int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
183  int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));
184 
185  type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
186  if(type){
187  int ld, cbd, crd;
188  pred_mv(s, &mx, &my, 0, left, top, tr);
189  ld = get_symbol(&s->c, &s->block_state[32], 1);
190  if (ld < -255 || ld > 255) {
191  return AVERROR_INVALIDDATA;
192  }
193  l += ld;
194  if (s->nb_planes > 2) {
195  cbd = get_symbol(&s->c, &s->block_state[64], 1);
196  crd = get_symbol(&s->c, &s->block_state[96], 1);
197  if (cbd < -255 || cbd > 255 || crd < -255 || crd > 255) {
198  return AVERROR_INVALIDDATA;
199  }
200  cb += cbd;
201  cr += crd;
202  }
203  }else{
204  if(s->ref_frames > 1)
205  ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
206  if (ref >= s->ref_frames) {
207  av_log(s->avctx, AV_LOG_ERROR, "Invalid ref\n");
208  return AVERROR_INVALIDDATA;
209  }
210  pred_mv(s, &mx, &my, ref, left, top, tr);
211  mx+= (unsigned)get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
212  my+= (unsigned)get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
213  }
214  set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
215  }else{
216  if ((res = decode_q_branch(s, level+1, 2*x+0, 2*y+0)) < 0 ||
217  (res = decode_q_branch(s, level+1, 2*x+1, 2*y+0)) < 0 ||
218  (res = decode_q_branch(s, level+1, 2*x+0, 2*y+1)) < 0 ||
219  (res = decode_q_branch(s, level+1, 2*x+1, 2*y+1)) < 0)
220  return res;
221  }
222  return 0;
223 }
224 
225 static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){
226  const int w= b->width;
227  const int qlog= av_clip(s->qlog + (int64_t)b->qlog, 0, QROOT*16);
228  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
229  const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
230  int x,y;
231 
232  if(s->qlog == LOSSLESS_QLOG) return;
233 
234  for(y=start_y; y<end_y; y++){
235 // DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
237  for(x=0; x<w; x++){
238  int i= line[x];
239  if(i<0){
240  line[x]= -((-i*(unsigned)qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
241  }else if(i>0){
242  line[x]= (( i*(unsigned)qmul + qadd)>>(QEXPSHIFT));
243  }
244  }
245  }
246 }
247 
248 static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
249  const int w= b->width;
250  int x,y;
251 
252  IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning
253  IDWTELEM * prev;
254 
255  if (start_y != 0)
256  line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
257 
258  for(y=start_y; y<end_y; y++){
259  prev = line;
260 // line = slice_buffer_get_line_from_address(sb, src + (y * stride));
261  line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
262  for(x=0; x<w; x++){
263  if(x){
264  if(use_median){
265  if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
266  else line[x] += line[x - 1];
267  }else{
268  if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
269  else line[x] += line[x - 1];
270  }
271  }else{
272  if(y) line[x] += prev[x];
273  }
274  }
275  }
276 }
277 
278 static void decode_qlogs(SnowContext *s){
279  int plane_index, level, orientation;
280 
281  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
282  for(level=0; level<s->spatial_decomposition_count; level++){
283  for(orientation=level ? 1:0; orientation<4; orientation++){
284  int q;
285  if (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
286  else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
287  else q= get_symbol(&s->c, s->header_state, 1);
288  s->plane[plane_index].band[level][orientation].qlog= q;
289  }
290  }
291  }
292 }
293 
294 #define GET_S(dst, check) \
295  tmp= get_symbol(&s->c, s->header_state, 0);\
296  if(!(check)){\
297  av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\
298  return AVERROR_INVALIDDATA;\
299  }\
300  dst= tmp;
301 
303  int plane_index, tmp;
304  uint8_t kstate[32];
305 
306  memset(kstate, MID_STATE, sizeof(kstate));
307 
308  s->keyframe= get_rac(&s->c, kstate);
309  if(s->keyframe || s->always_reset){
312  s->qlog=
313  s->qbias=
314  s->mv_scale=
315  s->block_max_depth= 0;
316  }
317  if(s->keyframe){
318  GET_S(s->version, tmp <= 0U)
319  s->always_reset= get_rac(&s->c, s->header_state);
323  s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
324  if (s->colorspace_type == 1) {
326  s->nb_planes = 1;
327  } else if(s->colorspace_type == 0) {
328  s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
329  s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
330 
331  if(s->chroma_h_shift == 1 && s->chroma_v_shift==1){
333  }else if(s->chroma_h_shift == 0 && s->chroma_v_shift==0){
335  }else if(s->chroma_h_shift == 2 && s->chroma_v_shift==2){
337  } else {
338  av_log(s, AV_LOG_ERROR, "unsupported color subsample mode %d %d\n", s->chroma_h_shift, s->chroma_v_shift);
339  s->chroma_h_shift = s->chroma_v_shift = 1;
341  return AVERROR_INVALIDDATA;
342  }
343  s->nb_planes = 3;
344  } else {
345  av_log(s, AV_LOG_ERROR, "unsupported color space\n");
346  s->chroma_h_shift = s->chroma_v_shift = 1;
348  return AVERROR_INVALIDDATA;
349  }
350 
351 
353 // s->rate_scalability= get_rac(&s->c, s->header_state);
354  GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES)
355  s->max_ref_frames++;
356 
357  decode_qlogs(s);
358  }
359 
360  if(!s->keyframe){
361  if(get_rac(&s->c, s->header_state)){
362  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
363  int htaps, i, sum=0;
364  Plane *p= &s->plane[plane_index];
365  p->diag_mc= get_rac(&s->c, s->header_state);
366  htaps= get_symbol(&s->c, s->header_state, 0);
367  if((unsigned)htaps >= HTAPS_MAX/2 - 1)
368  return AVERROR_INVALIDDATA;
369  htaps = htaps*2 + 2;
370  p->htaps= htaps;
371  for(i= htaps/2; i; i--){
372  unsigned hcoeff = get_symbol(&s->c, s->header_state, 0);
373  if (hcoeff > 127)
374  return AVERROR_INVALIDDATA;
375  p->hcoeff[i]= hcoeff * (1-2*(i&1));
376  sum += p->hcoeff[i];
377  }
378  p->hcoeff[0]= 32-sum;
379  }
380  s->plane[2].diag_mc= s->plane[1].diag_mc;
381  s->plane[2].htaps = s->plane[1].htaps;
382  memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff));
383  }
384  if(get_rac(&s->c, s->header_state)){
386  decode_qlogs(s);
387  }
388  }
389 
390  s->spatial_decomposition_type+= (unsigned)get_symbol(&s->c, s->header_state, 1);
391  if(s->spatial_decomposition_type > 1U){
392  av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported\n", s->spatial_decomposition_type);
393  return AVERROR_INVALIDDATA;
394  }
395  if(FFMIN(s->avctx-> width>>s->chroma_h_shift,
396  s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 1){
397  av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size\n", s->spatial_decomposition_count);
398  return AVERROR_INVALIDDATA;
399  }
400  if (s->avctx->width > 65536-4) {
401  av_log(s->avctx, AV_LOG_ERROR, "Width %d is too large\n", s->avctx->width);
402  return AVERROR_INVALIDDATA;
403  }
404 
405 
406  s->qlog += (unsigned)get_symbol(&s->c, s->header_state, 1);
407  s->mv_scale += (unsigned)get_symbol(&s->c, s->header_state, 1);
408  s->qbias += (unsigned)get_symbol(&s->c, s->header_state, 1);
409  s->block_max_depth+= (unsigned)get_symbol(&s->c, s->header_state, 1);
410  if(s->block_max_depth > 1 || s->block_max_depth < 0 || s->mv_scale > 256U){
411  av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large\n", s->block_max_depth);
412  s->block_max_depth= 0;
413  s->mv_scale = 0;
414  return AVERROR_INVALIDDATA;
415  }
416  if (FFABS(s->qbias) > 127) {
417  av_log(s->avctx, AV_LOG_ERROR, "qbias %d is too large\n", s->qbias);
418  s->qbias = 0;
419  return AVERROR_INVALIDDATA;
420  }
421 
422  return 0;
423 }
424 
426  int x, y;
427  int w= s->b_width;
428  int h= s->b_height;
429  int res;
430 
431  for(y=0; y<h; y++){
432  for(x=0; x<w; x++){
433  if (s->c.bytestream >= s->c.bytestream_end)
434  return AVERROR_INVALIDDATA;
435  if ((res = decode_q_branch(s, 0, x, y)) < 0)
436  return res;
437  }
438  }
439  return 0;
440 }
441 
442 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
443  AVPacket *avpkt)
444 {
445  const uint8_t *buf = avpkt->data;
446  int buf_size = avpkt->size;
447  SnowContext *s = avctx->priv_data;
448  RangeCoder * const c= &s->c;
449  int bytes_read;
450  AVFrame *picture = data;
451  int level, orientation, plane_index;
452  int res;
453 
454  ff_init_range_decoder(c, buf, buf_size);
455  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
456 
457  s->current_picture->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
458  if ((res = decode_header(s)) < 0)
459  return res;
460  if ((res=ff_snow_common_init_after_header(avctx)) < 0)
461  return res;
462 
463  // realloc slice buffer for the case that spatial_decomposition_count changed
465  if ((res = ff_slice_buffer_init(&s->sb, s->plane[0].height,
466  (MB_SIZE >> s->block_max_depth) +
467  s->spatial_decomposition_count * 11 + 1,
468  s->plane[0].width,
469  s->spatial_idwt_buffer)) < 0)
470  return res;
471 
472  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
473  Plane *p= &s->plane[plane_index];
474  p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40
475  && p->hcoeff[1]==-10
476  && p->hcoeff[2]==2;
477  }
478 
480 
481  if((res = ff_snow_frame_start(s)) < 0)
482  return res;
483 
485 
486  //keyframe flag duplication mess FIXME
487  if(avctx->debug&FF_DEBUG_PICT_INFO)
488  av_log(avctx, AV_LOG_ERROR,
489  "keyframe:%d qlog:%d qbias: %d mvscale: %d "
490  "decomposition_type:%d decomposition_count:%d\n",
491  s->keyframe, s->qlog, s->qbias, s->mv_scale,
494  );
495 
496  av_assert0(!s->avmv);
498  s->avmv = av_malloc_array(s->b_width * s->b_height, sizeof(AVMotionVector) << (s->block_max_depth*2));
499  }
500  s->avmv_index = 0;
501 
502  if ((res = decode_blocks(s)) < 0)
503  return res;
504 
505  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
506  Plane *p= &s->plane[plane_index];
507  int w= p->width;
508  int h= p->height;
509  int x, y;
510  int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
511 
512  if(s->avctx->debug&2048){
513  memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
514  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
515 
516  for(y=0; y<h; y++){
517  for(x=0; x<w; x++){
518  int v= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x];
519  s->mconly_picture->data[plane_index][y*s->mconly_picture->linesize[plane_index] + x]= v;
520  }
521  }
522  }
523 
524  for(level=0; level<s->spatial_decomposition_count; level++){
525  for(orientation=level ? 1 : 0; orientation<4; orientation++){
526  SubBand *b= &p->band[level][orientation];
527  unpack_coeffs(s, b, b->parent, orientation);
528  }
529  }
530 
531  {
532  const int mb_h= s->b_height << s->block_max_depth;
533  const int block_size = MB_SIZE >> s->block_max_depth;
534  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
535  int mb_y;
537  int yd=0, yq=0;
538  int y;
539  int end_y;
540 
542  for(mb_y=0; mb_y<=mb_h; mb_y++){
543 
544  int slice_starty = block_h*mb_y;
545  int slice_h = block_h*(mb_y+1);
546 
547  if (!(s->keyframe || s->avctx->debug&512)){
548  slice_starty = FFMAX(0, slice_starty - (block_h >> 1));
549  slice_h -= (block_h >> 1);
550  }
551 
552  for(level=0; level<s->spatial_decomposition_count; level++){
553  for(orientation=level ? 1 : 0; orientation<4; orientation++){
554  SubBand *b= &p->band[level][orientation];
555  int start_y;
556  int end_y;
557  int our_mb_start = mb_y;
558  int our_mb_end = (mb_y + 1);
559  const int extra= 3;
560  start_y = (mb_y ? ((block_h * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
561  end_y = (((block_h * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
562  if (!(s->keyframe || s->avctx->debug&512)){
563  start_y = FFMAX(0, start_y - (block_h >> (1+s->spatial_decomposition_count - level)));
564  end_y = FFMAX(0, end_y - (block_h >> (1+s->spatial_decomposition_count - level)));
565  }
566  start_y = FFMIN(b->height, start_y);
567  end_y = FFMIN(b->height, end_y);
568 
569  if (start_y != end_y){
570  if (orientation == 0){
571  SubBand * correlate_band = &p->band[0][0];
572  int correlate_end_y = FFMIN(b->height, end_y + 1);
573  int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
574  decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
575  correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
576  dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y);
577  }
578  else
579  decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
580  }
581  }
582  }
583 
584  for(; yd<slice_h; yd+=4){
586  }
587 
588  if(s->qlog == LOSSLESS_QLOG){
589  for(; yq<slice_h && yq<h; yq++){
590  IDWTELEM * line = slice_buffer_get_line(&s->sb, yq);
591  for(x=0; x<w; x++){
592  line[x] *= 1<<FRAC_BITS;
593  }
594  }
595  }
596 
597  predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y);
598 
599  y = FFMIN(p->height, slice_starty);
600  end_y = FFMIN(p->height, slice_h);
601  while(y < end_y)
602  ff_slice_buffer_release(&s->sb, y++);
603  }
604 
606  }
607 
608  }
609 
610  emms_c();
611 
612  ff_snow_release_buffer(avctx);
613 
614  if(!(s->avctx->debug&2048))
615  res = av_frame_ref(picture, s->current_picture);
616  else
617  res = av_frame_ref(picture, s->mconly_picture);
618  if (res >= 0 && s->avmv_index) {
619  AVFrameSideData *sd;
620 
622  if (!sd)
623  return AVERROR(ENOMEM);
624  memcpy(sd->data, s->avmv, s->avmv_index * sizeof(AVMotionVector));
625  }
626 
627  av_freep(&s->avmv);
628 
629  if (res < 0)
630  return res;
631 
632  *got_frame = 1;
633 
634  bytes_read= c->bytestream - c->bytestream_start;
635  if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
636 
637  return bytes_read;
638 }
639 
641 {
642  SnowContext *s = avctx->priv_data;
643 
645 
647 
648  return 0;
649 }
650 
652  .name = "snow",
653  .long_name = NULL_IF_CONFIG_SMALL("Snow"),
654  .type = AVMEDIA_TYPE_VIDEO,
655  .id = AV_CODEC_ID_SNOW,
656  .priv_data_size = sizeof(SnowContext),
658  .close = decode_end,
659  .decode = decode_frame,
660  .capabilities = AV_CODEC_CAP_DR1 /*| AV_CODEC_CAP_DRAW_HORIZ_BAND*/,
661  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
663 };
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
int version
Definition: snow.h:135
int mv_scale
Definition: snow.h:160
static av_always_inline void predict_plane(SnowContext *s, IDWTELEM *buf, int plane_index, int add)
Definition: snow.h:455
int ff_snow_frame_start(SnowContext *s)
Definition: snow.c:653
#define QSHIFT
Definition: snow.h:43
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
AVCodecContext * avctx
Definition: snow.h:116
int block_max_depth
Definition: snow.h:167
AVFrame * mconly_picture
Definition: snow.h:129
int chroma_v_shift
Definition: snow.h:153
This structure describes decoded (raw) audio or video data.
Definition: frame.h:308
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:100
static const double htaps[HTAPS]
The 2nd half (48 coeffs) of a 96-tap symmetric lowpass filter.
Definition: dsd_tablegen.h:55
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
int16_t src_x
Absolute source position.
Definition: motion_vector.h:38
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int always_reset
Definition: snow.h:134
#define BLOCK_INTRA
Intra block, inter otherwise.
Definition: snow.h:58
void ff_slice_buffer_destroy(slice_buffer *buf)
Definition: snow_dwt.c:103
Range coder.
uint8_t * bytestream_end
Definition: rangecoder.h:44
int size
Definition: packet.h:364
int av_log2(unsigned v)
Definition: intmath.c:26
static av_cold int decode_end(AVCodecContext *avctx)
Definition: snowdec.c:640
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:736
GLint GLenum type
Definition: opengl_enc.c:104
int max_ref_frames
Definition: snow.h:142
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: snowdec.c:442
mpegvideo header.
int ff_snow_common_init_after_header(AVCodecContext *avctx)
Definition: snow.c:513
ptrdiff_t stride
Definition: cfhd.h:112
void ff_spatial_idwt_buffered_slice(SnowDWTContext *dsp, DWTCompose *cs, slice_buffer *slice_buf, IDWTELEM *temp, int width, int height, int stride_line, int type, int decomposition_count, int y)
Definition: snow_dwt.c:658
int keyframe
Definition: snow.h:133
AVCodec.
Definition: codec.h:190
void ff_snow_reset_contexts(SnowContext *s)
Definition: snow.c:96
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
static void set_blocks(SnowContext *s, int level, int x, int y, int l, int cb, int cr, int mx, int my, int ref, int type)
Definition: snow.h:462
short IDWTELEM
Definition: dirac_dwt.h:27
int qlog
log(qscale)/log[2^(1/6)]
Definition: snow.h:88
Definition: snow.h:51
int width
Definition: cfhd.h:114
#define HTAPS_MAX
Definition: snow.h:76
uint8_t level
Definition: snow.h:61
uint8_t ref
Reference frame index.
Definition: snow.h:54
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:215
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:40
int b_height
Definition: snow.h:166
int export_side_data
Bit set of AV_CODEC_EXPORT_DATA_* flags, which affects the kind of metadata exported in frame...
Definition: avcodec.h:2354
uint8_t
int16_t mx
Motion vector component X, see mv_scale.
Definition: snow.h:52
#define av_cold
Definition: attributes.h:88
static int get_rac(RangeCoder *c, uint8_t *const state)
Definition: rangecoder.h:136
#define FRAC_BITS
#define AV_CODEC_EXPORT_DATA_MVS
Export motion vectors through frame side data.
Definition: avcodec.h:403
AVOptions.
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:1612
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
int16_t dst_x
Absolute destination position.
Definition: motion_vector.h:42
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:456
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:262
Structure to hold side data for an AVFrame.
Definition: frame.h:214
int16_t my
Motion vector component Y, see mv_scale.
Definition: snow.h:53
uint8_t * data
Definition: packet.h:363
int32_t source
Where the current macroblock comes from; negative value when it comes from the past, positive value when it comes from the future.
Definition: motion_vector.h:30
static const BlockNode null_block
Definition: snow.h:64
void ff_snow_release_buffer(AVCodecContext *avctx)
Definition: snow.c:638
#define QEXPSHIFT
Definition: snow.h:507
#define av_log(a,...)
Definition: cfhd.h:111
BlockNode * block
Definition: snow.h:171
#define U(x)
Definition: vp56_arith.h:37
#define src
Definition: vp8dsp.c:254
SnowDWTContext dwt
Definition: snow.h:124
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
#define MB_SIZE
Definition: cinepakenc.c:54
void ff_spatial_idwt_buffered_init(DWTCompose *cs, slice_buffer *sb, int width, int height, int stride_line, int type, int decomposition_count)
Definition: snow_dwt.c:639
SubBand band[DWT_LEVELS_3D][4]
Definition: cfhd.h:132
int avmv_index
Definition: snow.h:189
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:153
uint8_t w
Width and height of the block.
Definition: motion_vector.h:34
int diag_mc
Definition: snow.h:106
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1389
AVMotionVector * avmv
Definition: snow.h:188
const uint8_t *const ff_obmc_tab[4]
Definition: snowdata.h:123
Definition: graph2dot.c:48
const char * name
Name of the codec implementation.
Definition: codec.h:197
#define FFMAX(a, b)
Definition: common.h:94
uint8_t * bytestream
Definition: rangecoder.h:43
uint8_t color[3]
Color for intra.
Definition: snow.h:55
int ref_frames
Definition: snow.h:143
x_and_coeff * x_coeff
Definition: snow.h:94
int htaps
Definition: snow.h:104
int qlog
Definition: snow.h:155
void ff_slice_buffer_flush(slice_buffer *buf)
Definition: snow_dwt.c:91
static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed)
Definition: ffv1dec.c:65
#define b
Definition: input.c:41
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:391
#define FFMIN(a, b)
Definition: common.h:96
static void unpack_coeffs(SnowContext *s, SubBand *b, SubBand *parent, int orientation)
Definition: snow.h:603
int32_t motion_x
Motion vector src_x = dst_x + motion_x / motion_scale src_y = dst_y + motion_y / motion_scale.
Definition: motion_vector.h:53
#define width
#define LOSSLESS_QLOG
Definition: snow.h:45
int width
picture width / height.
Definition: avcodec.h:699
uint8_t w
Definition: llviddspenc.c:38
int16_t x
Definition: snow.h:79
Motion vectors exported by some codecs (on demand through the export_mvs flag set in the libavcodec A...
Definition: frame.h:96
Plane plane[MAX_PLANES]
Definition: snow.h:170
static av_always_inline void add_yblock(SnowContext *s, int sliced, slice_buffer *sb, IDWTELEM *dst, uint8_t *dst8, const uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int offset_dst, int plane_index)
Definition: snow.h:280
int b_width
Definition: snow.h:165
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
Definition: rangecoder.c:68
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int chroma_h_shift
Definition: snow.h:152
static void correlate_slice_buffered(SnowContext *s, slice_buffer *sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y)
Definition: snowdec.c:248
static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer *sb, IDWTELEM *old_buffer, int plane_index, int add, int mb_y)
Definition: snowdec.c:35
uint8_t block_state[128+32 *128]
Definition: snow.h:132
int qbias
Definition: snow.h:162
Libavcodec external API header.
int spatial_decomposition_count
Definition: snow.h:139
int DWTELEM
Definition: dirac_dwt.h:26
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:339
int debug
debug
Definition: avcodec.h:1611
int ff_slice_buffer_init(slice_buffer *buf, int line_count, int max_allocated_lines, int line_width, IDWTELEM *base_buffer)
Definition: snow_dwt.c:28
main external API structure.
Definition: avcodec.h:526
int8_t hcoeff[HTAPS_MAX/2]
Definition: snow.h:105
#define QROOT
Definition: snow.h:44
int ff_snow_alloc_blocks(SnowContext *s)
Definition: snow.c:110
uint8_t * data
Definition: frame.h:216
uint8_t * ibuf
Definition: diracdec.c:98
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2]...the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so...,+,-,+,-,+,+,-,+,-,+,...hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32-hcoeff[1]-hcoeff[2]-...a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2}an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||.........intra?||||:Block01:yes no||||:Block02:.................||||:Block03::y DC::ref index:||||:Block04::cb DC::motion x:||||.........:cr DC::motion y:||||.................|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------------------------------|||Y subbands||Cb subbands||Cr subbands||||------||------||------|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||------||------||------||||------||------||------|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||------||------||------||||------||------||------|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||------||------||------||||------||------||------|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------------------------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction------------|\Dequantization-------------------\||Reference frames|\IDWT|--------------|Motion\|||Frame 0||Frame 1||Compensation.OBMC v-------|--------------|--------------.\------> Frame n output Frame Frame<----------------------------------/|...|-------------------Range Coder:============Binary Range Coder:-------------------The implemented range coder is an adapted version based upon"Range encoding: an algorithm for removing redundancy from a digitised message."by G.N.N.Martin.The symbols encoded by the Snow range coder are bits(0|1).The associated probabilities are not fix but change depending on the symbol mix seen so far.bit seen|new state---------+-----------------------------------------------0|256-state_transition_table[256-old_state];1|state_transition_table[old_state];state_transition_table={0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:-------------------------FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1.the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:206
static void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer *sb, int start_y, int h, int save_state[1])
Definition: snowdec.c:117
struct SubBand * parent
Definition: diracdec.c:99
AVCodec ff_snow_decoder
Definition: snowdec.c:651
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, int size)
Add a new side data to a frame.
Definition: frame.c:739
int index
Definition: gxfenc.c:89
av_cold void ff_init_range_decoder(RangeCoder *c, const uint8_t *buf, int buf_size)
Definition: rangecoder.c:53
int nb_planes
Definition: snow.h:169
#define mid_pred
Definition: mathops.h:97
int buf_y_offset
Definition: snow.h:92
int32_t motion_y
Definition: motion_vector.h:53
uint8_t header_state[32]
Definition: snow.h:131
static void decode_qlogs(SnowContext *s)
Definition: snowdec.c:278
int spatial_scalability
Definition: snow.h:154
int ff_snow_common_init(AVCodecContext *avctx)
static int decode_header(SnowContext *s)
Definition: snowdec.c:302
uint16_t coeff
Definition: snow.h:80
int spatial_decomposition_type
Definition: snow.h:136
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:322
AVFrame * current_picture
Definition: snow.h:126
uint8_t level
Definition: svq3.c:205
uint16_t motion_scale
Definition: motion_vector.h:54
#define MAX_DECOMPOSITIONS
Definition: dirac_dwt.h:30
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:104
int
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
Y , 8bpp.
Definition: pixfmt.h:74
The official guide to swscale for confused that consecutive non overlapping rectangles of slice_bottom special converter These generally are unscaled converters of common like for each output line the vertical scaler pulls lines from a ring buffer When the ring buffer does not contain the wanted line
Definition: swscale.txt:33
uint64_t flags
Extra flag information.
Definition: motion_vector.h:47
#define MID_STATE
Definition: snow.h:40
int temporal_decomposition_type
Definition: snow.h:138
#define QBIAS_SHIFT
Definition: snow.h:164
common internal api header.
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
IDWTELEM ** line
For use by idwt and predict_slices.
Definition: snow_dwt.h:45
IDWTELEM * temp_idwt_buffer
Definition: snow.h:149
#define slice_buffer_get_line(slice_buf, line_num)
Definition: snow_dwt.h:89
DWTELEM * spatial_dwt_buffer
Definition: snow.h:146
IDWTELEM * spatial_idwt_buffer
Definition: snow.h:148
uint8_t * bytestream_start
Definition: rangecoder.h:42
static void dequantize_slice_buffered(SnowContext *s, slice_buffer *sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y)
Definition: snowdec.c:225
void * priv_data
Definition: avcodec.h:553
int buf_x_offset
Definition: snow.h:91
int colorspace_type
Definition: snow.h:151
int height
Definition: cfhd.h:116
slice_buffer sb
Definition: snow.h:175
int fast_mc
Definition: snow.h:107
int width
Definition: cfhd.h:120
av_cold void ff_snow_common_end(SnowContext *s)
Definition: snow.c:691
static float add(float src0, float src1)
RangeCoder c
Definition: snow.h:117
uint8_t ff_qexp[QROOT]
Definition: snowdata.h:128
static int decode_blocks(SnowContext *s)
Definition: snowdec.c:425
#define av_freep(p)
#define MAX_REF_FRAMES
Definition: snow.h:47
void ff_slice_buffer_release(slice_buffer *buf, int line)
Definition: snow_dwt.c:78
#define av_always_inline
Definition: attributes.h:45
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
Definition: asfcrypt.c:35
#define av_malloc_array(a, b)
uint8_t type
Bitfield of BLOCK_*.
Definition: snow.h:56
Used to minimize the amount of memory used in order to optimize cache performance.
Definition: snow_dwt.h:44
int height
Definition: cfhd.h:121
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:216
int temporal_decomposition_count
Definition: snow.h:141
This structure stores compressed data.
Definition: packet.h:340
static int decode_q_branch(SnowContext *s, int level, int x, int y)
Definition: snowdec.c:158
#define GET_S(dst, check)
Definition: snowdec.c:294
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:50
int i
Definition: input.c:407
Predicted.
Definition: avutil.h:275
Definition: cfhd.h:119
int stride_line
Stride measured in lines, not pixels.
Definition: snow.h:93
static uint8_t tmp[11]
Definition: aes_ctr.c:26