FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/display.h"
30 #include "libavutil/imgutils.h"
31 #include "libavutil/stereo3d.h"
32 #include "libavutil/timer.h"
33 #include "internal.h"
34 #include "cabac.h"
35 #include "cabac_functions.h"
36 #include "error_resilience.h"
37 #include "avcodec.h"
38 #include "h264.h"
39 #include "h264dec.h"
40 #include "h264data.h"
41 #include "h264chroma.h"
42 #include "h264_mvpred.h"
43 #include "h264_ps.h"
44 #include "golomb.h"
45 #include "mathops.h"
46 #include "mpegutils.h"
47 #include "mpegvideo.h"
48 #include "rectangle.h"
49 #include "thread.h"
50 
51 static const uint8_t field_scan[16+1] = {
52  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
53  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
54  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
55  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
56 };
57 
58 static const uint8_t field_scan8x8[64+1] = {
59  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
60  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
61  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
62  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
63  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
64  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
65  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
66  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
67  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
68  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
69  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
70  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
71  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
72  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
73  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
74  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
75 };
76 
77 static const uint8_t field_scan8x8_cavlc[64+1] = {
78  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
79  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
80  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
81  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
82  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
83  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
84  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
85  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
86  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
87  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
88  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
89  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
90  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
91  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
92  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
93  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
94 };
95 
96 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
97 static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
98  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
99  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
100  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
101  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
102  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
103  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
104  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
105  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
106  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
107  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
108  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
109  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
110  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
111  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
112  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
113  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
114 };
115 
116 static void release_unused_pictures(H264Context *h, int remove_current)
117 {
118  int i;
119 
120  /* release non reference frames */
121  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
122  if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
123  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
124  ff_h264_unref_picture(h, &h->DPB[i]);
125  }
126  }
127 }
128 
129 static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
130 {
131  const H264Context *h = sl->h264;
132  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
133 
134  av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
135  // edge emu needs blocksize + filter length - 1
136  // (= 21x21 for H.264)
137  av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
138 
140  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
142  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
143 
144  if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
145  !sl->top_borders[0] || !sl->top_borders[1]) {
148  av_freep(&sl->top_borders[0]);
149  av_freep(&sl->top_borders[1]);
150 
153  sl->top_borders_allocated[0] = 0;
154  sl->top_borders_allocated[1] = 0;
155  return AVERROR(ENOMEM);
156  }
157 
158  return 0;
159 }
160 
162 {
163  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
164  const int mb_array_size = h->mb_stride * h->mb_height;
165  const int b4_stride = h->mb_width * 4 + 1;
166  const int b4_array_size = b4_stride * h->mb_height * 4;
167 
168  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
170  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
171  sizeof(uint32_t), av_buffer_allocz);
172  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
173  sizeof(int16_t), av_buffer_allocz);
174  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
175 
176  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
177  !h->ref_index_pool) {
182  return AVERROR(ENOMEM);
183  }
184 
185  return 0;
186 }
187 
189 {
190  int i, ret = 0;
191 
192  av_assert0(!pic->f->data[0]);
193 
194  pic->tf.f = pic->f;
195  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
197  if (ret < 0)
198  goto fail;
199 
200  if (h->avctx->hwaccel) {
201  const AVHWAccel *hwaccel = h->avctx->hwaccel;
203  if (hwaccel->frame_priv_data_size) {
205  if (!pic->hwaccel_priv_buf)
206  return AVERROR(ENOMEM);
208  }
209  }
210  if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) {
211  int h_chroma_shift, v_chroma_shift;
213  &h_chroma_shift, &v_chroma_shift);
214 
215  for(i=0; i<AV_CEIL_RSHIFT(pic->f->height, v_chroma_shift); i++) {
216  memset(pic->f->data[1] + pic->f->linesize[1]*i,
217  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
218  memset(pic->f->data[2] + pic->f->linesize[2]*i,
219  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
220  }
221  }
222 
223  if (!h->qscale_table_pool) {
224  ret = init_table_pools(h);
225  if (ret < 0)
226  goto fail;
227  }
228 
231  if (!pic->qscale_table_buf || !pic->mb_type_buf)
232  goto fail;
233 
234  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
235  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
236 
237  for (i = 0; i < 2; i++) {
240  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
241  goto fail;
242 
243  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
244  pic->ref_index[i] = pic->ref_index_buf[i]->data;
245  }
246 
247  return 0;
248 fail:
249  ff_h264_unref_picture(h, pic);
250  return (ret < 0) ? ret : AVERROR(ENOMEM);
251 }
252 
254 {
255  int i;
256 
257  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
258  if (!h->DPB[i].f->buf[0])
259  return i;
260  }
261  return AVERROR_INVALIDDATA;
262 }
263 
264 
265 #define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size))))
266 
267 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
268  (((pic) && (pic) >= (old_ctx)->DPB && \
269  (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
270  &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
271 
273  H264Context *new_base,
274  H264Context *old_base)
275 {
276  int i;
277 
278  for (i = 0; i < count; i++) {
279  av_assert1(!from[i] ||
280  IN_RANGE(from[i], old_base, 1) ||
281  IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT));
282  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
283  }
284 }
285 
287 
289  const AVCodecContext *src)
290 {
291  H264Context *h = dst->priv_data, *h1 = src->priv_data;
292  int inited = h->context_initialized, err = 0;
293  int need_reinit = 0;
294  int i, ret;
295 
296  if (dst == src)
297  return 0;
298 
299  // We can't fail if SPS isn't set at it breaks current skip_frame code
300  //if (!h1->ps.sps)
301  // return AVERROR_INVALIDDATA;
302 
303  if (inited &&
304  (h->width != h1->width ||
305  h->height != h1->height ||
306  h->mb_width != h1->mb_width ||
307  h->mb_height != h1->mb_height ||
308  !h->ps.sps ||
309  h->ps.sps->bit_depth_luma != h1->ps.sps->bit_depth_luma ||
310  h->ps.sps->chroma_format_idc != h1->ps.sps->chroma_format_idc ||
311  h->ps.sps->colorspace != h1->ps.sps->colorspace)) {
312  need_reinit = 1;
313  }
314 
315  /* copy block_offset since frame_start may not be called */
316  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
317 
318  // SPS/PPS
319  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.sps_list); i++) {
320  av_buffer_unref(&h->ps.sps_list[i]);
321  if (h1->ps.sps_list[i]) {
322  h->ps.sps_list[i] = av_buffer_ref(h1->ps.sps_list[i]);
323  if (!h->ps.sps_list[i])
324  return AVERROR(ENOMEM);
325  }
326  }
327  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.pps_list); i++) {
328  av_buffer_unref(&h->ps.pps_list[i]);
329  if (h1->ps.pps_list[i]) {
330  h->ps.pps_list[i] = av_buffer_ref(h1->ps.pps_list[i]);
331  if (!h->ps.pps_list[i])
332  return AVERROR(ENOMEM);
333  }
334  }
335 
338  h->ps.pps = NULL;
339  h->ps.sps = NULL;
340  if (h1->ps.pps_ref) {
341  h->ps.pps_ref = av_buffer_ref(h1->ps.pps_ref);
342  if (!h->ps.pps_ref)
343  return AVERROR(ENOMEM);
344  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
345  }
346  if (h1->ps.sps_ref) {
347  h->ps.sps_ref = av_buffer_ref(h1->ps.sps_ref);
348  if (!h->ps.sps_ref)
349  return AVERROR(ENOMEM);
350  h->ps.sps = (const SPS*)h->ps.sps_ref->data;
351  }
352 
353  if (need_reinit || !inited) {
354  h->width = h1->width;
355  h->height = h1->height;
356  h->mb_height = h1->mb_height;
357  h->mb_width = h1->mb_width;
358  h->mb_num = h1->mb_num;
359  h->mb_stride = h1->mb_stride;
360  h->b_stride = h1->b_stride;
361 
362  if (h->context_initialized || h1->context_initialized) {
363  if ((err = h264_slice_header_init(h)) < 0) {
364  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
365  return err;
366  }
367  }
368 
369  /* copy block_offset since frame_start may not be called */
370  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
371  }
372 
373  h->avctx->coded_height = h1->avctx->coded_height;
374  h->avctx->coded_width = h1->avctx->coded_width;
375  h->avctx->width = h1->avctx->width;
376  h->avctx->height = h1->avctx->height;
377  h->width_from_caller = h1->width_from_caller;
378  h->height_from_caller = h1->height_from_caller;
379  h->coded_picture_number = h1->coded_picture_number;
380  h->first_field = h1->first_field;
381  h->picture_structure = h1->picture_structure;
382  h->mb_aff_frame = h1->mb_aff_frame;
383  h->droppable = h1->droppable;
384 
385  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
386  ff_h264_unref_picture(h, &h->DPB[i]);
387  if (h1->DPB[i].f->buf[0] &&
388  (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
389  return ret;
390  }
391 
392  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
394  if (h1->cur_pic.f->buf[0]) {
395  ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
396  if (ret < 0)
397  return ret;
398  }
399 
400  h->enable_er = h1->enable_er;
401  h->workaround_bugs = h1->workaround_bugs;
402  h->x264_build = h1->x264_build;
403  h->droppable = h1->droppable;
404 
405  // extradata/NAL handling
406  h->is_avc = h1->is_avc;
407  h->nal_length_size = h1->nal_length_size;
408 
409  memcpy(&h->poc, &h1->poc, sizeof(h->poc));
410 
411  memcpy(h->short_ref, h1->short_ref, sizeof(h->short_ref));
412  memcpy(h->long_ref, h1->long_ref, sizeof(h->long_ref));
413  memcpy(h->delayed_pic, h1->delayed_pic, sizeof(h->delayed_pic));
414  memcpy(h->last_pocs, h1->last_pocs, sizeof(h->last_pocs));
415 
416  h->next_output_pic = h1->next_output_pic;
417  h->next_outputed_poc = h1->next_outputed_poc;
418 
419  memcpy(h->mmco, h1->mmco, sizeof(h->mmco));
420  h->nb_mmco = h1->nb_mmco;
421  h->mmco_reset = h1->mmco_reset;
422  h->explicit_ref_marking = h1->explicit_ref_marking;
423  h->long_ref_count = h1->long_ref_count;
424  h->short_ref_count = h1->short_ref_count;
425 
426  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
427  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
428  copy_picture_range(h->delayed_pic, h1->delayed_pic,
429  MAX_DELAYED_PIC_COUNT + 2, h, h1);
430 
431  h->frame_recovered = h1->frame_recovered;
432 
433  if (!h->cur_pic_ptr)
434  return 0;
435 
436  if (!h->droppable) {
438  h->poc.prev_poc_msb = h->poc.poc_msb;
439  h->poc.prev_poc_lsb = h->poc.poc_lsb;
440  }
443 
444  h->recovery_frame = h1->recovery_frame;
445 
446  return err;
447 }
448 
450 {
451  H264Picture *pic;
452  int i, ret;
453  const int pixel_shift = h->pixel_shift;
454  int c[4] = {
455  1<<(h->ps.sps->bit_depth_luma-1),
456  1<<(h->ps.sps->bit_depth_chroma-1),
457  1<<(h->ps.sps->bit_depth_chroma-1),
458  -1
459  };
460 
461  if (!ff_thread_can_start_frame(h->avctx)) {
462  av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
463  return -1;
464  }
465 
467  h->cur_pic_ptr = NULL;
468 
469  i = find_unused_picture(h);
470  if (i < 0) {
471  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
472  return i;
473  }
474  pic = &h->DPB[i];
475 
476  pic->reference = h->droppable ? 0 : h->picture_structure;
479  pic->frame_num = h->poc.frame_num;
480  /*
481  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
482  * in later.
483  * See decode_nal_units().
484  */
485  pic->f->key_frame = 0;
486  pic->mmco_reset = 0;
487  pic->recovered = 0;
488  pic->invalid_gap = 0;
490 
491  pic->f->pict_type = h->slice_ctx[0].slice_type;
492 
493  pic->f->crop_left = h->crop_left;
494  pic->f->crop_right = h->crop_right;
495  pic->f->crop_top = h->crop_top;
496  pic->f->crop_bottom = h->crop_bottom;
497 
498  if ((ret = alloc_picture(h, pic)) < 0)
499  return ret;
500  if(!h->frame_recovered && !h->avctx->hwaccel)
501  ff_color_frame(pic->f, c);
502 
503  h->cur_pic_ptr = pic;
505  if (CONFIG_ERROR_RESILIENCE) {
507  }
508 
509  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
510  return ret;
511 
512  for (i = 0; i < h->nb_slice_ctx; i++) {
513  h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
514  h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
515  }
516 
517  if (CONFIG_ERROR_RESILIENCE && h->enable_er) {
521  }
522 
523  for (i = 0; i < 16; i++) {
524  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
525  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
526  }
527  for (i = 0; i < 16; i++) {
528  h->block_offset[16 + i] =
529  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
530  h->block_offset[48 + 16 + i] =
531  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
532  }
533 
534  /* We mark the current picture as non-reference after allocating it, so
535  * that if we break out due to an error it can be released automatically
536  * in the next ff_mpv_frame_start().
537  */
538  h->cur_pic_ptr->reference = 0;
539 
540  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
541 
542  h->next_output_pic = NULL;
543 
544  h->postpone_filter = 0;
545 
547 
548  if (h->sei.unregistered.x264_build >= 0)
550 
551  assert(h->cur_pic_ptr->long_ref == 0);
552 
553  return 0;
554 }
555 
557  uint8_t *src_y,
558  uint8_t *src_cb, uint8_t *src_cr,
559  int linesize, int uvlinesize,
560  int simple)
561 {
562  uint8_t *top_border;
563  int top_idx = 1;
564  const int pixel_shift = h->pixel_shift;
565  int chroma444 = CHROMA444(h);
566  int chroma422 = CHROMA422(h);
567 
568  src_y -= linesize;
569  src_cb -= uvlinesize;
570  src_cr -= uvlinesize;
571 
572  if (!simple && FRAME_MBAFF(h)) {
573  if (sl->mb_y & 1) {
574  if (!MB_MBAFF(sl)) {
575  top_border = sl->top_borders[0][sl->mb_x];
576  AV_COPY128(top_border, src_y + 15 * linesize);
577  if (pixel_shift)
578  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
579  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
580  if (chroma444) {
581  if (pixel_shift) {
582  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
583  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
584  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
585  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
586  } else {
587  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
588  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
589  }
590  } else if (chroma422) {
591  if (pixel_shift) {
592  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
593  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
594  } else {
595  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
596  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
597  }
598  } else {
599  if (pixel_shift) {
600  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
601  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
602  } else {
603  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
604  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
605  }
606  }
607  }
608  }
609  } else if (MB_MBAFF(sl)) {
610  top_idx = 0;
611  } else
612  return;
613  }
614 
615  top_border = sl->top_borders[top_idx][sl->mb_x];
616  /* There are two lines saved, the line above the top macroblock
617  * of a pair, and the line above the bottom macroblock. */
618  AV_COPY128(top_border, src_y + 16 * linesize);
619  if (pixel_shift)
620  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
621 
622  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
623  if (chroma444) {
624  if (pixel_shift) {
625  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
626  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
627  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
628  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
629  } else {
630  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
631  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
632  }
633  } else if (chroma422) {
634  if (pixel_shift) {
635  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
636  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
637  } else {
638  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
639  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
640  }
641  } else {
642  if (pixel_shift) {
643  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
644  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
645  } else {
646  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
647  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
648  }
649  }
650  }
651 }
652 
653 /**
654  * Initialize implicit_weight table.
655  * @param field 0/1 initialize the weight for interlaced MBAFF
656  * -1 initializes the rest
657  */
658 static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
659 {
660  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
661 
662  for (i = 0; i < 2; i++) {
663  sl->pwt.luma_weight_flag[i] = 0;
664  sl->pwt.chroma_weight_flag[i] = 0;
665  }
666 
667  if (field < 0) {
668  if (h->picture_structure == PICT_FRAME) {
669  cur_poc = h->cur_pic_ptr->poc;
670  } else {
671  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
672  }
673  if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
674  sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2 * cur_poc) {
675  sl->pwt.use_weight = 0;
676  sl->pwt.use_weight_chroma = 0;
677  return;
678  }
679  ref_start = 0;
680  ref_count0 = sl->ref_count[0];
681  ref_count1 = sl->ref_count[1];
682  } else {
683  cur_poc = h->cur_pic_ptr->field_poc[field];
684  ref_start = 16;
685  ref_count0 = 16 + 2 * sl->ref_count[0];
686  ref_count1 = 16 + 2 * sl->ref_count[1];
687  }
688 
689  sl->pwt.use_weight = 2;
690  sl->pwt.use_weight_chroma = 2;
691  sl->pwt.luma_log2_weight_denom = 5;
693 
694  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
695  int64_t poc0 = sl->ref_list[0][ref0].poc;
696  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
697  int w = 32;
698  if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
699  int poc1 = sl->ref_list[1][ref1].poc;
700  int td = av_clip_int8(poc1 - poc0);
701  if (td) {
702  int tb = av_clip_int8(cur_poc - poc0);
703  int tx = (16384 + (FFABS(td) >> 1)) / td;
704  int dist_scale_factor = (tb * tx + 32) >> 8;
705  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
706  w = 64 - dist_scale_factor;
707  }
708  }
709  if (field < 0) {
710  sl->pwt.implicit_weight[ref0][ref1][0] =
711  sl->pwt.implicit_weight[ref0][ref1][1] = w;
712  } else {
713  sl->pwt.implicit_weight[ref0][ref1][field] = w;
714  }
715  }
716  }
717 }
718 
719 /**
720  * initialize scan tables
721  */
723 {
724  int i;
725  for (i = 0; i < 16; i++) {
726 #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
728  h->field_scan[i] = TRANSPOSE(field_scan[i]);
729 #undef TRANSPOSE
730  }
731  for (i = 0; i < 64; i++) {
732 #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
737 #undef TRANSPOSE
738  }
739  if (h->ps.sps->transform_bypass) { // FIXME same ugly
740  memcpy(h->zigzag_scan_q0 , ff_zigzag_scan , sizeof(h->zigzag_scan_q0 ));
741  memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
743  memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
744  memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
746  } else {
747  memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
748  memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
750  memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
751  memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
753  }
754 }
755 
756 static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
757 {
758 #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
759  (CONFIG_H264_D3D11VA_HWACCEL * 2) + \
760  CONFIG_H264_NVDEC_HWACCEL + \
761  CONFIG_H264_VAAPI_HWACCEL + \
762  CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \
763  CONFIG_H264_VDPAU_HWACCEL)
765  const enum AVPixelFormat *choices = pix_fmts;
766  int i;
767 
768  switch (h->ps.sps->bit_depth_luma) {
769  case 9:
770  if (CHROMA444(h)) {
771  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
772  *fmt++ = AV_PIX_FMT_GBRP9;
773  } else
774  *fmt++ = AV_PIX_FMT_YUV444P9;
775  } else if (CHROMA422(h))
776  *fmt++ = AV_PIX_FMT_YUV422P9;
777  else
778  *fmt++ = AV_PIX_FMT_YUV420P9;
779  break;
780  case 10:
781  if (CHROMA444(h)) {
782  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
783  *fmt++ = AV_PIX_FMT_GBRP10;
784  } else
785  *fmt++ = AV_PIX_FMT_YUV444P10;
786  } else if (CHROMA422(h))
787  *fmt++ = AV_PIX_FMT_YUV422P10;
788  else
789  *fmt++ = AV_PIX_FMT_YUV420P10;
790  break;
791  case 12:
792  if (CHROMA444(h)) {
793  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
794  *fmt++ = AV_PIX_FMT_GBRP12;
795  } else
796  *fmt++ = AV_PIX_FMT_YUV444P12;
797  } else if (CHROMA422(h))
798  *fmt++ = AV_PIX_FMT_YUV422P12;
799  else
800  *fmt++ = AV_PIX_FMT_YUV420P12;
801  break;
802  case 14:
803  if (CHROMA444(h)) {
804  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
805  *fmt++ = AV_PIX_FMT_GBRP14;
806  } else
807  *fmt++ = AV_PIX_FMT_YUV444P14;
808  } else if (CHROMA422(h))
809  *fmt++ = AV_PIX_FMT_YUV422P14;
810  else
811  *fmt++ = AV_PIX_FMT_YUV420P14;
812  break;
813  case 8:
814 #if CONFIG_H264_VDPAU_HWACCEL
815  *fmt++ = AV_PIX_FMT_VDPAU;
816 #endif
817 #if CONFIG_H264_NVDEC_HWACCEL
818  *fmt++ = AV_PIX_FMT_CUDA;
819 #endif
820  if (CHROMA444(h)) {
821  if (h->avctx->colorspace == AVCOL_SPC_RGB)
822  *fmt++ = AV_PIX_FMT_GBRP;
823  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
824  *fmt++ = AV_PIX_FMT_YUVJ444P;
825  else
826  *fmt++ = AV_PIX_FMT_YUV444P;
827  } else if (CHROMA422(h)) {
829  *fmt++ = AV_PIX_FMT_YUVJ422P;
830  else
831  *fmt++ = AV_PIX_FMT_YUV422P;
832  } else {
833 #if CONFIG_H264_DXVA2_HWACCEL
834  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
835 #endif
836 #if CONFIG_H264_D3D11VA_HWACCEL
837  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
838  *fmt++ = AV_PIX_FMT_D3D11;
839 #endif
840 #if CONFIG_H264_VAAPI_HWACCEL
841  *fmt++ = AV_PIX_FMT_VAAPI;
842 #endif
843 #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
844  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
845 #endif
846  if (h->avctx->codec->pix_fmts)
847  choices = h->avctx->codec->pix_fmts;
848  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
849  *fmt++ = AV_PIX_FMT_YUVJ420P;
850  else
851  *fmt++ = AV_PIX_FMT_YUV420P;
852  }
853  break;
854  default:
856  "Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma);
857  return AVERROR_INVALIDDATA;
858  }
859 
860  *fmt = AV_PIX_FMT_NONE;
861 
862  for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
863  if (choices[i] == h->avctx->pix_fmt && !force_callback)
864  return choices[i];
865  return ff_thread_get_format(h->avctx, choices);
866 }
867 
868 /* export coded and cropped frame dimensions to AVCodecContext */
870 {
871  const SPS *sps = (const SPS*)h->ps.sps;
872  int cr = sps->crop_right;
873  int cl = sps->crop_left;
874  int ct = sps->crop_top;
875  int cb = sps->crop_bottom;
876  int width = h->width - (cr + cl);
877  int height = h->height - (ct + cb);
878  av_assert0(sps->crop_right + sps->crop_left < (unsigned)h->width);
879  av_assert0(sps->crop_top + sps->crop_bottom < (unsigned)h->height);
880 
881  /* handle container cropping */
882  if (h->width_from_caller > 0 && h->height_from_caller > 0 &&
883  !sps->crop_top && !sps->crop_left &&
884  FFALIGN(h->width_from_caller, 16) == FFALIGN(width, 16) &&
885  FFALIGN(h->height_from_caller, 16) == FFALIGN(height, 16) &&
886  h->width_from_caller <= width &&
887  h->height_from_caller <= height) {
889  height = h->height_from_caller;
890  cl = 0;
891  ct = 0;
892  cr = h->width - width;
893  cb = h->height - height;
894  } else {
895  h->width_from_caller = 0;
896  h->height_from_caller = 0;
897  }
898 
899  h->avctx->coded_width = h->width;
900  h->avctx->coded_height = h->height;
901  h->avctx->width = width;
902  h->avctx->height = height;
903  h->crop_right = cr;
904  h->crop_left = cl;
905  h->crop_top = ct;
906  h->crop_bottom = cb;
907 
908  return 0;
909 }
910 
912 {
913  const SPS *sps = h->ps.sps;
914  int i, ret;
915 
916  ff_set_sar(h->avctx, sps->sar);
918  &h->chroma_x_shift, &h->chroma_y_shift);
919 
920  if (sps->timing_info_present_flag) {
921  int64_t den = sps->time_scale;
922  if (h->x264_build < 44U)
923  den *= 2;
925  sps->num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
926  }
927 
929 
930  h->first_field = 0;
931  h->prev_interlaced_frame = 1;
932 
933  init_scan_tables(h);
934  ret = ff_h264_alloc_tables(h);
935  if (ret < 0) {
936  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
937  goto fail;
938  }
939 
940  if (sps->bit_depth_luma < 8 || sps->bit_depth_luma > 14 ||
941  sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13
942  ) {
943  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
944  sps->bit_depth_luma);
945  ret = AVERROR_INVALIDDATA;
946  goto fail;
947  }
948 
949  h->cur_bit_depth_luma =
952  h->pixel_shift = sps->bit_depth_luma > 8;
954  h->bit_depth_luma = sps->bit_depth_luma;
955 
957  sps->chroma_format_idc);
961  sps->chroma_format_idc);
963 
964  if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
965  ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
966  if (ret < 0) {
967  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
968  goto fail;
969  }
970  } else {
971  for (i = 0; i < h->nb_slice_ctx; i++) {
972  H264SliceContext *sl = &h->slice_ctx[i];
973 
974  sl->h264 = h;
975  sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
976  sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
977  sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
978 
979  if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
980  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
981  goto fail;
982  }
983  }
984  }
985 
986  h->context_initialized = 1;
987 
988  return 0;
989 fail:
991  h->context_initialized = 0;
992  return ret;
993 }
994 
996 {
997  switch (a) {
1001  default:
1002  return a;
1003  }
1004 }
1005 
1006 static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
1007 {
1008  const SPS *sps;
1009  int needs_reinit = 0, must_reinit, ret;
1010 
1011  if (first_slice) {
1012  av_buffer_unref(&h->ps.pps_ref);
1013  h->ps.pps = NULL;
1014  h->ps.pps_ref = av_buffer_ref(h->ps.pps_list[sl->pps_id]);
1015  if (!h->ps.pps_ref)
1016  return AVERROR(ENOMEM);
1017  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
1018  }
1019 
1020  if (h->ps.sps != (const SPS*)h->ps.sps_list[h->ps.pps->sps_id]->data) {
1021  av_buffer_unref(&h->ps.sps_ref);
1022  h->ps.sps = NULL;
1023  h->ps.sps_ref = av_buffer_ref(h->ps.sps_list[h->ps.pps->sps_id]);
1024  if (!h->ps.sps_ref)
1025  return AVERROR(ENOMEM);
1026  h->ps.sps = (const SPS*)h->ps.sps_ref->data;
1027 
1028  if (h->mb_width != h->ps.sps->mb_width ||
1029  h->mb_height != h->ps.sps->mb_height ||
1032  )
1033  needs_reinit = 1;
1034 
1035  if (h->bit_depth_luma != h->ps.sps->bit_depth_luma ||
1037  needs_reinit = 1;
1038  }
1039  sps = h->ps.sps;
1040 
1041  must_reinit = (h->context_initialized &&
1042  ( 16*sps->mb_width != h->avctx->coded_width
1043  || 16*sps->mb_height != h->avctx->coded_height
1044  || h->cur_bit_depth_luma != sps->bit_depth_luma
1046  || h->mb_width != sps->mb_width
1047  || h->mb_height != sps->mb_height
1048  ));
1049  if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
1051  must_reinit = 1;
1052 
1053  if (first_slice && av_cmp_q(sps->sar, h->avctx->sample_aspect_ratio))
1054  must_reinit = 1;
1055 
1056  if (!h->setup_finished) {
1057  h->avctx->profile = ff_h264_get_profile(sps);
1058  h->avctx->level = sps->level_idc;
1059  h->avctx->refs = sps->ref_frame_count;
1060 
1061  h->mb_width = sps->mb_width;
1062  h->mb_height = sps->mb_height;
1063  h->mb_num = h->mb_width * h->mb_height;
1064  h->mb_stride = h->mb_width + 1;
1065 
1066  h->b_stride = h->mb_width * 4;
1067 
1068  h->chroma_y_shift = sps->chroma_format_idc <= 1; // 400 uses yuv420p
1069 
1070  h->width = 16 * h->mb_width;
1071  h->height = 16 * h->mb_height;
1072 
1073  ret = init_dimensions(h);
1074  if (ret < 0)
1075  return ret;
1076 
1077  if (sps->video_signal_type_present_flag) {
1078  h->avctx->color_range = sps->full_range > 0 ? AVCOL_RANGE_JPEG
1079  : AVCOL_RANGE_MPEG;
1081  if (h->avctx->colorspace != sps->colorspace)
1082  needs_reinit = 1;
1084  h->avctx->color_trc = sps->color_trc;
1085  h->avctx->colorspace = sps->colorspace;
1086  }
1087  }
1088  }
1089 
1090  if (!h->context_initialized || must_reinit || needs_reinit) {
1091  int flush_changes = h->context_initialized;
1092  h->context_initialized = 0;
1093  if (sl != h->slice_ctx) {
1095  "changing width %d -> %d / height %d -> %d on "
1096  "slice %d\n",
1097  h->width, h->avctx->coded_width,
1098  h->height, h->avctx->coded_height,
1099  h->current_slice + 1);
1100  return AVERROR_INVALIDDATA;
1101  }
1102 
1103  av_assert1(first_slice);
1104 
1105  if (flush_changes)
1107 
1108  if ((ret = get_pixel_format(h, 1)) < 0)
1109  return ret;
1110  h->avctx->pix_fmt = ret;
1111 
1112  av_log(h->avctx, AV_LOG_VERBOSE, "Reinit context to %dx%d, "
1113  "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
1114 
1115  if ((ret = h264_slice_header_init(h)) < 0) {
1117  "h264_slice_header_init() failed\n");
1118  return ret;
1119  }
1120  }
1121 
1122  return 0;
1123 }
1124 
1126 {
1127  const SPS *sps = h->ps.sps;
1128  H264Picture *cur = h->cur_pic_ptr;
1129 
1130  cur->f->interlaced_frame = 0;
1131  cur->f->repeat_pict = 0;
1132 
1133  /* Signal interlacing information externally. */
1134  /* Prioritize picture timing SEI information over used
1135  * decoding process if it exists. */
1136 
1139  switch (pt->pic_struct) {
1141  break;
1144  cur->f->interlaced_frame = 1;
1145  break;
1148  if (FIELD_OR_MBAFF_PICTURE(h))
1149  cur->f->interlaced_frame = 1;
1150  else
1151  // try to flag soft telecine progressive
1153  break;
1156  /* Signal the possibility of telecined film externally
1157  * (pic_struct 5,6). From these hints, let the applications
1158  * decide if they apply deinterlacing. */
1159  cur->f->repeat_pict = 1;
1160  break;
1162  cur->f->repeat_pict = 2;
1163  break;
1165  cur->f->repeat_pict = 4;
1166  break;
1167  }
1168 
1169  if ((pt->ct_type & 3) &&
1171  cur->f->interlaced_frame = (pt->ct_type & (1 << 1)) != 0;
1172  } else {
1173  /* Derive interlacing flag from used decoding process. */
1175  }
1177 
1178  if (cur->field_poc[0] != cur->field_poc[1]) {
1179  /* Derive top_field_first from field pocs. */
1180  cur->f->top_field_first = cur->field_poc[0] < cur->field_poc[1];
1181  } else {
1183  /* Use picture timing SEI information. Even if it is a
1184  * information of a past frame, better than nothing. */
1187  cur->f->top_field_first = 1;
1188  else
1189  cur->f->top_field_first = 0;
1190  } else if (cur->f->interlaced_frame) {
1191  /* Default to top field first when pic_struct_present_flag
1192  * is not set but interlaced frame detected */
1193  cur->f->top_field_first = 1;
1194  } else {
1195  /* Most likely progressive */
1196  cur->f->top_field_first = 0;
1197  }
1198  }
1199 
1200  if (h->sei.frame_packing.present &&
1205  AVStereo3D *stereo = av_stereo3d_create_side_data(cur->f);
1206  if (stereo) {
1207  switch (fp->arrangement_type) {
1209  stereo->type = AV_STEREO3D_CHECKERBOARD;
1210  break;
1212  stereo->type = AV_STEREO3D_COLUMNS;
1213  break;
1215  stereo->type = AV_STEREO3D_LINES;
1216  break;
1218  if (fp->quincunx_sampling_flag)
1220  else
1221  stereo->type = AV_STEREO3D_SIDEBYSIDE;
1222  break;
1224  stereo->type = AV_STEREO3D_TOPBOTTOM;
1225  break;
1227  stereo->type = AV_STEREO3D_FRAMESEQUENCE;
1228  break;
1229  case H264_SEI_FPA_TYPE_2D:
1230  stereo->type = AV_STEREO3D_2D;
1231  break;
1232  }
1233 
1234  if (fp->content_interpretation_type == 2)
1235  stereo->flags = AV_STEREO3D_FLAG_INVERT;
1236 
1239  stereo->view = AV_STEREO3D_VIEW_LEFT;
1240  else
1241  stereo->view = AV_STEREO3D_VIEW_RIGHT;
1242  }
1243  }
1244  }
1245 
1246  if (h->sei.display_orientation.present &&
1251  double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16);
1252  AVFrameSideData *rotation = av_frame_new_side_data(cur->f,
1254  sizeof(int32_t) * 9);
1255  if (rotation) {
1256  av_display_rotation_set((int32_t *)rotation->data, angle);
1257  av_display_matrix_flip((int32_t *)rotation->data,
1258  o->hflip, o->vflip);
1259  }
1260  }
1261 
1262  if (h->sei.afd.present) {
1264  sizeof(uint8_t));
1265 
1266  if (sd) {
1268  h->sei.afd.present = 0;
1269  }
1270  }
1271 
1272  if (h->sei.a53_caption.a53_caption) {
1273  H264SEIA53Caption *a53 = &h->sei.a53_caption;
1276  a53->a53_caption_size);
1277  if (sd)
1278  memcpy(sd->data, a53->a53_caption, a53->a53_caption_size);
1279  av_freep(&a53->a53_caption);
1280  a53->a53_caption_size = 0;
1282  }
1283 
1284  if (h->sei.alternative_transfer.present &&
1288  }
1289 
1290  return 0;
1291 }
1292 
1294 {
1295  const SPS *sps = h->ps.sps;
1296  H264Picture *out = h->cur_pic_ptr;
1297  H264Picture *cur = h->cur_pic_ptr;
1298  int i, pics, out_of_order, out_idx;
1299 
1300  cur->mmco_reset = h->mmco_reset;
1301  h->mmco_reset = 0;
1302 
1303  if (sps->bitstream_restriction_flag ||
1306  }
1307 
1308  for (i = 0; 1; i++) {
1309  if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
1310  if(i)
1311  h->last_pocs[i-1] = cur->poc;
1312  break;
1313  } else if(i) {
1314  h->last_pocs[i-1]= h->last_pocs[i];
1315  }
1316  }
1317  out_of_order = MAX_DELAYED_PIC_COUNT - i;
1318  if( cur->f->pict_type == AV_PICTURE_TYPE_B
1320  out_of_order = FFMAX(out_of_order, 1);
1321  if (out_of_order == MAX_DELAYED_PIC_COUNT) {
1322  av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
1323  for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
1324  h->last_pocs[i] = INT_MIN;
1325  h->last_pocs[0] = cur->poc;
1326  cur->mmco_reset = 1;
1327  } else if(h->avctx->has_b_frames < out_of_order && !sps->bitstream_restriction_flag){
1328  int loglevel = h->avctx->frame_number > 1 ? AV_LOG_WARNING : AV_LOG_VERBOSE;
1329  av_log(h->avctx, loglevel, "Increasing reorder buffer to %d\n", out_of_order);
1330  h->avctx->has_b_frames = out_of_order;
1331  }
1332 
1333  pics = 0;
1334  while (h->delayed_pic[pics])
1335  pics++;
1336 
1338 
1339  h->delayed_pic[pics++] = cur;
1340  if (cur->reference == 0)
1341  cur->reference = DELAYED_PIC_REF;
1342 
1343  out = h->delayed_pic[0];
1344  out_idx = 0;
1345  for (i = 1; h->delayed_pic[i] &&
1346  !h->delayed_pic[i]->f->key_frame &&
1347  !h->delayed_pic[i]->mmco_reset;
1348  i++)
1349  if (h->delayed_pic[i]->poc < out->poc) {
1350  out = h->delayed_pic[i];
1351  out_idx = i;
1352  }
1353  if (h->avctx->has_b_frames == 0 &&
1354  (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset))
1355  h->next_outputed_poc = INT_MIN;
1356  out_of_order = out->poc < h->next_outputed_poc;
1357 
1358  if (out_of_order || pics > h->avctx->has_b_frames) {
1359  out->reference &= ~DELAYED_PIC_REF;
1360  for (i = out_idx; h->delayed_pic[i]; i++)
1361  h->delayed_pic[i] = h->delayed_pic[i + 1];
1362  }
1363  if (!out_of_order && pics > h->avctx->has_b_frames) {
1364  h->next_output_pic = out;
1365  if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) {
1366  h->next_outputed_poc = INT_MIN;
1367  } else
1368  h->next_outputed_poc = out->poc;
1369 
1370  if (out->recovered) {
1371  // We have reached an recovery point and all frames after it in
1372  // display order are "recovered".
1374  }
1376 
1377  if (!out->recovered) {
1378  if (!(h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) &&
1380  h->next_output_pic = NULL;
1381  } else {
1382  out->f->flags |= AV_FRAME_FLAG_CORRUPT;
1383  }
1384  }
1385  } else {
1386  av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
1387  }
1388 
1389  return 0;
1390 }
1391 
1392 /* This function is called right after decoding the slice header for a first
1393  * slice in a field (or a frame). It decides whether we are decoding a new frame
1394  * or a second field in a pair and does the necessary setup.
1395  */
1397  const H2645NAL *nal, int first_slice)
1398 {
1399  int i;
1400  const SPS *sps;
1401 
1402  int last_pic_structure, last_pic_droppable, ret;
1403 
1404  ret = h264_init_ps(h, sl, first_slice);
1405  if (ret < 0)
1406  return ret;
1407 
1408  sps = h->ps.sps;
1409 
1410  last_pic_droppable = h->droppable;
1411  last_pic_structure = h->picture_structure;
1412  h->droppable = (nal->ref_idc == 0);
1414 
1415  h->poc.frame_num = sl->frame_num;
1416  h->poc.poc_lsb = sl->poc_lsb;
1418  h->poc.delta_poc[0] = sl->delta_poc[0];
1419  h->poc.delta_poc[1] = sl->delta_poc[1];
1420 
1421  /* Shorten frame num gaps so we don't have to allocate reference
1422  * frames just to throw them away */
1423  if (h->poc.frame_num != h->poc.prev_frame_num) {
1424  int unwrap_prev_frame_num = h->poc.prev_frame_num;
1425  int max_frame_num = 1 << sps->log2_max_frame_num;
1426 
1427  if (unwrap_prev_frame_num > h->poc.frame_num)
1428  unwrap_prev_frame_num -= max_frame_num;
1429 
1430  if ((h->poc.frame_num - unwrap_prev_frame_num) > sps->ref_frame_count) {
1431  unwrap_prev_frame_num = (h->poc.frame_num - sps->ref_frame_count) - 1;
1432  if (unwrap_prev_frame_num < 0)
1433  unwrap_prev_frame_num += max_frame_num;
1434 
1435  h->poc.prev_frame_num = unwrap_prev_frame_num;
1436  }
1437  }
1438 
1439  /* See if we have a decoded first field looking for a pair...
1440  * Here, we're using that to see if we should mark previously
1441  * decode frames as "finished".
1442  * We have to do that before the "dummy" in-between frame allocation,
1443  * since that can modify h->cur_pic_ptr. */
1444  if (h->first_field) {
1445  int last_field = last_pic_structure == PICT_BOTTOM_FIELD;
1446  av_assert0(h->cur_pic_ptr);
1447  av_assert0(h->cur_pic_ptr->f->buf[0]);
1448  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1449 
1450  /* Mark old field/frame as completed */
1451  if (h->cur_pic_ptr->tf.owner[last_field] == h->avctx) {
1452  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_field);
1453  }
1454 
1455  /* figure out if we have a complementary field pair */
1456  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1457  /* Previous field is unmatched. Don't display it, but let it
1458  * remain for reference if marked as such. */
1459  if (last_pic_structure != PICT_FRAME) {
1461  last_pic_structure == PICT_TOP_FIELD);
1462  }
1463  } else {
1464  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1465  /* This and previous field were reference, but had
1466  * different frame_nums. Consider this field first in
1467  * pair. Throw away previous field except for reference
1468  * purposes. */
1469  if (last_pic_structure != PICT_FRAME) {
1471  last_pic_structure == PICT_TOP_FIELD);
1472  }
1473  } else {
1474  /* Second field in complementary pair */
1475  if (!((last_pic_structure == PICT_TOP_FIELD &&
1477  (last_pic_structure == PICT_BOTTOM_FIELD &&
1480  "Invalid field mode combination %d/%d\n",
1481  last_pic_structure, h->picture_structure);
1482  h->picture_structure = last_pic_structure;
1483  h->droppable = last_pic_droppable;
1484  return AVERROR_INVALIDDATA;
1485  } else if (last_pic_droppable != h->droppable) {
1487  "Found reference and non-reference fields in the same frame, which");
1488  h->picture_structure = last_pic_structure;
1489  h->droppable = last_pic_droppable;
1490  return AVERROR_PATCHWELCOME;
1491  }
1492  }
1493  }
1494  }
1495 
1496  while (h->poc.frame_num != h->poc.prev_frame_num && !h->first_field &&
1497  h->poc.frame_num != (h->poc.prev_frame_num + 1) % (1 << sps->log2_max_frame_num)) {
1498  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1499  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1500  h->poc.frame_num, h->poc.prev_frame_num);
1502  for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
1503  h->last_pocs[i] = INT_MIN;
1504  ret = h264_frame_start(h);
1505  if (ret < 0) {
1506  h->first_field = 0;
1507  return ret;
1508  }
1509 
1510  h->poc.prev_frame_num++;
1511  h->poc.prev_frame_num %= 1 << sps->log2_max_frame_num;
1514  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1515  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1516 
1517  h->explicit_ref_marking = 0;
1519  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1520  return ret;
1521  /* Error concealment: If a ref is missing, copy the previous ref
1522  * in its place.
1523  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1524  * many assumptions about there being no actual duplicates.
1525  * FIXME: This does not copy padding for out-of-frame motion
1526  * vectors. Given we are concealing a lost frame, this probably
1527  * is not noticeable by comparison, but it should be fixed. */
1528  if (h->short_ref_count) {
1529  if (prev &&
1530  h->short_ref[0]->f->width == prev->f->width &&
1531  h->short_ref[0]->f->height == prev->f->height &&
1532  h->short_ref[0]->f->format == prev->f->format) {
1533  ff_thread_await_progress(&prev->tf, INT_MAX, 0);
1534  if (prev->field_picture)
1535  ff_thread_await_progress(&prev->tf, INT_MAX, 1);
1536  av_image_copy(h->short_ref[0]->f->data,
1537  h->short_ref[0]->f->linesize,
1538  (const uint8_t **)prev->f->data,
1539  prev->f->linesize,
1540  prev->f->format,
1541  prev->f->width,
1542  prev->f->height);
1543  h->short_ref[0]->poc = prev->poc + 2;
1544  }
1545  h->short_ref[0]->frame_num = h->poc.prev_frame_num;
1546  }
1547  }
1548 
1549  /* See if we have a decoded first field looking for a pair...
1550  * We're using that to see whether to continue decoding in that
1551  * frame, or to allocate a new one. */
1552  if (h->first_field) {
1553  av_assert0(h->cur_pic_ptr);
1554  av_assert0(h->cur_pic_ptr->f->buf[0]);
1555  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1556 
1557  /* figure out if we have a complementary field pair */
1558  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1559  /* Previous field is unmatched. Don't display it, but let it
1560  * remain for reference if marked as such. */
1561  h->missing_fields ++;
1562  h->cur_pic_ptr = NULL;
1563  h->first_field = FIELD_PICTURE(h);
1564  } else {
1565  h->missing_fields = 0;
1566  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1569  /* This and the previous field had different frame_nums.
1570  * Consider this field first in pair. Throw away previous
1571  * one except for reference purposes. */
1572  h->first_field = 1;
1573  h->cur_pic_ptr = NULL;
1574  } else {
1575  /* Second field in complementary pair */
1576  h->first_field = 0;
1577  }
1578  }
1579  } else {
1580  /* Frame or first field in a potentially complementary pair */
1581  h->first_field = FIELD_PICTURE(h);
1582  }
1583 
1584  if (!FIELD_PICTURE(h) || h->first_field) {
1585  if (h264_frame_start(h) < 0) {
1586  h->first_field = 0;
1587  return AVERROR_INVALIDDATA;
1588  }
1589  } else {
1590  int field = h->picture_structure == PICT_BOTTOM_FIELD;
1592  h->cur_pic_ptr->tf.owner[field] = h->avctx;
1593  }
1594  /* Some macroblocks can be accessed before they're available in case
1595  * of lost slices, MBAFF or threading. */
1596  if (FIELD_PICTURE(h)) {
1597  for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
1598  memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
1599  } else {
1600  memset(h->slice_table, -1,
1601  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
1602  }
1603 
1605  h->ps.sps, &h->poc, h->picture_structure, nal->ref_idc);
1606 
1607  memcpy(h->mmco, sl->mmco, sl->nb_mmco * sizeof(*h->mmco));
1608  h->nb_mmco = sl->nb_mmco;
1610 
1611  h->picture_idr = nal->type == H264_NAL_IDR_SLICE;
1612 
1613  if (h->sei.recovery_point.recovery_frame_cnt >= 0) {
1614  const int sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
1615 
1616  if (h->poc.frame_num != sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I)
1617  h->valid_recovery_point = 1;
1618 
1619  if ( h->recovery_frame < 0
1620  || av_mod_uintp2(h->recovery_frame - h->poc.frame_num, h->ps.sps->log2_max_frame_num) > sei_recovery_frame_cnt) {
1621  h->recovery_frame = av_mod_uintp2(h->poc.frame_num + sei_recovery_frame_cnt, h->ps.sps->log2_max_frame_num);
1622 
1623  if (!h->valid_recovery_point)
1624  h->recovery_frame = h->poc.frame_num;
1625  }
1626  }
1627 
1628  h->cur_pic_ptr->f->key_frame |= (nal->type == H264_NAL_IDR_SLICE);
1629 
1630  if (nal->type == H264_NAL_IDR_SLICE ||
1631  (h->recovery_frame == h->poc.frame_num && nal->ref_idc)) {
1632  h->recovery_frame = -1;
1633  h->cur_pic_ptr->recovered = 1;
1634  }
1635  // If we have an IDR, all frames after it in decoded order are
1636  // "recovered".
1637  if (nal->type == H264_NAL_IDR_SLICE)
1639 #if 1
1641 #else
1643 #endif
1644 
1645  /* Set the frame properties/side data. Only done for the second field in
1646  * field coded frames, since some SEI information is present for each field
1647  * and is merged by the SEI parsing code. */
1648  if (!FIELD_PICTURE(h) || !h->first_field || h->missing_fields > 1) {
1649  ret = h264_export_frame_props(h);
1650  if (ret < 0)
1651  return ret;
1652 
1653  ret = h264_select_output_frame(h);
1654  if (ret < 0)
1655  return ret;
1656  }
1657 
1658  return 0;
1659 }
1660 
1662  const H2645NAL *nal)
1663 {
1664  const SPS *sps;
1665  const PPS *pps;
1666  int ret;
1667  unsigned int slice_type, tmp, i;
1668  int field_pic_flag, bottom_field_flag;
1669  int first_slice = sl == h->slice_ctx && !h->current_slice;
1670  int picture_structure;
1671 
1672  if (first_slice)
1674 
1675  sl->first_mb_addr = get_ue_golomb_long(&sl->gb);
1676 
1677  slice_type = get_ue_golomb_31(&sl->gb);
1678  if (slice_type > 9) {
1680  "slice type %d too large at %d\n",
1681  slice_type, sl->first_mb_addr);
1682  return AVERROR_INVALIDDATA;
1683  }
1684  if (slice_type > 4) {
1685  slice_type -= 5;
1686  sl->slice_type_fixed = 1;
1687  } else
1688  sl->slice_type_fixed = 0;
1689 
1690  slice_type = ff_h264_golomb_to_pict_type[slice_type];
1691  sl->slice_type = slice_type;
1692  sl->slice_type_nos = slice_type & 3;
1693 
1694  if (nal->type == H264_NAL_IDR_SLICE &&
1696  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1697  return AVERROR_INVALIDDATA;
1698  }
1699 
1700  sl->pps_id = get_ue_golomb(&sl->gb);
1701  if (sl->pps_id >= MAX_PPS_COUNT) {
1702  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", sl->pps_id);
1703  return AVERROR_INVALIDDATA;
1704  }
1705  if (!h->ps.pps_list[sl->pps_id]) {
1707  "non-existing PPS %u referenced\n",
1708  sl->pps_id);
1709  return AVERROR_INVALIDDATA;
1710  }
1711  pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
1712 
1713  if (!h->ps.sps_list[pps->sps_id]) {
1715  "non-existing SPS %u referenced\n", pps->sps_id);
1716  return AVERROR_INVALIDDATA;
1717  }
1718  sps = (const SPS*)h->ps.sps_list[pps->sps_id]->data;
1719 
1720  sl->frame_num = get_bits(&sl->gb, sps->log2_max_frame_num);
1721  if (!first_slice) {
1722  if (h->poc.frame_num != sl->frame_num) {
1723  av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
1724  h->poc.frame_num, sl->frame_num);
1725  return AVERROR_INVALIDDATA;
1726  }
1727  }
1728 
1729  sl->mb_mbaff = 0;
1730 
1731  if (sps->frame_mbs_only_flag) {
1732  picture_structure = PICT_FRAME;
1733  } else {
1734  if (!sps->direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
1735  av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
1736  return -1;
1737  }
1738  field_pic_flag = get_bits1(&sl->gb);
1739  if (field_pic_flag) {
1740  bottom_field_flag = get_bits1(&sl->gb);
1741  picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1742  } else {
1743  picture_structure = PICT_FRAME;
1744  }
1745  }
1746  sl->picture_structure = picture_structure;
1747  sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
1748 
1749  if (picture_structure == PICT_FRAME) {
1750  sl->curr_pic_num = sl->frame_num;
1751  sl->max_pic_num = 1 << sps->log2_max_frame_num;
1752  } else {
1753  sl->curr_pic_num = 2 * sl->frame_num + 1;
1754  sl->max_pic_num = 1 << (sps->log2_max_frame_num + 1);
1755  }
1756 
1757  if (nal->type == H264_NAL_IDR_SLICE)
1758  get_ue_golomb_long(&sl->gb); /* idr_pic_id */
1759 
1760  if (sps->poc_type == 0) {
1761  sl->poc_lsb = get_bits(&sl->gb, sps->log2_max_poc_lsb);
1762 
1763  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1764  sl->delta_poc_bottom = get_se_golomb(&sl->gb);
1765  }
1766 
1767  if (sps->poc_type == 1 && !sps->delta_pic_order_always_zero_flag) {
1768  sl->delta_poc[0] = get_se_golomb(&sl->gb);
1769 
1770  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1771  sl->delta_poc[1] = get_se_golomb(&sl->gb);
1772  }
1773 
1774  sl->redundant_pic_count = 0;
1775  if (pps->redundant_pic_cnt_present)
1776  sl->redundant_pic_count = get_ue_golomb(&sl->gb);
1777 
1778  if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
1779  sl->direct_spatial_mv_pred = get_bits1(&sl->gb);
1780 
1782  &sl->gb, pps, sl->slice_type_nos,
1783  picture_structure, h->avctx);
1784  if (ret < 0)
1785  return ret;
1786 
1787  if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
1789  if (ret < 0) {
1790  sl->ref_count[1] = sl->ref_count[0] = 0;
1791  return ret;
1792  }
1793  }
1794 
1795  sl->pwt.use_weight = 0;
1796  for (i = 0; i < 2; i++) {
1797  sl->pwt.luma_weight_flag[i] = 0;
1798  sl->pwt.chroma_weight_flag[i] = 0;
1799  }
1800  if ((pps->weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
1801  (pps->weighted_bipred_idc == 1 &&
1803  ret = ff_h264_pred_weight_table(&sl->gb, sps, sl->ref_count,
1804  sl->slice_type_nos, &sl->pwt,
1805  picture_structure, h->avctx);
1806  if (ret < 0)
1807  return ret;
1808  }
1809 
1810  sl->explicit_ref_marking = 0;
1811  if (nal->ref_idc) {
1812  ret = ff_h264_decode_ref_pic_marking(sl, &sl->gb, nal, h->avctx);
1813  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1814  return AVERROR_INVALIDDATA;
1815  }
1816 
1817  if (sl->slice_type_nos != AV_PICTURE_TYPE_I && pps->cabac) {
1818  tmp = get_ue_golomb_31(&sl->gb);
1819  if (tmp > 2) {
1820  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1821  return AVERROR_INVALIDDATA;
1822  }
1823  sl->cabac_init_idc = tmp;
1824  }
1825 
1826  sl->last_qscale_diff = 0;
1827  tmp = pps->init_qp + (unsigned)get_se_golomb(&sl->gb);
1828  if (tmp > 51 + 6 * (sps->bit_depth_luma - 8)) {
1829  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
1830  return AVERROR_INVALIDDATA;
1831  }
1832  sl->qscale = tmp;
1833  sl->chroma_qp[0] = get_chroma_qp(pps, 0, sl->qscale);
1834  sl->chroma_qp[1] = get_chroma_qp(pps, 1, sl->qscale);
1835  // FIXME qscale / qp ... stuff
1836  if (sl->slice_type == AV_PICTURE_TYPE_SP)
1837  get_bits1(&sl->gb); /* sp_for_switch_flag */
1838  if (sl->slice_type == AV_PICTURE_TYPE_SP ||
1840  get_se_golomb(&sl->gb); /* slice_qs_delta */
1841 
1842  sl->deblocking_filter = 1;
1843  sl->slice_alpha_c0_offset = 0;
1844  sl->slice_beta_offset = 0;
1846  tmp = get_ue_golomb_31(&sl->gb);
1847  if (tmp > 2) {
1849  "deblocking_filter_idc %u out of range\n", tmp);
1850  return AVERROR_INVALIDDATA;
1851  }
1852  sl->deblocking_filter = tmp;
1853  if (sl->deblocking_filter < 2)
1854  sl->deblocking_filter ^= 1; // 1<->0
1855 
1856  if (sl->deblocking_filter) {
1857  int slice_alpha_c0_offset_div2 = get_se_golomb(&sl->gb);
1858  int slice_beta_offset_div2 = get_se_golomb(&sl->gb);
1859  if (slice_alpha_c0_offset_div2 > 6 ||
1860  slice_alpha_c0_offset_div2 < -6 ||
1861  slice_beta_offset_div2 > 6 ||
1862  slice_beta_offset_div2 < -6) {
1864  "deblocking filter parameters %d %d out of range\n",
1865  slice_alpha_c0_offset_div2, slice_beta_offset_div2);
1866  return AVERROR_INVALIDDATA;
1867  }
1868  sl->slice_alpha_c0_offset = slice_alpha_c0_offset_div2 * 2;
1869  sl->slice_beta_offset = slice_beta_offset_div2 * 2;
1870  }
1871  }
1872 
1873  return 0;
1874 }
1875 
1876 /* do all the per-slice initialization needed before we can start decoding the
1877  * actual MBs */
1879  const H2645NAL *nal)
1880 {
1881  int i, j, ret = 0;
1882 
1883  if (h->picture_idr && nal->type != H264_NAL_IDR_SLICE) {
1884  av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of IDR and non-IDR slices\n");
1885  return AVERROR_INVALIDDATA;
1886  }
1887 
1888  av_assert1(h->mb_num == h->mb_width * h->mb_height);
1889  if (sl->first_mb_addr << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
1890  sl->first_mb_addr >= h->mb_num) {
1891  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
1892  return AVERROR_INVALIDDATA;
1893  }
1894  sl->resync_mb_x = sl->mb_x = sl->first_mb_addr % h->mb_width;
1895  sl->resync_mb_y = sl->mb_y = (sl->first_mb_addr / h->mb_width) <<
1898  sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
1899  av_assert1(sl->mb_y < h->mb_height);
1900 
1901  ret = ff_h264_build_ref_list(h, sl);
1902  if (ret < 0)
1903  return ret;
1904 
1905  if (h->ps.pps->weighted_bipred_idc == 2 &&
1907  implicit_weight_table(h, sl, -1);
1908  if (FRAME_MBAFF(h)) {
1909  implicit_weight_table(h, sl, 0);
1910  implicit_weight_table(h, sl, 1);
1911  }
1912  }
1913 
1916  if (!h->setup_finished)
1918 
1919  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
1927  nal->ref_idc == 0))
1928  sl->deblocking_filter = 0;
1929 
1930  if (sl->deblocking_filter == 1 && h->nb_slice_ctx > 1) {
1931  if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) {
1932  /* Cheat slightly for speed:
1933  * Do not bother to deblock across slices. */
1934  sl->deblocking_filter = 2;
1935  } else {
1936  h->postpone_filter = 1;
1937  }
1938  }
1939  sl->qp_thresh = 15 -
1941  FFMAX3(0,
1942  h->ps.pps->chroma_qp_index_offset[0],
1943  h->ps.pps->chroma_qp_index_offset[1]) +
1944  6 * (h->ps.sps->bit_depth_luma - 8);
1945 
1946  sl->slice_num = ++h->current_slice;
1947 
1948  if (sl->slice_num)
1949  h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
1950  if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
1951  && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
1952  && sl->slice_num >= MAX_SLICES) {
1953  //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
1954  av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
1955  }
1956 
1957  for (j = 0; j < 2; j++) {
1958  int id_list[16];
1959  int *ref2frm = h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
1960  for (i = 0; i < 16; i++) {
1961  id_list[i] = 60;
1962  if (j < sl->list_count && i < sl->ref_count[j] &&
1963  sl->ref_list[j][i].parent->f->buf[0]) {
1964  int k;
1965  AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
1966  for (k = 0; k < h->short_ref_count; k++)
1967  if (h->short_ref[k]->f->buf[0]->buffer == buf) {
1968  id_list[i] = k;
1969  break;
1970  }
1971  for (k = 0; k < h->long_ref_count; k++)
1972  if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
1973  id_list[i] = h->short_ref_count + k;
1974  break;
1975  }
1976  }
1977  }
1978 
1979  ref2frm[0] =
1980  ref2frm[1] = -1;
1981  for (i = 0; i < 16; i++)
1982  ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
1983  ref2frm[18 + 0] =
1984  ref2frm[18 + 1] = -1;
1985  for (i = 16; i < 48; i++)
1986  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
1987  (sl->ref_list[j][i].reference & 3);
1988  }
1989 
1990  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
1992  "slice:%d %s mb:%d %c%s%s frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
1993  sl->slice_num,
1994  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
1995  sl->mb_y * h->mb_width + sl->mb_x,
1997  sl->slice_type_fixed ? " fix" : "",
1998  nal->type == H264_NAL_IDR_SLICE ? " IDR" : "",
1999  h->poc.frame_num,
2000  h->cur_pic_ptr->field_poc[0],
2001  h->cur_pic_ptr->field_poc[1],
2002  sl->ref_count[0], sl->ref_count[1],
2003  sl->qscale,
2004  sl->deblocking_filter,
2006  sl->pwt.use_weight,
2007  sl->pwt.use_weight == 1 && sl->pwt.use_weight_chroma ? "c" : "",
2008  sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
2009  }
2010 
2011  return 0;
2012 }
2013 
2015 {
2017  int first_slice = sl == h->slice_ctx && !h->current_slice;
2018  int ret;
2019 
2020  sl->gb = nal->gb;
2021 
2022  ret = h264_slice_header_parse(h, sl, nal);
2023  if (ret < 0)
2024  return ret;
2025 
2026  // discard redundant pictures
2027  if (sl->redundant_pic_count > 0) {
2028  sl->ref_count[0] = sl->ref_count[1] = 0;
2029  return 0;
2030  }
2031 
2032  if (sl->first_mb_addr == 0 || !h->current_slice) {
2033  if (h->setup_finished) {
2034  av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n");
2035  return AVERROR_INVALIDDATA;
2036  }
2037  }
2038 
2039  if (sl->first_mb_addr == 0) { // FIXME better field boundary detection
2040  if (h->current_slice) {
2041  // this slice starts a new field
2042  // first decode any pending queued slices
2043  if (h->nb_slice_ctx_queued) {
2044  H264SliceContext tmp_ctx;
2045 
2047  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
2048  return ret;
2049 
2050  memcpy(&tmp_ctx, h->slice_ctx, sizeof(tmp_ctx));
2051  memcpy(h->slice_ctx, sl, sizeof(tmp_ctx));
2052  memcpy(sl, &tmp_ctx, sizeof(tmp_ctx));
2053  sl = h->slice_ctx;
2054  }
2055 
2056  if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
2057  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2058  if (ret < 0)
2059  return ret;
2060  } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == H264_NAL_IDR_SLICE) {
2061  av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
2062  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2063  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
2064  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
2065  h->cur_pic_ptr = NULL;
2066  if (ret < 0)
2067  return ret;
2068  } else
2069  return AVERROR_INVALIDDATA;
2070  }
2071 
2072  if (!h->first_field) {
2073  if (h->cur_pic_ptr && !h->droppable) {
2076  }
2077  h->cur_pic_ptr = NULL;
2078  }
2079  }
2080 
2081  if (!h->current_slice)
2082  av_assert0(sl == h->slice_ctx);
2083 
2084  if (h->current_slice == 0 && !h->first_field) {
2085  if (
2086  (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
2090  h->avctx->skip_frame >= AVDISCARD_ALL) {
2091  return 0;
2092  }
2093  }
2094 
2095  if (!first_slice) {
2096  const PPS *pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
2097 
2098  if (h->ps.pps->sps_id != pps->sps_id ||
2099  h->ps.pps->transform_8x8_mode != pps->transform_8x8_mode /*||
2100  (h->setup_finished && h->ps.pps != pps)*/) {
2101  av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n");
2102  return AVERROR_INVALIDDATA;
2103  }
2104  if (h->ps.sps != (const SPS*)h->ps.sps_list[h->ps.pps->sps_id]->data) {
2106  "SPS changed in the middle of the frame\n");
2107  return AVERROR_INVALIDDATA;
2108  }
2109  }
2110 
2111  if (h->current_slice == 0) {
2112  ret = h264_field_start(h, sl, nal, first_slice);
2113  if (ret < 0)
2114  return ret;
2115  } else {
2116  if (h->picture_structure != sl->picture_structure ||
2117  h->droppable != (nal->ref_idc == 0)) {
2119  "Changing field mode (%d -> %d) between slices is not allowed\n",
2121  return AVERROR_INVALIDDATA;
2122  } else if (!h->cur_pic_ptr) {
2124  "unset cur_pic_ptr on slice %d\n",
2125  h->current_slice + 1);
2126  return AVERROR_INVALIDDATA;
2127  }
2128  }
2129 
2130  ret = h264_slice_init(h, sl, nal);
2131  if (ret < 0)
2132  return ret;
2133 
2134  h->nb_slice_ctx_queued++;
2135 
2136  return 0;
2137 }
2138 
2140 {
2141  switch (sl->slice_type) {
2142  case AV_PICTURE_TYPE_P:
2143  return 0;
2144  case AV_PICTURE_TYPE_B:
2145  return 1;
2146  case AV_PICTURE_TYPE_I:
2147  return 2;
2148  case AV_PICTURE_TYPE_SP:
2149  return 3;
2150  case AV_PICTURE_TYPE_SI:
2151  return 4;
2152  default:
2153  return AVERROR_INVALIDDATA;
2154  }
2155 }
2156 
2158  H264SliceContext *sl,
2159  int mb_type, int top_xy,
2160  int left_xy[LEFT_MBS],
2161  int top_type,
2162  int left_type[LEFT_MBS],
2163  int mb_xy, int list)
2164 {
2165  int b_stride = h->b_stride;
2166  int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
2167  int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
2168  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
2169  if (USES_LIST(top_type, list)) {
2170  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
2171  const int b8_xy = 4 * top_xy + 2;
2172  const int *ref2frm = &h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2173  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
2174  ref_cache[0 - 1 * 8] =
2175  ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]];
2176  ref_cache[2 - 1 * 8] =
2177  ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]];
2178  } else {
2179  AV_ZERO128(mv_dst - 1 * 8);
2180  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2181  }
2182 
2183  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
2184  if (USES_LIST(left_type[LTOP], list)) {
2185  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
2186  const int b8_xy = 4 * left_xy[LTOP] + 1;
2187  const int *ref2frm = &h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2188  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
2189  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
2190  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
2191  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
2192  ref_cache[-1 + 0] =
2193  ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
2194  ref_cache[-1 + 16] =
2195  ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
2196  } else {
2197  AV_ZERO32(mv_dst - 1 + 0);
2198  AV_ZERO32(mv_dst - 1 + 8);
2199  AV_ZERO32(mv_dst - 1 + 16);
2200  AV_ZERO32(mv_dst - 1 + 24);
2201  ref_cache[-1 + 0] =
2202  ref_cache[-1 + 8] =
2203  ref_cache[-1 + 16] =
2204  ref_cache[-1 + 24] = LIST_NOT_USED;
2205  }
2206  }
2207  }
2208 
2209  if (!USES_LIST(mb_type, list)) {
2210  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
2211  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2212  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2213  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2214  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2215  return;
2216  }
2217 
2218  {
2219  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
2220  const int *ref2frm = &h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2221  uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101;
2222  uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101;
2223  AV_WN32A(&ref_cache[0 * 8], ref01);
2224  AV_WN32A(&ref_cache[1 * 8], ref01);
2225  AV_WN32A(&ref_cache[2 * 8], ref23);
2226  AV_WN32A(&ref_cache[3 * 8], ref23);
2227  }
2228 
2229  {
2230  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
2231  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
2232  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
2233  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
2234  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
2235  }
2236 }
2237 
2238 /**
2239  * @return non zero if the loop filter can be skipped
2240  */
2241 static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
2242 {
2243  const int mb_xy = sl->mb_xy;
2244  int top_xy, left_xy[LEFT_MBS];
2245  int top_type, left_type[LEFT_MBS];
2246  uint8_t *nnz;
2247  uint8_t *nnz_cache;
2248 
2249  top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
2250 
2251  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
2252  if (FRAME_MBAFF(h)) {
2253  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
2254  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
2255  if (sl->mb_y & 1) {
2256  if (left_mb_field_flag != curr_mb_field_flag)
2257  left_xy[LTOP] -= h->mb_stride;
2258  } else {
2259  if (curr_mb_field_flag)
2260  top_xy += h->mb_stride &
2261  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
2262  if (left_mb_field_flag != curr_mb_field_flag)
2263  left_xy[LBOT] += h->mb_stride;
2264  }
2265  }
2266 
2267  sl->top_mb_xy = top_xy;
2268  sl->left_mb_xy[LTOP] = left_xy[LTOP];
2269  sl->left_mb_xy[LBOT] = left_xy[LBOT];
2270  {
2271  /* For sufficiently low qp, filtering wouldn't do anything.
2272  * This is a conservative estimate: could also check beta_offset
2273  * and more accurate chroma_qp. */
2274  int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
2275  int qp = h->cur_pic.qscale_table[mb_xy];
2276  if (qp <= qp_thresh &&
2277  (left_xy[LTOP] < 0 ||
2278  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
2279  (top_xy < 0 ||
2280  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
2281  if (!FRAME_MBAFF(h))
2282  return 1;
2283  if ((left_xy[LTOP] < 0 ||
2284  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
2285  (top_xy < h->mb_stride ||
2286  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
2287  return 1;
2288  }
2289  }
2290 
2291  top_type = h->cur_pic.mb_type[top_xy];
2292  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
2293  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
2294  if (sl->deblocking_filter == 2) {
2295  if (h->slice_table[top_xy] != sl->slice_num)
2296  top_type = 0;
2297  if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
2298  left_type[LTOP] = left_type[LBOT] = 0;
2299  } else {
2300  if (h->slice_table[top_xy] == 0xFFFF)
2301  top_type = 0;
2302  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
2303  left_type[LTOP] = left_type[LBOT] = 0;
2304  }
2305  sl->top_type = top_type;
2306  sl->left_type[LTOP] = left_type[LTOP];
2307  sl->left_type[LBOT] = left_type[LBOT];
2308 
2309  if (IS_INTRA(mb_type))
2310  return 0;
2311 
2312  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2313  top_type, left_type, mb_xy, 0);
2314  if (sl->list_count == 2)
2315  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2316  top_type, left_type, mb_xy, 1);
2317 
2318  nnz = h->non_zero_count[mb_xy];
2319  nnz_cache = sl->non_zero_count_cache;
2320  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2321  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2322  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2323  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2324  sl->cbp = h->cbp_table[mb_xy];
2325 
2326  if (top_type) {
2327  nnz = h->non_zero_count[top_xy];
2328  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2329  }
2330 
2331  if (left_type[LTOP]) {
2332  nnz = h->non_zero_count[left_xy[LTOP]];
2333  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2334  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2335  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2336  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2337  }
2338 
2339  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2340  * from what the loop filter needs */
2341  if (!CABAC(h) && h->ps.pps->transform_8x8_mode) {
2342  if (IS_8x8DCT(top_type)) {
2343  nnz_cache[4 + 8 * 0] =
2344  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2345  nnz_cache[6 + 8 * 0] =
2346  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2347  }
2348  if (IS_8x8DCT(left_type[LTOP])) {
2349  nnz_cache[3 + 8 * 1] =
2350  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2351  }
2352  if (IS_8x8DCT(left_type[LBOT])) {
2353  nnz_cache[3 + 8 * 3] =
2354  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2355  }
2356 
2357  if (IS_8x8DCT(mb_type)) {
2358  nnz_cache[scan8[0]] =
2359  nnz_cache[scan8[1]] =
2360  nnz_cache[scan8[2]] =
2361  nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
2362 
2363  nnz_cache[scan8[0 + 4]] =
2364  nnz_cache[scan8[1 + 4]] =
2365  nnz_cache[scan8[2 + 4]] =
2366  nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
2367 
2368  nnz_cache[scan8[0 + 8]] =
2369  nnz_cache[scan8[1 + 8]] =
2370  nnz_cache[scan8[2 + 8]] =
2371  nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
2372 
2373  nnz_cache[scan8[0 + 12]] =
2374  nnz_cache[scan8[1 + 12]] =
2375  nnz_cache[scan8[2 + 12]] =
2376  nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
2377  }
2378  }
2379 
2380  return 0;
2381 }
2382 
2383 static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
2384 {
2385  uint8_t *dest_y, *dest_cb, *dest_cr;
2386  int linesize, uvlinesize, mb_x, mb_y;
2387  const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
2388  const int old_slice_type = sl->slice_type;
2389  const int pixel_shift = h->pixel_shift;
2390  const int block_h = 16 >> h->chroma_y_shift;
2391 
2392  if (h->postpone_filter)
2393  return;
2394 
2395  if (sl->deblocking_filter) {
2396  for (mb_x = start_x; mb_x < end_x; mb_x++)
2397  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2398  int mb_xy, mb_type;
2399  mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
2400  mb_type = h->cur_pic.mb_type[mb_xy];
2401 
2402  if (FRAME_MBAFF(h))
2403  sl->mb_mbaff =
2404  sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2405 
2406  sl->mb_x = mb_x;
2407  sl->mb_y = mb_y;
2408  dest_y = h->cur_pic.f->data[0] +
2409  ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
2410  dest_cb = h->cur_pic.f->data[1] +
2411  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2412  mb_y * sl->uvlinesize * block_h;
2413  dest_cr = h->cur_pic.f->data[2] +
2414  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2415  mb_y * sl->uvlinesize * block_h;
2416  // FIXME simplify above
2417 
2418  if (MB_FIELD(sl)) {
2419  linesize = sl->mb_linesize = sl->linesize * 2;
2420  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
2421  if (mb_y & 1) { // FIXME move out of this function?
2422  dest_y -= sl->linesize * 15;
2423  dest_cb -= sl->uvlinesize * (block_h - 1);
2424  dest_cr -= sl->uvlinesize * (block_h - 1);
2425  }
2426  } else {
2427  linesize = sl->mb_linesize = sl->linesize;
2428  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
2429  }
2430  backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
2431  uvlinesize, 0);
2432  if (fill_filter_caches(h, sl, mb_type))
2433  continue;
2434  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, h->cur_pic.qscale_table[mb_xy]);
2435  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, h->cur_pic.qscale_table[mb_xy]);
2436 
2437  if (FRAME_MBAFF(h)) {
2438  ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2439  linesize, uvlinesize);
2440  } else {
2441  ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
2442  dest_cr, linesize, uvlinesize);
2443  }
2444  }
2445  }
2446  sl->slice_type = old_slice_type;
2447  sl->mb_x = end_x;
2448  sl->mb_y = end_mb_y - FRAME_MBAFF(h);
2449  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale);
2450  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale);
2451 }
2452 
2454 {
2455  const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
2456  int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
2457  h->cur_pic.mb_type[mb_xy - 1] :
2458  (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
2459  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2460  sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2461 }
2462 
2463 /**
2464  * Draw edges and report progress for the last MB row.
2465  */
2467 {
2468  int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
2469  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2470  int height = 16 << FRAME_MBAFF(h);
2471  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2472 
2473  if (sl->deblocking_filter) {
2474  if ((top + height) >= pic_height)
2475  height += deblock_border;
2476  top -= deblock_border;
2477  }
2478 
2479  if (top >= pic_height || (top + height) < 0)
2480  return;
2481 
2482  height = FFMIN(height, pic_height - top);
2483  if (top < 0) {
2484  height = top + height;
2485  top = 0;
2486  }
2487 
2488  ff_h264_draw_horiz_band(h, sl, top, height);
2489 
2490  if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
2491  return;
2492 
2493  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2495 }
2496 
2498  int startx, int starty,
2499  int endx, int endy, int status)
2500 {
2501  if (!sl->h264->enable_er)
2502  return;
2503 
2504  if (CONFIG_ERROR_RESILIENCE) {
2505  ERContext *er = &sl->h264->slice_ctx[0].er;
2506 
2507  ff_er_add_slice(er, startx, starty, endx, endy, status);
2508  }
2509 }
2510 
2511 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2512 {
2513  H264SliceContext *sl = arg;
2514  const H264Context *h = sl->h264;
2515  int lf_x_start = sl->mb_x;
2516  int orig_deblock = sl->deblocking_filter;
2517  int ret;
2518 
2519  sl->linesize = h->cur_pic_ptr->f->linesize[0];
2520  sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
2521 
2522  ret = alloc_scratch_buffers(sl, sl->linesize);
2523  if (ret < 0)
2524  return ret;
2525 
2526  sl->mb_skip_run = -1;
2527 
2528  av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
2529 
2530  if (h->postpone_filter)
2531  sl->deblocking_filter = 0;
2532 
2533  sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
2534  (CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY));
2535 
2537  const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
2538  if (start_i) {
2539  int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
2540  prev_status &= ~ VP_START;
2541  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
2542  h->slice_ctx[0].er.error_occurred = 1;
2543  }
2544  }
2545 
2546  if (h->ps.pps->cabac) {
2547  /* realign */
2548  align_get_bits(&sl->gb);
2549 
2550  /* init cabac */
2551  ret = ff_init_cabac_decoder(&sl->cabac,
2552  sl->gb.buffer + get_bits_count(&sl->gb) / 8,
2553  (get_bits_left(&sl->gb) + 7) / 8);
2554  if (ret < 0)
2555  return ret;
2556 
2558 
2559  for (;;) {
2560  // START_TIMER
2561  int ret, eos;
2562  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2563  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2564  sl->next_slice_idx);
2565  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2566  sl->mb_y, ER_MB_ERROR);
2567  return AVERROR_INVALIDDATA;
2568  }
2569 
2570  ret = ff_h264_decode_mb_cabac(h, sl);
2571  // STOP_TIMER("decode_mb_cabac")
2572 
2573  if (ret >= 0)
2574  ff_h264_hl_decode_mb(h, sl);
2575 
2576  // FIXME optimal? or let mb_decode decode 16x32 ?
2577  if (ret >= 0 && FRAME_MBAFF(h)) {
2578  sl->mb_y++;
2579 
2580  ret = ff_h264_decode_mb_cabac(h, sl);
2581 
2582  if (ret >= 0)
2583  ff_h264_hl_decode_mb(h, sl);
2584  sl->mb_y--;
2585  }
2586  eos = get_cabac_terminate(&sl->cabac);
2587 
2588  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2589  sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
2590  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2591  sl->mb_y, ER_MB_END);
2592  if (sl->mb_x >= lf_x_start)
2593  loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
2594  goto finish;
2595  }
2596  if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
2597  av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
2598  if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
2600  "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
2601  sl->mb_x, sl->mb_y,
2602  sl->cabac.bytestream_end - sl->cabac.bytestream);
2603  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2604  sl->mb_y, ER_MB_ERROR);
2605  return AVERROR_INVALIDDATA;
2606  }
2607 
2608  if (++sl->mb_x >= h->mb_width) {
2609  loop_filter(h, sl, lf_x_start, sl->mb_x);
2610  sl->mb_x = lf_x_start = 0;
2611  decode_finish_row(h, sl);
2612  ++sl->mb_y;
2613  if (FIELD_OR_MBAFF_PICTURE(h)) {
2614  ++sl->mb_y;
2615  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2617  }
2618  }
2619 
2620  if (eos || sl->mb_y >= h->mb_height) {
2621  ff_tlog(h->avctx, "slice end %d %d\n",
2622  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2623  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2624  sl->mb_y, ER_MB_END);
2625  if (sl->mb_x > lf_x_start)
2626  loop_filter(h, sl, lf_x_start, sl->mb_x);
2627  goto finish;
2628  }
2629  }
2630  } else {
2631  for (;;) {
2632  int ret;
2633 
2634  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2635  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2636  sl->next_slice_idx);
2637  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2638  sl->mb_y, ER_MB_ERROR);
2639  return AVERROR_INVALIDDATA;
2640  }
2641 
2642  ret = ff_h264_decode_mb_cavlc(h, sl);
2643 
2644  if (ret >= 0)
2645  ff_h264_hl_decode_mb(h, sl);
2646 
2647  // FIXME optimal? or let mb_decode decode 16x32 ?
2648  if (ret >= 0 && FRAME_MBAFF(h)) {
2649  sl->mb_y++;
2650  ret = ff_h264_decode_mb_cavlc(h, sl);
2651 
2652  if (ret >= 0)
2653  ff_h264_hl_decode_mb(h, sl);
2654  sl->mb_y--;
2655  }
2656 
2657  if (ret < 0) {
2659  "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
2660  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2661  sl->mb_y, ER_MB_ERROR);
2662  return ret;
2663  }
2664 
2665  if (++sl->mb_x >= h->mb_width) {
2666  loop_filter(h, sl, lf_x_start, sl->mb_x);
2667  sl->mb_x = lf_x_start = 0;
2668  decode_finish_row(h, sl);
2669  ++sl->mb_y;
2670  if (FIELD_OR_MBAFF_PICTURE(h)) {
2671  ++sl->mb_y;
2672  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2674  }
2675  if (sl->mb_y >= h->mb_height) {
2676  ff_tlog(h->avctx, "slice end %d %d\n",
2677  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2678 
2679  if ( get_bits_left(&sl->gb) == 0
2680  || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
2681  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2682  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2683 
2684  goto finish;
2685  } else {
2686  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2687  sl->mb_x, sl->mb_y, ER_MB_END);
2688 
2689  return AVERROR_INVALIDDATA;
2690  }
2691  }
2692  }
2693 
2694  if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
2695  ff_tlog(h->avctx, "slice end %d %d\n",
2696  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2697 
2698  if (get_bits_left(&sl->gb) == 0) {
2699  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2700  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2701  if (sl->mb_x > lf_x_start)
2702  loop_filter(h, sl, lf_x_start, sl->mb_x);
2703 
2704  goto finish;
2705  } else {
2706  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2707  sl->mb_y, ER_MB_ERROR);
2708 
2709  return AVERROR_INVALIDDATA;
2710  }
2711  }
2712  }
2713  }
2714 
2715 finish:
2716  sl->deblocking_filter = orig_deblock;
2717  return 0;
2718 }
2719 
2720 /**
2721  * Call decode_slice() for each context.
2722  *
2723  * @param h h264 master context
2724  */
2726 {
2727  AVCodecContext *const avctx = h->avctx;
2728  H264SliceContext *sl;
2729  int context_count = h->nb_slice_ctx_queued;
2730  int ret = 0;
2731  int i, j;
2732 
2733  h->slice_ctx[0].next_slice_idx = INT_MAX;
2734 
2735  if (h->avctx->hwaccel || context_count < 1)
2736  return 0;
2737 
2738  av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
2739 
2740  if (context_count == 1) {
2741 
2742  h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height;
2743  h->postpone_filter = 0;
2744 
2745  ret = decode_slice(avctx, &h->slice_ctx[0]);
2746  h->mb_y = h->slice_ctx[0].mb_y;
2747  if (ret < 0)
2748  goto finish;
2749  } else {
2750  av_assert0(context_count > 0);
2751  for (i = 0; i < context_count; i++) {
2752  int next_slice_idx = h->mb_width * h->mb_height;
2753  int slice_idx;
2754 
2755  sl = &h->slice_ctx[i];
2756  if (CONFIG_ERROR_RESILIENCE) {
2757  sl->er.error_count = 0;
2758  }
2759 
2760  /* make sure none of those slices overlap */
2761  slice_idx = sl->mb_y * h->mb_width + sl->mb_x;
2762  for (j = 0; j < context_count; j++) {
2763  H264SliceContext *sl2 = &h->slice_ctx[j];
2764  int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x;
2765 
2766  if (i == j || slice_idx2 < slice_idx)
2767  continue;
2768  next_slice_idx = FFMIN(next_slice_idx, slice_idx2);
2769  }
2770  sl->next_slice_idx = next_slice_idx;
2771  }
2772 
2773  avctx->execute(avctx, decode_slice, h->slice_ctx,
2774  NULL, context_count, sizeof(h->slice_ctx[0]));
2775 
2776  /* pull back stuff from slices to master context */
2777  sl = &h->slice_ctx[context_count - 1];
2778  h->mb_y = sl->mb_y;
2779  if (CONFIG_ERROR_RESILIENCE) {
2780  for (i = 1; i < context_count; i++)
2782  }
2783 
2784  if (h->postpone_filter) {
2785  h->postpone_filter = 0;
2786 
2787  for (i = 0; i < context_count; i++) {
2788  int y_end, x_end;
2789 
2790  sl = &h->slice_ctx[i];
2791  y_end = FFMIN(sl->mb_y + 1, h->mb_height);
2792  x_end = (sl->mb_y >= h->mb_height) ? h->mb_width : sl->mb_x;
2793 
2794  for (j = sl->resync_mb_y; j < y_end; j += 1 + FIELD_OR_MBAFF_PICTURE(h)) {
2795  sl->mb_y = j;
2796  loop_filter(h, sl, j > sl->resync_mb_y ? 0 : sl->resync_mb_x,
2797  j == y_end - 1 ? x_end : h->mb_width);
2798  }
2799  }
2800  }
2801  }
2802 
2803 finish:
2804  h->nb_slice_ctx_queued = 0;
2805  return ret;
2806 }
int chroma_format_idc
Definition: h264_ps.h:47
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
Definition: stereo3d.h:167
int video_signal_type_present_flag
Definition: h264_ps.h:73
struct H264Context * h264
Definition: h264dec.h:178
#define AV_EF_AGGRESSIVE
consider things that a sane encoder should not do as an error
Definition: avcodec.h:2628
#define ff_tlog(ctx,...)
Definition: internal.h:75
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
int ff_thread_can_start_frame(AVCodecContext *avctx)
const struct AVCodec * codec
Definition: avcodec.h:1497
AVRational framerate
Definition: avcodec.h:2998
discard all frames except keyframes
Definition: avcodec.h:790
int nb_mmco
Definition: h264dec.h:474
int workaround_bugs
Definition: h264dec.h:367
int long_ref
1->long term reference 0->short term reference
Definition: h264dec.h:154
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int sei_recovery_frame_cnt
Definition: h264dec.h:163
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal)
Submit a slice for decoding.
Definition: h264_slice.c:2014
H264POCContext poc
Definition: h264dec.h:460
int mb_num
Definition: h264dec.h:437
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
Definition: buffer.c:125
int mb_aff_frame
Definition: h264dec.h:406
int recovery_frame_cnt
recovery_frame_cnt
Definition: h264_sei.h:112
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264dec.h:299
enum AVStereo3DView view
Determines which views are packed.
Definition: stereo3d.h:190
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:378
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:183
int edge_emu_buffer_allocated
Definition: h264dec.h:287
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:1675
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2466
const char * fmt
Definition: avisynth_c.h:769
int first_field
Definition: h264dec.h:408
uint8_t field_scan8x8_q0[64]
Definition: h264dec.h:431
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:67
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:261
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
AVFrame * f
Definition: thread.h:36
int weighted_bipred_idc
Definition: h264_ps.h:116
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:299
int left_mb_xy[LEFT_MBS]
Definition: h264dec.h:211
int chroma_qp_index_offset[2]
Definition: h264_ps.h:119
AVBufferRef * sps_list[MAX_SPS_COUNT]
Definition: h264_ps.h:138
const uint8_t * bytestream_end
Definition: cabac.h:49
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
Get the chroma qp.
Definition: h264dec.h:681
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:393
hardware decoding through Videotoolbox
Definition: pixfmt.h:278
H264ChromaContext h264chroma
Definition: h264dec.h:342
uint16_t * cbp_table
Definition: h264dec.h:413
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264_parse.h:35
MMCO mmco[MAX_MMCO_COUNT]
memory management control operations buffer.
Definition: h264dec.h:473
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:658
Sequence parameter set.
Definition: h264_ps.h:43
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2118
int mb_y
Definition: h264dec.h:434
int coded_picture_number
Definition: h264dec.h:363
int bitstream_restriction_flag
Definition: h264_ps.h:84
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:164
H264SEIAlternativeTransfer alternative_transfer
Definition: h264_sei.h:165
int num
Numerator.
Definition: rational.h:59
AVBufferRef * mb_type_buf
Definition: h264dec.h:138
int repeat_pict
When decoding, this signals how much the picture must be delayed.
Definition: frame.h:343
int bipred_scratchpad_allocated
Definition: h264dec.h:286
Views are next to each other, but when upscaling apply a checkerboard pattern.
Definition: stereo3d.h:117
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:67
Frame contains only the right view.
Definition: stereo3d.h:161
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:384
#define VP_START
< current MB is the first after a resync marker
AVBufferPool * mb_type_pool
Definition: h264dec.h:550
int ff_h264_init_poc(int pic_field_poc[2], int *pic_poc, const SPS *sps, H264POCContext *pc, int picture_structure, int nal_ref_idc)
Definition: h264_parse.c:269
int chroma_x_shift
Definition: h264dec.h:360
const uint8_t * buffer
Definition: get_bits.h:56
Picture parameter set.
Definition: h264_ps.h:108
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:1866
int16_t(*[2] motion_val)[2]
Definition: h264dec.h:136
int flags
Definition: h264dec.h:366
void ff_h264_flush_change(H264Context *h)
Definition: h264dec.c:484
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1697
int frame_mbs_only_flag
Definition: h264_ps.h:61
int mb_height
Definition: h264dec.h:435
H264Picture * delayed_pic[MAX_DELAYED_PIC_COUNT+2]
Definition: h264dec.h:465
int is_avc
Used to parse AVC variant of H.264.
Definition: h264dec.h:450
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
AVBufferPool * ref_index_pool
Definition: h264dec.h:552
int height_from_caller
Definition: h264dec.h:543
uint8_t zigzag_scan8x8_cavlc[64]
Definition: h264dec.h:423
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:372
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
ERPicture last_pic
H264SEIDisplayOrientation display_orientation
Definition: h264_sei.h:163
mpegvideo header.
int current_frame_is_frame0_flag
Definition: h264_sei.h:128
int next_slice_idx
Definition: h264dec.h:236
static const uint8_t zigzag_scan8x8_cavlc[64+1]
Definition: h264_slice.c:97
H264Context.
Definition: h264dec.h:337
discard all non intra frames
Definition: avcodec.h:789
discard all
Definition: avcodec.h:791
AVFrame * f
Definition: h264dec.h:129
Views are next to each other.
Definition: stereo3d.h:67
size_t crop_bottom
Definition: frame.h:560
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2711
uint32_t num_units_in_tick
Definition: h264_ps.h:80
static const uint8_t field_scan[16+1]
Definition: h264_slice.c:51
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:2644
H264Picture * long_ref[32]
Definition: h264dec.h:464
#define src
Definition: vp8dsp.c:254
int profile
profile
Definition: avcodec.h:2813
int picture_structure
Definition: h264dec.h:407
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB)
Definition: pixfmt.h:474
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
#define AV_COPY32(d, s)
Definition: intreadwrite.h:586
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
Definition: display.c:65
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264dec.h:267
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:265
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:267
MMCO mmco[MAX_MMCO_COUNT]
Definition: h264dec.h:322
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure counterclockwise rotation by the specified angle...
Definition: display.c:50
Frame contains only the left view.
Definition: stereo3d.h:156
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:288
Switching Intra.
Definition: avutil.h:278
int setup_finished
Definition: h264dec.h:534
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:2933
int ff_h264_execute_decode_slices(H264Context *h)
Call decode_slice() for each context.
Definition: h264_slice.c:2725
H264SEIContext sei
Definition: h264dec.h:547
unsigned int crop_top
frame_cropping_rect_top_offset
Definition: h264_ps.h:69
#define USES_LIST(a, list)
Definition: mpegutils.h:99
void ff_color_frame(AVFrame *frame, const int color[4])
Definition: utils.c:497
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
const uint8_t * bytestream
Definition: cabac.h:48
int ref2frm[MAX_SLICES][2][64]
reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 ...
Definition: h264dec.h:553
int deblocking_filter_parameters_present
deblocking_filter_parameters_present_flag
Definition: h264_ps.h:120
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:106
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
const PPS * pps
Definition: h264_ps.h:144
4: bottom field, top field, in that order
Definition: h264_sei.h:48
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
Definition: h264_slice.c:995
uint8_t
int full_range
Definition: h264_ps.h:74
unsigned int crop_left
frame_cropping_rect_left_offset
Definition: h264_ps.h:67
int gaps_in_frame_num_allowed_flag
Definition: h264_ps.h:57
#define MB_MBAFF(h)
Definition: h264dec.h:71
int slice_alpha_c0_offset
Definition: h264dec.h:194
Stereo 3D type: this structure describes how two videos are packed within a single video surface...
Definition: stereo3d.h:176
int poc
Definition: h264dec.h:171
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src)
Definition: h264_picture.c:131
int field_picture
whether or not picture was encoded in separate fields
Definition: h264dec.h:158
int bit_depth_chroma
bit_depth_chroma_minus8 + 8
Definition: h264_ps.h:98
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:799
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:2569
size_t crop_left
Definition: frame.h:561
enum AVColorPrimaries color_primaries
Definition: h264_ps.h:76
int poc
frame POC
Definition: h264dec.h:148
int frame_num_offset
for POC type 2
Definition: h264_parse.h:51
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264_parse.h:36
Multithreading support functions.
#define ER_MB_ERROR
int cabac
entropy_coding_mode_flag
Definition: h264_ps.h:110
#define MB_FIELD(sl)
Definition: h264dec.h:72
const char * from
Definition: jacosubdec.c:65
unsigned int crop_right
frame_cropping_rect_right_offset
Definition: h264_ps.h:68
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:383
uint8_t(*[2] top_borders)[(16 *3)*2]
Definition: h264dec.h:285
int invalid_gap
Definition: h264dec.h:162
ERPicture cur_pic
int frame_recovered
Initial frame has been completely recovered.
Definition: h264dec.h:524
Structure to hold side data for an AVFrame.
Definition: frame.h:163
int height
Definition: h264dec.h:359
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:38
#define height
#define MAX_PPS_COUNT
Definition: h264_ps.h:38
int pt
Definition: rtp.c:35
int transform_bypass
qpprime_y_zero_transform_bypass_flag
Definition: h264_ps.h:48
static void finish(void)
Definition: movenc.c:345
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:199
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:88
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:75
#define ER_MV_END
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:211
int redundant_pic_cnt_present
redundant_pic_cnt_present_flag
Definition: h264_ps.h:122
int picture_structure
Definition: h264dec.h:240
int chroma_y_shift
Definition: h264dec.h:360
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int interlaced_frame
The content of the picture is interlaced.
Definition: frame.h:348
Video is not stereoscopic (and metadata has to be there).
Definition: stereo3d.h:55
AVBufferRef * qscale_table_buf
Definition: h264dec.h:132
static int h264_export_frame_props(H264Context *h)
Definition: h264_slice.c:1125
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:373
H264Picture * parent
Definition: h264dec.h:174
#define FRAME_RECOVERED_SEI
Sufficient number of frames have been decoded since a SEI recovery point, so all the following frames...
Definition: h264dec.h:522
H264SEIAFD afd
Definition: h264_sei.h:157
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:858
high precision timer, useful to profile code
int recovered
picture at IDR or recovery point + recovery count
Definition: h264dec.h:161
Active Format Description data consisting of a single byte as specified in ETSI TS 101 154 using AVAc...
Definition: frame.h:89
#define AV_COPY64(d, s)
Definition: intreadwrite.h:590
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx)
Definition: h264_refs.c:421
#define FFALIGN(x, a)
Definition: macros.h:48
int chroma_qp[2]
Definition: h264dec.h:188
#define av_log(a,...)
int last_pocs[MAX_DELAYED_PIC_COUNT]
Definition: h264dec.h:466
const char * to
Definition: webvttdec.c:34
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:121
int width
Definition: h264dec.h:359
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:449
int a53_caption_size
Definition: h264_sei.h:96
H.264 common definitions.
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height)
Definition: h264dec.c:102
#define U(x)
Definition: vp56_arith.h:37
#define HWACCEL_MAX
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:587
H.264 parameter set handling.
H264Picture DPB[H264_MAX_PICTURE_COUNT]
Definition: h264dec.h:345
enum AVColorTransferCharacteristic color_trc
Definition: h264_ps.h:77
int mb_aff
mb_adaptive_frame_field_flag
Definition: h264_ps.h:62
H264PredContext hpc
Definition: h264dec.h:386
AVBufferRef * sps_ref
Definition: h264_ps.h:142
int chroma_log2_weight_denom
Definition: h264_parse.h:34
int width
Definition: frame.h:259
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:1777
#define td
Definition: regdef.h:70
int flags
Additional information about the frame packing.
Definition: stereo3d.h:185
static int get_ue_golomb(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to 8190.
Definition: golomb.h:53
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
Definition: h264_slice.c:129
int poc_type
pic_order_cnt_type
Definition: h264_ps.h:50
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
int context_initialized
Definition: h264dec.h:365
#define PTRDIFF_SPECIFIER
Definition: internal.h:261
ERContext er
Definition: h264dec.h:180
int nal_unit_type
Definition: h264dec.h:443
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb, const H2645NAL *nal, void *logctx)
Definition: h264_refs.c:830
int ff_h264_get_profile(const SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264_parse.c:503
int num_reorder_frames
Definition: h264_ps.h:85
discard all bidirectional frames
Definition: avcodec.h:788
#define AVERROR(e)
Definition: error.h:43
H264_SEI_FpaType arrangement_type
Definition: h264_sei.h:124
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264dec.h:142
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2391
Display matrix.
Views are packed per line, as if interlaced.
Definition: stereo3d.h:129
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:2758
static const uint8_t field_scan8x8[64+1]
Definition: h264_slice.c:58
const uint8_t ff_zigzag_scan[16+1]
Definition: mathtables.c:109
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
ATSC A53 Part 4 Closed Captions.
Definition: frame.h:58
#define FIELD_PICTURE(h)
Definition: h264dec.h:74
int picture_idr
Definition: h264dec.h:378
static int init_dimensions(H264Context *h)
Definition: h264_slice.c:869
const char * arg
Definition: jacosubdec.c:66
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264dec.h:193
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:417
int prev_interlaced_frame
Complement sei_pic_struct SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced...
Definition: h264dec.h:498
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1568
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
Definition: h264_slice.c:2241
uint16_t width
Definition: gdv.c:47
ThreadFrame tf
Definition: h264dec.h:130
simple assert() macros that are a bit more flexible than ISO C assert().
int weighted_pred
weighted_pred_flag
Definition: h264_ps.h:115
#define PICT_TOP_FIELD
Definition: mpegutils.h:37
H264QpelContext h264qpel
Definition: h264dec.h:343
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:371
int direct_spatial_mv_pred
Definition: h264dec.h:251
H264SEIUnregistered unregistered
Definition: h264_sei.h:159
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264dec.h:149
const uint8_t ff_h264_golomb_to_pict_type[5]
Definition: h264data.c:37
#define MAX_SLICES
Definition: dxva2_hevc.c:33
int valid_recovery_point
Are the SEI recovery points looking valid.
Definition: h264dec.h:503
GLsizei count
Definition: opengl_enc.c:109
int ff_h264_get_slice_type(const H264SliceContext *sl)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:2139
#define FFMAX(a, b)
Definition: common.h:94
#define fail()
Definition: checkasm.h:112
uint8_t active_format_description
Definition: h264_sei.h:92
int delta_pic_order_always_zero_flag
Definition: h264_ps.h:52
void av_image_copy(uint8_t *dst_data[4], int dst_linesizes[4], const uint8_t *src_data[4], const int src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height)
Copy image in src_data to dst_data.
Definition: imgutils.c:386
int * mb_index2xy
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264dec.h:184
uint8_t zigzag_scan8x8[64]
Definition: h264dec.h:422
AVBufferRef * hwaccel_priv_buf
Definition: h264dec.h:141
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:66
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
Definition: stereo3d.c:33
int crop_bottom
Definition: h264dec.h:383
uint8_t * error_status_table
size_t crop_top
Definition: frame.h:559
Views are alternated temporally.
Definition: stereo3d.h:92
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:483
int ff_h264_parse_ref_count(int *plist_count, int ref_count[2], GetBitContext *gb, const PPS *pps, int slice_type_nos, int picture_structure, void *logctx)
Definition: h264_parse.c:216
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
Definition: h264dec.h:451
useful rectangle filling function
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:366
int refs
number of reference frames
Definition: avcodec.h:2071
int prev_poc_msb
poc_msb of the last reference pic for POC type 0
Definition: h264_parse.h:49
AVBufferRef * motion_val_buf[2]
Definition: h264dec.h:135
int ref_frame_count
num_ref_frames
Definition: h264_ps.h:56
enum AVPixelFormat * pix_fmts
array of supported pixel formats, or NULL if unknown, array is terminated by -1
Definition: avcodec.h:3372
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:284
int flags
Frame flags, a combination of AV_FRAME_FLAGS.
Definition: frame.h:439
H264_SEI_PicStructType pic_struct
Definition: h264_sei.h:70
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2612
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
int x264_build
Definition: h264dec.h:368
int ct_type
Bit set of clock types for fields/frames in picture timing SEI message.
Definition: h264_sei.h:77
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
Allocate and clear a buffer, reusing the given one if large enough.
Definition: mem.c:488
#define FFMIN(a, b)
Definition: common.h:96
uint16_t * slice_table
slice_table_base + 2*mb_stride + 1
Definition: h264dec.h:403
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:272
static int h264_field_start(H264Context *h, const H264SliceContext *sl, const H2645NAL *nal, int first_slice)
Definition: h264_slice.c:1396
uint8_t field_scan8x8_cavlc[64]
Definition: h264dec.h:426
#define IS_DIRECT(a)
Definition: mpegutils.h:84
CABACContext cabac
Cabac.
Definition: h264dec.h:318
int colour_description_present_flag
Definition: h264_ps.h:75
unsigned int first_mb_addr
Definition: h264dec.h:234
int reference
Definition: h264dec.h:160
static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2497
#define LEFT_MBS
Definition: h264dec.h:75
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:74
AVRational sar
Definition: h264_ps.h:72
int width
picture width / height.
Definition: avcodec.h:1660
int redundant_pic_count
Definition: h264dec.h:244
int nb_slice_ctx
Definition: h264dec.h:351
H264PredWeightTable pwt
Definition: h264dec.h:197
int long_ref_count
number of actual long term references
Definition: h264dec.h:478
#define ER_DC_END
uint32_t * mb_type
Definition: h264dec.h:139
#define AV_FRAME_FLAG_CORRUPT
The frame data may be corrupted, e.g.
Definition: frame.h:427
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
Definition: h264_slice.c:1006
int size_in_bits
Definition: get_bits.h:58
int32_t
int ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:177
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2097
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:2751
Context Adaptive Binary Arithmetic Coder inline functions.
int level
level
Definition: avcodec.h:2911
int init_qp
pic_init_qp_minus26 + 26
Definition: h264_ps.h:117
H.264 / AVC / MPEG-4 part10 codec.
int mmco_reset
Definition: h264dec.h:475
H264SliceContext * slice_ctx
Definition: h264dec.h:350
int direct_8x8_inference_flag
Definition: h264_ps.h:63
static int h264_select_output_frame(H264Context *h)
Definition: h264_slice.c:1293
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2623
int reference
Definition: h264dec.h:170
int ticks_per_frame
For some codecs, the time base is closer to the field rate than the frame rate.
Definition: avcodec.h:1619
int top_borders_allocated[2]
Definition: h264dec.h:288
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:822
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264dec.h:91
uint8_t * a53_caption
Definition: h264_sei.h:97
int ref_idc
H.264 only, nal_ref_idc.
Definition: h2645_parse.h:64
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:722
static int av_unused get_cabac_terminate(CABACContext *c)
int quincunx_sampling_flag
Definition: h264_sei.h:127
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:367
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:386
HW acceleration through CUDA.
Definition: pixfmt.h:231
int type
NAL unit type.
Definition: h2645_parse.h:51
#define FF_ARRAY_ELEMS(a)
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:499
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:161
uint8_t * edge_emu_buffer
Definition: h264dec.h:284
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:85
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int pic_order_present
pic_order_present_flag
Definition: h264_ps.h:111
uint8_t zigzag_scan_q0[16]
Definition: h264dec.h:427
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:274
int bit_depth_luma
luma bit depth from sps to detect changes
Definition: h264dec.h:453
int chroma_format_idc
chroma format from sps to detect changes
Definition: h264dec.h:454
VideoDSPContext vdsp
Definition: h264dec.h:340
int timing_info_present_flag
Definition: h264_ps.h:79
int coded_picture_number
picture number in bitstream order
Definition: frame.h:315
enum AVStereo3DType type
How views are packed within the video.
Definition: stereo3d.h:180
int mb_stride
Definition: h264dec.h:436
Views are packed in a checkerboard-like structure per pixel.
Definition: stereo3d.h:104
int postpone_filter
Definition: h264dec.h:373
#define IS_INTERLACED(a)
Definition: mpegutils.h:83
AVCodecContext * avctx
Definition: h264dec.h:339
uint8_t zigzag_scan8x8_q0[64]
Definition: h264dec.h:428
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:376
5: top field, bottom field, top field repeated, in that order
Definition: h264_sei.h:49
Libavcodec external API header.
#define MAX_DELAYED_PIC_COUNT
Definition: h264dec.h:56
Views are on top of each other.
Definition: stereo3d.h:79
int last_qscale_diff
Definition: h264dec.h:190
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
Definition: frame.h:84
AVBufferRef * pps_list[MAX_PPS_COUNT]
Definition: h264_ps.h:139
enum AVCodecID codec_id
Definition: avcodec.h:1498
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:100
int crop_left
Definition: h264dec.h:380
int delta_poc_bottom
Definition: h264_parse.h:46
ERPicture next_pic
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:232
H264Picture * short_ref[32]
Definition: h264dec.h:463
int next_outputed_poc
Definition: h264dec.h:468
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cabac.c:1914
int explicit_ref_marking
Definition: h264dec.h:476
#define AV_CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:898
int field_poc[2]
top/bottom POC
Definition: h264dec.h:147
int debug
debug
Definition: avcodec.h:2568
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
int recovery_frame
recovery_frame is the frame_num at which the next frame should be fully constructed.
Definition: h264dec.h:511
main external API structure.
Definition: avcodec.h:1488
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264dec.h:189
int explicit_ref_marking
Definition: h264dec.h:324
uint8_t * data
The data buffer.
Definition: buffer.h:89
#define fp
Definition: regdef.h:44
uint8_t * data
Definition: frame.h:165
static int h264_slice_header_parse(const H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1661
H264SEIA53Caption a53_caption
Definition: h264_sei.h:158
void * buf
Definition: avisynth_c.h:690
int implicit_weight[48][48][2]
Definition: h264_parse.h:40
size_t crop_right
Definition: frame.h:562
int8_t * qscale_table
Definition: h264dec.h:133
static const uint8_t scan8[16 *3+3]
Definition: h264dec.h:644
#define CABAC(h)
Definition: h264_cabac.c:28
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:83
AVBuffer * buffer
Definition: buffer.h:82
static const uint8_t field_scan8x8_cavlc[64+1]
Definition: h264_slice.c:77
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:313
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:368
AVCodecContext * owner[2]
Definition: thread.h:37
int coded_height
Definition: avcodec.h:1675
Switching Predicted.
Definition: avutil.h:279
int prev_frame_num
frame_num of the last pic for POC type 1/2
Definition: h264_parse.h:53
#define FF_CODEC_PROPERTY_CLOSED_CAPTIONS
Definition: avcodec.h:3121
static int FUNC() pps(CodedBitstreamContext *ctx, RWContext *rw, H264RawPPS *current)
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, int size)
Add a new side data to a frame.
Definition: frame.c:680
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264dec.h:294
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:275
#define FRAME_MBAFF(h)
Definition: h264dec.h:73
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2111
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2104
#define LBOT
Definition: h264dec.h:77
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:193
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
Definition: h264dec.h:660
int8_t * ref_index[2]
Definition: h264dec.h:145
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:66
A reference counted buffer type.
int pixel_shift
0 for 8-bit H.264, 1 for high-bit-depth H.264
Definition: h264dec.h:356
int mmco_reset
MMCO_RESET set this 1.
Definition: h264dec.h:150
int content_interpretation_type
Definition: h264_sei.h:126
H264Picture * cur_pic_ptr
Definition: h264dec.h:346
#define LIST_NOT_USED
Definition: h264dec.h:390
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
ptrdiff_t mb_uvlinesize
Definition: h264dec.h:228
static int h264_slice_header_init(H264Context *h)
Definition: h264_slice.c:911
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264dec.h:242
enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
int enable_er
Definition: h264dec.h:545
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:365
#define IS_INTER(a)
Definition: mpegutils.h:79
#define FF_COMPLIANCE_STRICT
Strictly conform to all the things in the spec no matter what consequences.
Definition: avcodec.h:2548
const SPS * sps
Definition: h264_ps.h:145
unsigned int sps_id
Definition: h264_ps.h:109
#define TRANSPOSE(x)
H264SEIPictureTiming picture_timing
Definition: h264_sei.h:156
int width_from_caller
Definition: h264dec.h:542
int log2_max_poc_lsb
log2_max_pic_order_cnt_lsb_minus4
Definition: h264_ps.h:51
H264SEIRecoveryPoint recovery_point
Definition: h264_sei.h:160
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264dec.h:227
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer. ...
Definition: pixfmt.h:133
int16_t slice_row[MAX_SLICES]
to detect when MAX_SLICES is too low
Definition: h264dec.h:538
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:266
3: top field, bottom field, in that order
Definition: h264_sei.h:47
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:188
ptrdiff_t linesize
Definition: h264dec.h:226
int block_offset[2 *(16 *3)]
block_offset[ 0..23] for frame macroblocks block_offset[24..47] for field macroblocks ...
Definition: h264dec.h:397
uint32_t time_scale
Definition: h264_ps.h:81
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:377
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:385
int transform_8x8_mode
transform_8x8_mode_flag
Definition: h264_ps.h:123
ptrdiff_t uvlinesize
Definition: h264dec.h:226
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:369
static int h264_slice_init(H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1878
int pic_struct_present_flag
Definition: h264_ps.h:91
#define CHROMA444(h)
Definition: h264dec.h:99
unsigned int list_count
Definition: h264dec.h:268
uint8_t zigzag_scan[16]
Definition: h264dec.h:421
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:375
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:215
int prev_poc_lsb
poc_lsb of the last reference pic for POC type 0
Definition: h264_parse.h:50
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:116
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264dec.c:180
#define AV_ZERO128(d)
Definition: intreadwrite.h:622
Hardware surfaces for Direct3D11.
Definition: pixfmt.h:309
the normal 219*2^(n-8) "MPEG" YUV ranges
Definition: pixfmt.h:498
int left_type[LEFT_MBS]
Definition: h264dec.h:216
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:89
int nb_slice_ctx_queued
Definition: h264dec.h:352
discard all non reference
Definition: avcodec.h:787
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup)
Definition: h264_picture.c:154
AVBufferPool * qscale_table_pool
Definition: h264dec.h:549
H264Picture * next_output_pic
Definition: h264dec.h:467
int mb_height
Definition: h264_ps.h:60
AVBufferPool * motion_val_pool
Definition: h264dec.h:551
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:62
int delta_poc_bottom
Definition: h264dec.h:328
#define IS_8x8DCT(a)
Definition: h264dec.h:104
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:279
AVBufferPool * av_buffer_pool_init(int size, AVBufferRef *(*alloc)(int size))
Allocate and initialize a buffer pool.
Definition: buffer.c:238
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
#define AV_COPY128(d, s)
Definition: intreadwrite.h:594
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
Definition: h264_slice.c:756
AVBufferRef * pps_ref
Definition: h264_ps.h:141
int log2_max_frame_num
log2_max_frame_num_minus4 + 4
Definition: h264_ps.h:49
int missing_fields
Definition: h264dec.h:528
static double c[64]
const char * av_color_transfer_name(enum AVColorTransferCharacteristic transfer)
Definition: pixdesc.c:2728
H264ParamSets ps
Definition: h264dec.h:456
H264SEIFramePacking frame_packing
Definition: h264_sei.h:162
H.264 / AVC / MPEG-4 part10 motion vector prediction.
AVBufferRef * av_buffer_ref(AVBufferRef *buf)
Create a new reference to an AVBuffer.
Definition: buffer.c:93
Bi-dir predicted.
Definition: avutil.h:276
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:76
Stereoscopic video.
Views are packed per column.
Definition: stereo3d.h:141
int cur_chroma_format_idc
Definition: h264dec.h:536
int8_t * intra4x4_pred_mode
Definition: h264dec.h:206
unsigned properties
Properties of the stream that gets decoded.
Definition: avcodec.h:3119
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
Definition: avcodec.h:2919
int den
Denominator.
Definition: rational.h:60
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
Definition: h264_slice.c:2453
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cavlc.c:702
GetBitContext gb
Definition: h2645_parse.h:46
int bit_depth_luma
bit_depth_luma_minus8 + 8
Definition: h264_ps.h:97
#define IS_INTRA(x, y)
int present
Definition: h264_sei.h:91
int delta_poc[2]
Definition: h264_parse.h:47
void ff_h264_free_tables(H264Context *h)
Definition: h264dec.c:137
void * priv_data
Definition: avcodec.h:1515
#define LTOP
Definition: h264dec.h:76
#define PICT_FRAME
Definition: mpegutils.h:39
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:556
uint8_t zigzag_scan8x8_cavlc_q0[64]
Definition: h264dec.h:429
int8_t ref_cache[2][5 *8]
Definition: h264dec.h:300
#define AV_CODEC_FLAG_OUTPUT_CORRUPT
Output even those frames that might be corrupted.
Definition: avcodec.h:838
unsigned int pps_id
Definition: h264dec.h:278
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:2779
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: frame.h:353
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:3614
#define CHROMA422(h)
Definition: h264dec.h:98
#define FF_BUG_TRUNCATED
Definition: avcodec.h:2531
H264Picture cur_pic
Definition: h264dec.h:347
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:279
#define AV_ZERO32(d)
Definition: intreadwrite.h:614
int mb_width
Definition: h264dec.h:435
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:253
int current_slice
current slice number, used to initialize slice_num of each thread/context
Definition: h264dec.h:488
int ff_h264_execute_ref_pic_marking(H264Context *h)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:608
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:464
int ff_h264_pred_weight_table(GetBitContext *gb, const SPS *sps, const int *ref_count, int slice_type_nos, H264PredWeightTable *pwt, int picture_structure, void *logctx)
Definition: h264_parse.c:27
int mb_width
pic_width_in_mbs_minus1 + 1
Definition: h264_ps.h:58
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:1575
uint32_t * mb2b_xy
Definition: h264dec.h:399
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264dec.h:269
uint8_t field_scan8x8_cavlc_q0[64]
Definition: h264dec.h:432
int cur_bit_depth_luma
Definition: h264dec.h:537
int crop_top
Definition: h264dec.h:382
atomic_int error_count
AVBufferRef * ref_index_buf[2]
Definition: h264dec.h:144
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:67
int frame_number
Frame counter, set by libavcodec.
Definition: avcodec.h:2174
H264DSPContext h264dsp
Definition: h264dec.h:341
void ff_er_frame_start(ERContext *s)
int height
Definition: frame.h:259
#define AV_CODEC_FLAG2_SHOW_ALL
Show all frames before the first keyframe.
Definition: avcodec.h:926
FILE * out
Definition: movenc.c:54
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:313
uint8_t field_scan8x8[64]
Definition: h264dec.h:425
int slice_type_fixed
Definition: h264dec.h:185
static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:2157
#define av_freep(p)
enum AVColorTransferCharacteristic color_trc
Definition: frame.h:450
int prev_frame_num_offset
for POC type 2
Definition: h264_parse.h:52
#define av_always_inline
Definition: attributes.h:39
HW decoding through Direct3D11 via old API, Picture.data[3] contains a ID3D11VideoDecoderOutputView p...
Definition: pixfmt.h:225
int slice_beta_offset
Definition: h264dec.h:195
int8_t * intra4x4_pred_mode
Definition: h264dec.h:385
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:334
#define ER_AC_END
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2511
int delta_poc[2]
Definition: h264dec.h:329
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:62
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2279
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264dec.c:238
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:107
uint8_t field_scan_q0[16]
Definition: h264dec.h:430
int mb_field_decoding_flag
Definition: h264dec.h:241
uint8_t(* non_zero_count)[48]
Definition: h264dec.h:388
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
Definition: h264_slice.c:2383
unsigned int crop_bottom
frame_cropping_rect_bottom_offset
Definition: h264_ps.h:70
exp golomb vlc stuff
uint8_t * bipred_scratchpad
Definition: h264dec.h:283
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:45
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
av_cold void ff_h264qpel_init(H264QpelContext *c, int bit_depth)
Definition: h264qpel.c:49
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1118
int droppable
Definition: h264dec.h:362
int level_idc
Definition: h264_ps.h:46
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:2546
int crop_right
Definition: h264dec.h:381
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
int nal_ref_idc
Definition: h264dec.h:442
GetBitContext gb
Definition: h264dec.h:179
uint8_t field_scan[16]
Definition: h264dec.h:424
int cabac_init_idc
Definition: h264dec.h:320
#define FRAME_RECOVERED_IDR
We have seen an IDR, so all the following frames in coded order are correctly decodable.
Definition: h264dec.h:517
for(j=16;j >0;--j)
6: bottom field, top field, bottom field repeated, in that order
Definition: h264_sei.h:50
#define FFMAX3(a, b, c)
Definition: common.h:95
int b_stride
Definition: h264dec.h:401
Predicted.
Definition: avutil.h:275
#define tb
Definition: regdef.h:68
Context Adaptive Binary Arithmetic Coder.
#define H264_MAX_PICTURE_COUNT
Definition: h264dec.h:52
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl)
Definition: h264_cabac.c:1263
int short_ref_count
number of actual short term references
Definition: h264dec.h:479
static uint8_t tmp[11]
Definition: aes_ctr.c:26
enum AVColorSpace colorspace
Definition: h264_ps.h:78