FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/display.h"
30 #include "libavutil/imgutils.h"
31 #include "libavutil/stereo3d.h"
32 #include "libavutil/timer.h"
33 #include "internal.h"
34 #include "cabac.h"
35 #include "cabac_functions.h"
36 #include "error_resilience.h"
37 #include "avcodec.h"
38 #include "h264.h"
39 #include "h264dec.h"
40 #include "h264data.h"
41 #include "h264chroma.h"
42 #include "h264_mvpred.h"
43 #include "h264_ps.h"
44 #include "golomb.h"
45 #include "mathops.h"
46 #include "mpegutils.h"
47 #include "mpegvideo.h"
48 #include "rectangle.h"
49 #include "thread.h"
50 
51 static const uint8_t field_scan[16+1] = {
52  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
53  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
54  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
55  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
56 };
57 
58 static const uint8_t field_scan8x8[64+1] = {
59  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
60  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
61  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
62  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
63  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
64  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
65  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
66  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
67  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
68  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
69  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
70  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
71  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
72  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
73  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
74  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
75 };
76 
77 static const uint8_t field_scan8x8_cavlc[64+1] = {
78  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
79  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
80  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
81  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
82  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
83  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
84  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
85  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
86  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
87  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
88  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
89  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
90  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
91  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
92  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
93  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
94 };
95 
96 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
97 static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
98  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
99  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
100  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
101  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
102  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
103  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
104  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
105  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
106  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
107  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
108  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
109  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
110  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
111  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
112  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
113  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
114 };
115 
116 static void release_unused_pictures(H264Context *h, int remove_current)
117 {
118  int i;
119 
120  /* release non reference frames */
121  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
122  if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
123  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
124  ff_h264_unref_picture(h, &h->DPB[i]);
125  }
126  }
127 }
128 
129 static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
130 {
131  const H264Context *h = sl->h264;
132  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
133 
134  av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
135  // edge emu needs blocksize + filter length - 1
136  // (= 21x21 for H.264)
137  av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
138 
140  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
142  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
143 
144  if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
145  !sl->top_borders[0] || !sl->top_borders[1]) {
148  av_freep(&sl->top_borders[0]);
149  av_freep(&sl->top_borders[1]);
150 
153  sl->top_borders_allocated[0] = 0;
154  sl->top_borders_allocated[1] = 0;
155  return AVERROR(ENOMEM);
156  }
157 
158  return 0;
159 }
160 
162 {
163  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
164  const int mb_array_size = h->mb_stride * h->mb_height;
165  const int b4_stride = h->mb_width * 4 + 1;
166  const int b4_array_size = b4_stride * h->mb_height * 4;
167 
168  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
170  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
171  sizeof(uint32_t), av_buffer_allocz);
172  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
173  sizeof(int16_t), av_buffer_allocz);
174  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
175 
176  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
177  !h->ref_index_pool) {
182  return AVERROR(ENOMEM);
183  }
184 
185  return 0;
186 }
187 
189 {
190  int i, ret = 0;
191 
192  av_assert0(!pic->f->data[0]);
193 
194  pic->tf.f = pic->f;
195  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
197  if (ret < 0)
198  goto fail;
199 
200  if (h->avctx->hwaccel) {
201  const AVHWAccel *hwaccel = h->avctx->hwaccel;
203  if (hwaccel->frame_priv_data_size) {
205  if (!pic->hwaccel_priv_buf)
206  return AVERROR(ENOMEM);
208  }
209  }
210  if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) {
211  int h_chroma_shift, v_chroma_shift;
213  &h_chroma_shift, &v_chroma_shift);
214 
215  for(i=0; i<AV_CEIL_RSHIFT(pic->f->height, v_chroma_shift); i++) {
216  memset(pic->f->data[1] + pic->f->linesize[1]*i,
217  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
218  memset(pic->f->data[2] + pic->f->linesize[2]*i,
219  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
220  }
221  }
222 
223  if (!h->qscale_table_pool) {
224  ret = init_table_pools(h);
225  if (ret < 0)
226  goto fail;
227  }
228 
231  if (!pic->qscale_table_buf || !pic->mb_type_buf)
232  goto fail;
233 
234  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
235  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
236 
237  for (i = 0; i < 2; i++) {
240  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
241  goto fail;
242 
243  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
244  pic->ref_index[i] = pic->ref_index_buf[i]->data;
245  }
246 
247  return 0;
248 fail:
249  ff_h264_unref_picture(h, pic);
250  return (ret < 0) ? ret : AVERROR(ENOMEM);
251 }
252 
254 {
255  int i;
256 
257  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
258  if (!h->DPB[i].f->buf[0])
259  return i;
260  }
261  return AVERROR_INVALIDDATA;
262 }
263 
264 
265 #define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size))))
266 
267 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
268  (((pic) && (pic) >= (old_ctx)->DPB && \
269  (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
270  &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
271 
273  H264Context *new_base,
274  H264Context *old_base)
275 {
276  int i;
277 
278  for (i = 0; i < count; i++) {
279  av_assert1(!from[i] ||
280  IN_RANGE(from[i], old_base, 1) ||
281  IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT));
282  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
283  }
284 }
285 
287 
289  const AVCodecContext *src)
290 {
291  H264Context *h = dst->priv_data, *h1 = src->priv_data;
292  int inited = h->context_initialized, err = 0;
293  int need_reinit = 0;
294  int i, ret;
295 
296  if (dst == src)
297  return 0;
298 
299  // We can't fail if SPS isn't set at it breaks current skip_frame code
300  //if (!h1->ps.sps)
301  // return AVERROR_INVALIDDATA;
302 
303  if (inited &&
304  (h->width != h1->width ||
305  h->height != h1->height ||
306  h->mb_width != h1->mb_width ||
307  h->mb_height != h1->mb_height ||
308  !h->ps.sps ||
309  h->ps.sps->bit_depth_luma != h1->ps.sps->bit_depth_luma ||
310  h->ps.sps->chroma_format_idc != h1->ps.sps->chroma_format_idc ||
311  h->ps.sps->colorspace != h1->ps.sps->colorspace)) {
312  need_reinit = 1;
313  }
314 
315  /* copy block_offset since frame_start may not be called */
316  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
317 
318  // SPS/PPS
319  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.sps_list); i++) {
320  av_buffer_unref(&h->ps.sps_list[i]);
321  if (h1->ps.sps_list[i]) {
322  h->ps.sps_list[i] = av_buffer_ref(h1->ps.sps_list[i]);
323  if (!h->ps.sps_list[i])
324  return AVERROR(ENOMEM);
325  }
326  }
327  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.pps_list); i++) {
328  av_buffer_unref(&h->ps.pps_list[i]);
329  if (h1->ps.pps_list[i]) {
330  h->ps.pps_list[i] = av_buffer_ref(h1->ps.pps_list[i]);
331  if (!h->ps.pps_list[i])
332  return AVERROR(ENOMEM);
333  }
334  }
335 
338  h->ps.pps = NULL;
339  h->ps.sps = NULL;
340  if (h1->ps.pps_ref) {
341  h->ps.pps_ref = av_buffer_ref(h1->ps.pps_ref);
342  if (!h->ps.pps_ref)
343  return AVERROR(ENOMEM);
344  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
345  }
346  if (h1->ps.sps_ref) {
347  h->ps.sps_ref = av_buffer_ref(h1->ps.sps_ref);
348  if (!h->ps.sps_ref)
349  return AVERROR(ENOMEM);
350  h->ps.sps = (const SPS*)h->ps.sps_ref->data;
351  }
352 
353  if (need_reinit || !inited) {
354  h->width = h1->width;
355  h->height = h1->height;
356  h->mb_height = h1->mb_height;
357  h->mb_width = h1->mb_width;
358  h->mb_num = h1->mb_num;
359  h->mb_stride = h1->mb_stride;
360  h->b_stride = h1->b_stride;
361  h->x264_build = h1->x264_build;
362 
363  if (h->context_initialized || h1->context_initialized) {
364  if ((err = h264_slice_header_init(h)) < 0) {
365  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
366  return err;
367  }
368  }
369 
370  /* copy block_offset since frame_start may not be called */
371  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
372  }
373 
374  h->avctx->coded_height = h1->avctx->coded_height;
375  h->avctx->coded_width = h1->avctx->coded_width;
376  h->avctx->width = h1->avctx->width;
377  h->avctx->height = h1->avctx->height;
378  h->width_from_caller = h1->width_from_caller;
379  h->height_from_caller = h1->height_from_caller;
380  h->coded_picture_number = h1->coded_picture_number;
381  h->first_field = h1->first_field;
382  h->picture_structure = h1->picture_structure;
383  h->mb_aff_frame = h1->mb_aff_frame;
384  h->droppable = h1->droppable;
385 
386  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
387  ff_h264_unref_picture(h, &h->DPB[i]);
388  if (h1->DPB[i].f->buf[0] &&
389  (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
390  return ret;
391  }
392 
393  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
395  if (h1->cur_pic.f->buf[0]) {
396  ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
397  if (ret < 0)
398  return ret;
399  }
400 
401  h->enable_er = h1->enable_er;
402  h->workaround_bugs = h1->workaround_bugs;
403  h->droppable = h1->droppable;
404 
405  // extradata/NAL handling
406  h->is_avc = h1->is_avc;
407  h->nal_length_size = h1->nal_length_size;
408 
409  memcpy(&h->poc, &h1->poc, sizeof(h->poc));
410 
411  memcpy(h->short_ref, h1->short_ref, sizeof(h->short_ref));
412  memcpy(h->long_ref, h1->long_ref, sizeof(h->long_ref));
413  memcpy(h->delayed_pic, h1->delayed_pic, sizeof(h->delayed_pic));
414  memcpy(h->last_pocs, h1->last_pocs, sizeof(h->last_pocs));
415 
416  h->next_output_pic = h1->next_output_pic;
417  h->next_outputed_poc = h1->next_outputed_poc;
418 
419  memcpy(h->mmco, h1->mmco, sizeof(h->mmco));
420  h->nb_mmco = h1->nb_mmco;
421  h->mmco_reset = h1->mmco_reset;
422  h->explicit_ref_marking = h1->explicit_ref_marking;
423  h->long_ref_count = h1->long_ref_count;
424  h->short_ref_count = h1->short_ref_count;
425 
426  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
427  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
428  copy_picture_range(h->delayed_pic, h1->delayed_pic,
429  MAX_DELAYED_PIC_COUNT + 2, h, h1);
430 
431  h->frame_recovered = h1->frame_recovered;
432 
434  if (h1->sei.a53_caption.buf_ref) {
435  h->sei.a53_caption.buf_ref = av_buffer_ref(h1->sei.a53_caption.buf_ref);
436  if (!h->sei.a53_caption.buf_ref)
437  return AVERROR(ENOMEM);
438  }
439 
440  if (!h->cur_pic_ptr)
441  return 0;
442 
443  if (!h->droppable) {
445  h->poc.prev_poc_msb = h->poc.poc_msb;
446  h->poc.prev_poc_lsb = h->poc.poc_lsb;
447  }
450 
451  h->recovery_frame = h1->recovery_frame;
452 
453  return err;
454 }
455 
457 {
458  H264Picture *pic;
459  int i, ret;
460  const int pixel_shift = h->pixel_shift;
461  int c[4] = {
462  1<<(h->ps.sps->bit_depth_luma-1),
463  1<<(h->ps.sps->bit_depth_chroma-1),
464  1<<(h->ps.sps->bit_depth_chroma-1),
465  -1
466  };
467 
468  if (!ff_thread_can_start_frame(h->avctx)) {
469  av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
470  return -1;
471  }
472 
474  h->cur_pic_ptr = NULL;
475 
476  i = find_unused_picture(h);
477  if (i < 0) {
478  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
479  return i;
480  }
481  pic = &h->DPB[i];
482 
483  pic->reference = h->droppable ? 0 : h->picture_structure;
486  pic->frame_num = h->poc.frame_num;
487  /*
488  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
489  * in later.
490  * See decode_nal_units().
491  */
492  pic->f->key_frame = 0;
493  pic->mmco_reset = 0;
494  pic->recovered = 0;
495  pic->invalid_gap = 0;
497 
498  pic->f->pict_type = h->slice_ctx[0].slice_type;
499 
500  pic->f->crop_left = h->crop_left;
501  pic->f->crop_right = h->crop_right;
502  pic->f->crop_top = h->crop_top;
503  pic->f->crop_bottom = h->crop_bottom;
504 
505  if ((ret = alloc_picture(h, pic)) < 0)
506  return ret;
507  if(!h->frame_recovered && !h->avctx->hwaccel)
508  ff_color_frame(pic->f, c);
509 
510  h->cur_pic_ptr = pic;
512  if (CONFIG_ERROR_RESILIENCE) {
514  }
515 
516  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
517  return ret;
518 
519  for (i = 0; i < h->nb_slice_ctx; i++) {
520  h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
521  h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
522  }
523 
524  if (CONFIG_ERROR_RESILIENCE && h->enable_er) {
528  }
529 
530  for (i = 0; i < 16; i++) {
531  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
532  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
533  }
534  for (i = 0; i < 16; i++) {
535  h->block_offset[16 + i] =
536  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
537  h->block_offset[48 + 16 + i] =
538  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
539  }
540 
541  /* We mark the current picture as non-reference after allocating it, so
542  * that if we break out due to an error it can be released automatically
543  * in the next ff_mpv_frame_start().
544  */
545  h->cur_pic_ptr->reference = 0;
546 
547  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
548 
549  h->next_output_pic = NULL;
550 
551  h->postpone_filter = 0;
552 
554 
555  if (h->sei.unregistered.x264_build >= 0)
557 
558  assert(h->cur_pic_ptr->long_ref == 0);
559 
560  return 0;
561 }
562 
564  uint8_t *src_y,
565  uint8_t *src_cb, uint8_t *src_cr,
566  int linesize, int uvlinesize,
567  int simple)
568 {
569  uint8_t *top_border;
570  int top_idx = 1;
571  const int pixel_shift = h->pixel_shift;
572  int chroma444 = CHROMA444(h);
573  int chroma422 = CHROMA422(h);
574 
575  src_y -= linesize;
576  src_cb -= uvlinesize;
577  src_cr -= uvlinesize;
578 
579  if (!simple && FRAME_MBAFF(h)) {
580  if (sl->mb_y & 1) {
581  if (!MB_MBAFF(sl)) {
582  top_border = sl->top_borders[0][sl->mb_x];
583  AV_COPY128(top_border, src_y + 15 * linesize);
584  if (pixel_shift)
585  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
586  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
587  if (chroma444) {
588  if (pixel_shift) {
589  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
590  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
591  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
592  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
593  } else {
594  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
595  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
596  }
597  } else if (chroma422) {
598  if (pixel_shift) {
599  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
600  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
601  } else {
602  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
603  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
604  }
605  } else {
606  if (pixel_shift) {
607  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
608  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
609  } else {
610  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
611  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
612  }
613  }
614  }
615  }
616  } else if (MB_MBAFF(sl)) {
617  top_idx = 0;
618  } else
619  return;
620  }
621 
622  top_border = sl->top_borders[top_idx][sl->mb_x];
623  /* There are two lines saved, the line above the top macroblock
624  * of a pair, and the line above the bottom macroblock. */
625  AV_COPY128(top_border, src_y + 16 * linesize);
626  if (pixel_shift)
627  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
628 
629  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
630  if (chroma444) {
631  if (pixel_shift) {
632  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
633  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
634  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
635  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
636  } else {
637  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
638  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
639  }
640  } else if (chroma422) {
641  if (pixel_shift) {
642  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
643  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
644  } else {
645  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
646  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
647  }
648  } else {
649  if (pixel_shift) {
650  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
651  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
652  } else {
653  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
654  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
655  }
656  }
657  }
658 }
659 
660 /**
661  * Initialize implicit_weight table.
662  * @param field 0/1 initialize the weight for interlaced MBAFF
663  * -1 initializes the rest
664  */
665 static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
666 {
667  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
668 
669  for (i = 0; i < 2; i++) {
670  sl->pwt.luma_weight_flag[i] = 0;
671  sl->pwt.chroma_weight_flag[i] = 0;
672  }
673 
674  if (field < 0) {
675  if (h->picture_structure == PICT_FRAME) {
676  cur_poc = h->cur_pic_ptr->poc;
677  } else {
678  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
679  }
680  if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
681  sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2 * cur_poc) {
682  sl->pwt.use_weight = 0;
683  sl->pwt.use_weight_chroma = 0;
684  return;
685  }
686  ref_start = 0;
687  ref_count0 = sl->ref_count[0];
688  ref_count1 = sl->ref_count[1];
689  } else {
690  cur_poc = h->cur_pic_ptr->field_poc[field];
691  ref_start = 16;
692  ref_count0 = 16 + 2 * sl->ref_count[0];
693  ref_count1 = 16 + 2 * sl->ref_count[1];
694  }
695 
696  sl->pwt.use_weight = 2;
697  sl->pwt.use_weight_chroma = 2;
698  sl->pwt.luma_log2_weight_denom = 5;
700 
701  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
702  int64_t poc0 = sl->ref_list[0][ref0].poc;
703  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
704  int w = 32;
705  if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
706  int poc1 = sl->ref_list[1][ref1].poc;
707  int td = av_clip_int8(poc1 - poc0);
708  if (td) {
709  int tb = av_clip_int8(cur_poc - poc0);
710  int tx = (16384 + (FFABS(td) >> 1)) / td;
711  int dist_scale_factor = (tb * tx + 32) >> 8;
712  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
713  w = 64 - dist_scale_factor;
714  }
715  }
716  if (field < 0) {
717  sl->pwt.implicit_weight[ref0][ref1][0] =
718  sl->pwt.implicit_weight[ref0][ref1][1] = w;
719  } else {
720  sl->pwt.implicit_weight[ref0][ref1][field] = w;
721  }
722  }
723  }
724 }
725 
726 /**
727  * initialize scan tables
728  */
730 {
731  int i;
732  for (i = 0; i < 16; i++) {
733 #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
735  h->field_scan[i] = TRANSPOSE(field_scan[i]);
736 #undef TRANSPOSE
737  }
738  for (i = 0; i < 64; i++) {
739 #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
744 #undef TRANSPOSE
745  }
746  if (h->ps.sps->transform_bypass) { // FIXME same ugly
747  memcpy(h->zigzag_scan_q0 , ff_zigzag_scan , sizeof(h->zigzag_scan_q0 ));
748  memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
750  memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
751  memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
753  } else {
754  memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
755  memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
757  memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
758  memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
760  }
761 }
762 
763 static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
764 {
765 #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
766  (CONFIG_H264_D3D11VA_HWACCEL * 2) + \
767  CONFIG_H264_NVDEC_HWACCEL + \
768  CONFIG_H264_VAAPI_HWACCEL + \
769  CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \
770  CONFIG_H264_VDPAU_HWACCEL)
772  const enum AVPixelFormat *choices = pix_fmts;
773  int i;
774 
775  switch (h->ps.sps->bit_depth_luma) {
776  case 9:
777  if (CHROMA444(h)) {
778  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
779  *fmt++ = AV_PIX_FMT_GBRP9;
780  } else
781  *fmt++ = AV_PIX_FMT_YUV444P9;
782  } else if (CHROMA422(h))
783  *fmt++ = AV_PIX_FMT_YUV422P9;
784  else
785  *fmt++ = AV_PIX_FMT_YUV420P9;
786  break;
787  case 10:
788  if (CHROMA444(h)) {
789  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
790  *fmt++ = AV_PIX_FMT_GBRP10;
791  } else
792  *fmt++ = AV_PIX_FMT_YUV444P10;
793  } else if (CHROMA422(h))
794  *fmt++ = AV_PIX_FMT_YUV422P10;
795  else
796  *fmt++ = AV_PIX_FMT_YUV420P10;
797  break;
798  case 12:
799  if (CHROMA444(h)) {
800  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
801  *fmt++ = AV_PIX_FMT_GBRP12;
802  } else
803  *fmt++ = AV_PIX_FMT_YUV444P12;
804  } else if (CHROMA422(h))
805  *fmt++ = AV_PIX_FMT_YUV422P12;
806  else
807  *fmt++ = AV_PIX_FMT_YUV420P12;
808  break;
809  case 14:
810  if (CHROMA444(h)) {
811  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
812  *fmt++ = AV_PIX_FMT_GBRP14;
813  } else
814  *fmt++ = AV_PIX_FMT_YUV444P14;
815  } else if (CHROMA422(h))
816  *fmt++ = AV_PIX_FMT_YUV422P14;
817  else
818  *fmt++ = AV_PIX_FMT_YUV420P14;
819  break;
820  case 8:
821 #if CONFIG_H264_VDPAU_HWACCEL
822  *fmt++ = AV_PIX_FMT_VDPAU;
823 #endif
824 #if CONFIG_H264_NVDEC_HWACCEL
825  *fmt++ = AV_PIX_FMT_CUDA;
826 #endif
827  if (CHROMA444(h)) {
828  if (h->avctx->colorspace == AVCOL_SPC_RGB)
829  *fmt++ = AV_PIX_FMT_GBRP;
830  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
831  *fmt++ = AV_PIX_FMT_YUVJ444P;
832  else
833  *fmt++ = AV_PIX_FMT_YUV444P;
834  } else if (CHROMA422(h)) {
836  *fmt++ = AV_PIX_FMT_YUVJ422P;
837  else
838  *fmt++ = AV_PIX_FMT_YUV422P;
839  } else {
840 #if CONFIG_H264_DXVA2_HWACCEL
841  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
842 #endif
843 #if CONFIG_H264_D3D11VA_HWACCEL
844  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
845  *fmt++ = AV_PIX_FMT_D3D11;
846 #endif
847 #if CONFIG_H264_VAAPI_HWACCEL
848  *fmt++ = AV_PIX_FMT_VAAPI;
849 #endif
850 #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
851  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
852 #endif
853  if (h->avctx->codec->pix_fmts)
854  choices = h->avctx->codec->pix_fmts;
855  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
856  *fmt++ = AV_PIX_FMT_YUVJ420P;
857  else
858  *fmt++ = AV_PIX_FMT_YUV420P;
859  }
860  break;
861  default:
863  "Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma);
864  return AVERROR_INVALIDDATA;
865  }
866 
867  *fmt = AV_PIX_FMT_NONE;
868 
869  for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
870  if (choices[i] == h->avctx->pix_fmt && !force_callback)
871  return choices[i];
872  return ff_thread_get_format(h->avctx, choices);
873 }
874 
875 /* export coded and cropped frame dimensions to AVCodecContext */
877 {
878  const SPS *sps = (const SPS*)h->ps.sps;
879  int cr = sps->crop_right;
880  int cl = sps->crop_left;
881  int ct = sps->crop_top;
882  int cb = sps->crop_bottom;
883  int width = h->width - (cr + cl);
884  int height = h->height - (ct + cb);
885  av_assert0(sps->crop_right + sps->crop_left < (unsigned)h->width);
886  av_assert0(sps->crop_top + sps->crop_bottom < (unsigned)h->height);
887 
888  /* handle container cropping */
889  if (h->width_from_caller > 0 && h->height_from_caller > 0 &&
890  !sps->crop_top && !sps->crop_left &&
891  FFALIGN(h->width_from_caller, 16) == FFALIGN(width, 16) &&
892  FFALIGN(h->height_from_caller, 16) == FFALIGN(height, 16) &&
893  h->width_from_caller <= width &&
894  h->height_from_caller <= height) {
896  height = h->height_from_caller;
897  cl = 0;
898  ct = 0;
899  cr = h->width - width;
900  cb = h->height - height;
901  } else {
902  h->width_from_caller = 0;
903  h->height_from_caller = 0;
904  }
905 
906  h->avctx->coded_width = h->width;
907  h->avctx->coded_height = h->height;
908  h->avctx->width = width;
909  h->avctx->height = height;
910  h->crop_right = cr;
911  h->crop_left = cl;
912  h->crop_top = ct;
913  h->crop_bottom = cb;
914 
915  return 0;
916 }
917 
919 {
920  const SPS *sps = h->ps.sps;
921  int i, ret;
922 
923  ff_set_sar(h->avctx, sps->sar);
925  &h->chroma_x_shift, &h->chroma_y_shift);
926 
927  if (sps->timing_info_present_flag) {
928  int64_t den = sps->time_scale;
929  if (h->x264_build < 44U)
930  den *= 2;
932  sps->num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
933  }
934 
936 
937  h->first_field = 0;
938  h->prev_interlaced_frame = 1;
939 
940  init_scan_tables(h);
941  ret = ff_h264_alloc_tables(h);
942  if (ret < 0) {
943  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
944  goto fail;
945  }
946 
947  if (sps->bit_depth_luma < 8 || sps->bit_depth_luma > 14 ||
948  sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13
949  ) {
950  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
951  sps->bit_depth_luma);
952  ret = AVERROR_INVALIDDATA;
953  goto fail;
954  }
955 
956  h->cur_bit_depth_luma =
959  h->pixel_shift = sps->bit_depth_luma > 8;
961  h->bit_depth_luma = sps->bit_depth_luma;
962 
964  sps->chroma_format_idc);
968  sps->chroma_format_idc);
970 
971  if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
972  ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
973  if (ret < 0) {
974  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
975  goto fail;
976  }
977  } else {
978  for (i = 0; i < h->nb_slice_ctx; i++) {
979  H264SliceContext *sl = &h->slice_ctx[i];
980 
981  sl->h264 = h;
982  sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
983  sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
984  sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
985 
986  if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
987  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
988  goto fail;
989  }
990  }
991  }
992 
993  h->context_initialized = 1;
994 
995  return 0;
996 fail:
998  h->context_initialized = 0;
999  return ret;
1000 }
1001 
1003 {
1004  switch (a) {
1008  default:
1009  return a;
1010  }
1011 }
1012 
1013 static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
1014 {
1015  const SPS *sps;
1016  int needs_reinit = 0, must_reinit, ret;
1017 
1018  if (first_slice) {
1019  av_buffer_unref(&h->ps.pps_ref);
1020  h->ps.pps = NULL;
1021  h->ps.pps_ref = av_buffer_ref(h->ps.pps_list[sl->pps_id]);
1022  if (!h->ps.pps_ref)
1023  return AVERROR(ENOMEM);
1024  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
1025  }
1026 
1027  if (h->ps.sps != (const SPS*)h->ps.sps_list[h->ps.pps->sps_id]->data) {
1028  av_buffer_unref(&h->ps.sps_ref);
1029  h->ps.sps = NULL;
1030  h->ps.sps_ref = av_buffer_ref(h->ps.sps_list[h->ps.pps->sps_id]);
1031  if (!h->ps.sps_ref)
1032  return AVERROR(ENOMEM);
1033  h->ps.sps = (const SPS*)h->ps.sps_ref->data;
1034 
1035  if (h->mb_width != h->ps.sps->mb_width ||
1036  h->mb_height != h->ps.sps->mb_height ||
1039  )
1040  needs_reinit = 1;
1041 
1042  if (h->bit_depth_luma != h->ps.sps->bit_depth_luma ||
1044  needs_reinit = 1;
1045  }
1046  sps = h->ps.sps;
1047 
1048  must_reinit = (h->context_initialized &&
1049  ( 16*sps->mb_width != h->avctx->coded_width
1050  || 16*sps->mb_height != h->avctx->coded_height
1051  || h->cur_bit_depth_luma != sps->bit_depth_luma
1053  || h->mb_width != sps->mb_width
1054  || h->mb_height != sps->mb_height
1055  ));
1056  if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
1058  must_reinit = 1;
1059 
1060  if (first_slice && av_cmp_q(sps->sar, h->avctx->sample_aspect_ratio))
1061  must_reinit = 1;
1062 
1063  if (!h->setup_finished) {
1064  h->avctx->profile = ff_h264_get_profile(sps);
1065  h->avctx->level = sps->level_idc;
1066  h->avctx->refs = sps->ref_frame_count;
1067 
1068  h->mb_width = sps->mb_width;
1069  h->mb_height = sps->mb_height;
1070  h->mb_num = h->mb_width * h->mb_height;
1071  h->mb_stride = h->mb_width + 1;
1072 
1073  h->b_stride = h->mb_width * 4;
1074 
1075  h->chroma_y_shift = sps->chroma_format_idc <= 1; // 400 uses yuv420p
1076 
1077  h->width = 16 * h->mb_width;
1078  h->height = 16 * h->mb_height;
1079 
1080  ret = init_dimensions(h);
1081  if (ret < 0)
1082  return ret;
1083 
1084  if (sps->video_signal_type_present_flag) {
1085  h->avctx->color_range = sps->full_range > 0 ? AVCOL_RANGE_JPEG
1086  : AVCOL_RANGE_MPEG;
1088  if (h->avctx->colorspace != sps->colorspace)
1089  needs_reinit = 1;
1091  h->avctx->color_trc = sps->color_trc;
1092  h->avctx->colorspace = sps->colorspace;
1093  }
1094  }
1095  }
1096 
1097  if (!h->context_initialized || must_reinit || needs_reinit) {
1098  int flush_changes = h->context_initialized;
1099  h->context_initialized = 0;
1100  if (sl != h->slice_ctx) {
1102  "changing width %d -> %d / height %d -> %d on "
1103  "slice %d\n",
1104  h->width, h->avctx->coded_width,
1105  h->height, h->avctx->coded_height,
1106  h->current_slice + 1);
1107  return AVERROR_INVALIDDATA;
1108  }
1109 
1110  av_assert1(first_slice);
1111 
1112  if (flush_changes)
1114 
1115  if ((ret = get_pixel_format(h, 1)) < 0)
1116  return ret;
1117  h->avctx->pix_fmt = ret;
1118 
1119  av_log(h->avctx, AV_LOG_VERBOSE, "Reinit context to %dx%d, "
1120  "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
1121 
1122  if ((ret = h264_slice_header_init(h)) < 0) {
1124  "h264_slice_header_init() failed\n");
1125  return ret;
1126  }
1127  }
1128 
1129  return 0;
1130 }
1131 
1133 {
1134  const SPS *sps = h->ps.sps;
1135  H264Picture *cur = h->cur_pic_ptr;
1136 
1137  cur->f->interlaced_frame = 0;
1138  cur->f->repeat_pict = 0;
1139 
1140  /* Signal interlacing information externally. */
1141  /* Prioritize picture timing SEI information over used
1142  * decoding process if it exists. */
1143 
1146  switch (pt->pic_struct) {
1148  break;
1151  cur->f->interlaced_frame = 1;
1152  break;
1155  if (FIELD_OR_MBAFF_PICTURE(h))
1156  cur->f->interlaced_frame = 1;
1157  else
1158  // try to flag soft telecine progressive
1160  break;
1163  /* Signal the possibility of telecined film externally
1164  * (pic_struct 5,6). From these hints, let the applications
1165  * decide if they apply deinterlacing. */
1166  cur->f->repeat_pict = 1;
1167  break;
1169  cur->f->repeat_pict = 2;
1170  break;
1172  cur->f->repeat_pict = 4;
1173  break;
1174  }
1175 
1176  if ((pt->ct_type & 3) &&
1178  cur->f->interlaced_frame = (pt->ct_type & (1 << 1)) != 0;
1179  } else {
1180  /* Derive interlacing flag from used decoding process. */
1182  }
1184 
1185  if (cur->field_poc[0] != cur->field_poc[1]) {
1186  /* Derive top_field_first from field pocs. */
1187  cur->f->top_field_first = cur->field_poc[0] < cur->field_poc[1];
1188  } else {
1190  /* Use picture timing SEI information. Even if it is a
1191  * information of a past frame, better than nothing. */
1194  cur->f->top_field_first = 1;
1195  else
1196  cur->f->top_field_first = 0;
1197  } else if (cur->f->interlaced_frame) {
1198  /* Default to top field first when pic_struct_present_flag
1199  * is not set but interlaced frame detected */
1200  cur->f->top_field_first = 1;
1201  } else {
1202  /* Most likely progressive */
1203  cur->f->top_field_first = 0;
1204  }
1205  }
1206 
1207  if (h->sei.frame_packing.present &&
1212  AVStereo3D *stereo = av_stereo3d_create_side_data(cur->f);
1213  if (stereo) {
1214  switch (fp->arrangement_type) {
1216  stereo->type = AV_STEREO3D_CHECKERBOARD;
1217  break;
1219  stereo->type = AV_STEREO3D_COLUMNS;
1220  break;
1222  stereo->type = AV_STEREO3D_LINES;
1223  break;
1225  if (fp->quincunx_sampling_flag)
1227  else
1228  stereo->type = AV_STEREO3D_SIDEBYSIDE;
1229  break;
1231  stereo->type = AV_STEREO3D_TOPBOTTOM;
1232  break;
1234  stereo->type = AV_STEREO3D_FRAMESEQUENCE;
1235  break;
1236  case H264_SEI_FPA_TYPE_2D:
1237  stereo->type = AV_STEREO3D_2D;
1238  break;
1239  }
1240 
1241  if (fp->content_interpretation_type == 2)
1242  stereo->flags = AV_STEREO3D_FLAG_INVERT;
1243 
1246  stereo->view = AV_STEREO3D_VIEW_LEFT;
1247  else
1248  stereo->view = AV_STEREO3D_VIEW_RIGHT;
1249  }
1250  }
1251  }
1252 
1253  if (h->sei.display_orientation.present &&
1258  double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16);
1259  AVFrameSideData *rotation = av_frame_new_side_data(cur->f,
1261  sizeof(int32_t) * 9);
1262  if (rotation) {
1263  av_display_rotation_set((int32_t *)rotation->data, angle);
1264  av_display_matrix_flip((int32_t *)rotation->data,
1265  o->hflip, o->vflip);
1266  }
1267  }
1268 
1269  if (h->sei.afd.present) {
1271  sizeof(uint8_t));
1272 
1273  if (sd) {
1275  h->sei.afd.present = 0;
1276  }
1277  }
1278 
1279  if (h->sei.a53_caption.buf_ref) {
1280  H264SEIA53Caption *a53 = &h->sei.a53_caption;
1281 
1283  if (!sd)
1284  av_buffer_unref(&a53->buf_ref);
1285  a53->buf_ref = NULL;
1286 
1288  }
1289 
1290  if (h->sei.picture_timing.timecode_cnt > 0) {
1291  uint32_t tc = 0;
1292  uint32_t *tc_sd;
1293 
1294  AVFrameSideData *tcside = av_frame_new_side_data(cur->f,
1296  sizeof(uint32_t)*4);
1297  if (!tcside)
1298  return AVERROR(ENOMEM);
1299 
1300  tc_sd = (uint32_t*)tcside->data;
1301  tc_sd[0] = h->sei.picture_timing.timecode_cnt;
1302 
1303  for (int i = 0; i < tc_sd[0]; i++) {
1304  uint32_t frames;
1305 
1306  /* For SMPTE 12-M timecodes, frame count is a special case if > 30 FPS.
1307  See SMPTE ST 12-1:2014 Sec 12.1 for more info. */
1308  if (av_cmp_q(h->avctx->framerate, (AVRational) {30, 1}) == 1) {
1309  frames = h->sei.picture_timing.timecode[i].frame / 2;
1310  if (h->sei.picture_timing.timecode[i].frame % 2 == 1) {
1311  if (av_cmp_q(h->avctx->framerate, (AVRational) {50, 1}) == 0)
1312  tc |= (1 << 7);
1313  else
1314  tc |= (1 << 23);
1315  }
1316  } else {
1318  }
1319 
1320  tc |= h->sei.picture_timing.timecode[i].dropframe << 30;
1321  tc |= (frames / 10) << 28;
1322  tc |= (frames % 10) << 24;
1323  tc |= (h->sei.picture_timing.timecode[i].seconds / 10) << 20;
1324  tc |= (h->sei.picture_timing.timecode[i].seconds % 10) << 16;
1325  tc |= (h->sei.picture_timing.timecode[i].minutes / 10) << 12;
1326  tc |= (h->sei.picture_timing.timecode[i].minutes % 10) << 8;
1327  tc |= (h->sei.picture_timing.timecode[i].hours / 10) << 4;
1328  tc |= (h->sei.picture_timing.timecode[i].hours % 10);
1329 
1330  tc_sd[i + 1] = tc;
1331  }
1333  }
1334 
1335  if (h->sei.alternative_transfer.present &&
1336  av_color_transfer_name(h->sei.alternative_transfer.preferred_transfer_characteristics) &&
1337  h->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
1338  h->avctx->color_trc = cur->f->color_trc = h->sei.alternative_transfer.preferred_transfer_characteristics;
1339  }
1340 
1341  return 0;
1342 }
1343 
1345 {
1346  const SPS *sps = h->ps.sps;
1347  H264Picture *out = h->cur_pic_ptr;
1348  H264Picture *cur = h->cur_pic_ptr;
1349  int i, pics, out_of_order, out_idx;
1350 
1351  cur->mmco_reset = h->mmco_reset;
1352  h->mmco_reset = 0;
1353 
1354  if (sps->bitstream_restriction_flag ||
1357  }
1358 
1359  for (i = 0; 1; i++) {
1360  if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
1361  if(i)
1362  h->last_pocs[i-1] = cur->poc;
1363  break;
1364  } else if(i) {
1365  h->last_pocs[i-1]= h->last_pocs[i];
1366  }
1367  }
1368  out_of_order = MAX_DELAYED_PIC_COUNT - i;
1369  if( cur->f->pict_type == AV_PICTURE_TYPE_B
1370  || (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - (int64_t)h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2))
1371  out_of_order = FFMAX(out_of_order, 1);
1372  if (out_of_order == MAX_DELAYED_PIC_COUNT) {
1373  av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
1374  for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
1375  h->last_pocs[i] = INT_MIN;
1376  h->last_pocs[0] = cur->poc;
1377  cur->mmco_reset = 1;
1378  } else if(h->avctx->has_b_frames < out_of_order && !sps->bitstream_restriction_flag){
1379  int loglevel = h->avctx->frame_number > 1 ? AV_LOG_WARNING : AV_LOG_VERBOSE;
1380  av_log(h->avctx, loglevel, "Increasing reorder buffer to %d\n", out_of_order);
1381  h->avctx->has_b_frames = out_of_order;
1382  }
1383 
1384  pics = 0;
1385  while (h->delayed_pic[pics])
1386  pics++;
1387 
1389 
1390  h->delayed_pic[pics++] = cur;
1391  if (cur->reference == 0)
1392  cur->reference = DELAYED_PIC_REF;
1393 
1394  out = h->delayed_pic[0];
1395  out_idx = 0;
1396  for (i = 1; h->delayed_pic[i] &&
1397  !h->delayed_pic[i]->f->key_frame &&
1398  !h->delayed_pic[i]->mmco_reset;
1399  i++)
1400  if (h->delayed_pic[i]->poc < out->poc) {
1401  out = h->delayed_pic[i];
1402  out_idx = i;
1403  }
1404  if (h->avctx->has_b_frames == 0 &&
1405  (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset))
1406  h->next_outputed_poc = INT_MIN;
1407  out_of_order = out->poc < h->next_outputed_poc;
1408 
1409  if (out_of_order || pics > h->avctx->has_b_frames) {
1410  out->reference &= ~DELAYED_PIC_REF;
1411  for (i = out_idx; h->delayed_pic[i]; i++)
1412  h->delayed_pic[i] = h->delayed_pic[i + 1];
1413  }
1414  if (!out_of_order && pics > h->avctx->has_b_frames) {
1415  h->next_output_pic = out;
1416  if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) {
1417  h->next_outputed_poc = INT_MIN;
1418  } else
1419  h->next_outputed_poc = out->poc;
1420 
1421  if (out->recovered) {
1422  // We have reached an recovery point and all frames after it in
1423  // display order are "recovered".
1425  }
1427 
1428  if (!out->recovered) {
1429  if (!(h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) &&
1431  h->next_output_pic = NULL;
1432  } else {
1433  out->f->flags |= AV_FRAME_FLAG_CORRUPT;
1434  }
1435  }
1436  } else {
1437  av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
1438  }
1439 
1440  return 0;
1441 }
1442 
1443 /* This function is called right after decoding the slice header for a first
1444  * slice in a field (or a frame). It decides whether we are decoding a new frame
1445  * or a second field in a pair and does the necessary setup.
1446  */
1448  const H2645NAL *nal, int first_slice)
1449 {
1450  int i;
1451  const SPS *sps;
1452 
1453  int last_pic_structure, last_pic_droppable, ret;
1454 
1455  ret = h264_init_ps(h, sl, first_slice);
1456  if (ret < 0)
1457  return ret;
1458 
1459  sps = h->ps.sps;
1460 
1461  if (sps && sps->bitstream_restriction_flag &&
1462  h->avctx->has_b_frames < sps->num_reorder_frames) {
1464  }
1465 
1466  last_pic_droppable = h->droppable;
1467  last_pic_structure = h->picture_structure;
1468  h->droppable = (nal->ref_idc == 0);
1470 
1471  h->poc.frame_num = sl->frame_num;
1472  h->poc.poc_lsb = sl->poc_lsb;
1474  h->poc.delta_poc[0] = sl->delta_poc[0];
1475  h->poc.delta_poc[1] = sl->delta_poc[1];
1476 
1477  /* Shorten frame num gaps so we don't have to allocate reference
1478  * frames just to throw them away */
1479  if (h->poc.frame_num != h->poc.prev_frame_num) {
1480  int unwrap_prev_frame_num = h->poc.prev_frame_num;
1481  int max_frame_num = 1 << sps->log2_max_frame_num;
1482 
1483  if (unwrap_prev_frame_num > h->poc.frame_num)
1484  unwrap_prev_frame_num -= max_frame_num;
1485 
1486  if ((h->poc.frame_num - unwrap_prev_frame_num) > sps->ref_frame_count) {
1487  unwrap_prev_frame_num = (h->poc.frame_num - sps->ref_frame_count) - 1;
1488  if (unwrap_prev_frame_num < 0)
1489  unwrap_prev_frame_num += max_frame_num;
1490 
1491  h->poc.prev_frame_num = unwrap_prev_frame_num;
1492  }
1493  }
1494 
1495  /* See if we have a decoded first field looking for a pair...
1496  * Here, we're using that to see if we should mark previously
1497  * decode frames as "finished".
1498  * We have to do that before the "dummy" in-between frame allocation,
1499  * since that can modify h->cur_pic_ptr. */
1500  if (h->first_field) {
1501  int last_field = last_pic_structure == PICT_BOTTOM_FIELD;
1502  av_assert0(h->cur_pic_ptr);
1503  av_assert0(h->cur_pic_ptr->f->buf[0]);
1504  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1505 
1506  /* Mark old field/frame as completed */
1507  if (h->cur_pic_ptr->tf.owner[last_field] == h->avctx) {
1508  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_field);
1509  }
1510 
1511  /* figure out if we have a complementary field pair */
1512  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1513  /* Previous field is unmatched. Don't display it, but let it
1514  * remain for reference if marked as such. */
1515  if (last_pic_structure != PICT_FRAME) {
1517  last_pic_structure == PICT_TOP_FIELD);
1518  }
1519  } else {
1520  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1521  /* This and previous field were reference, but had
1522  * different frame_nums. Consider this field first in
1523  * pair. Throw away previous field except for reference
1524  * purposes. */
1525  if (last_pic_structure != PICT_FRAME) {
1527  last_pic_structure == PICT_TOP_FIELD);
1528  }
1529  } else {
1530  /* Second field in complementary pair */
1531  if (!((last_pic_structure == PICT_TOP_FIELD &&
1533  (last_pic_structure == PICT_BOTTOM_FIELD &&
1536  "Invalid field mode combination %d/%d\n",
1537  last_pic_structure, h->picture_structure);
1538  h->picture_structure = last_pic_structure;
1539  h->droppable = last_pic_droppable;
1540  return AVERROR_INVALIDDATA;
1541  } else if (last_pic_droppable != h->droppable) {
1543  "Found reference and non-reference fields in the same frame, which");
1544  h->picture_structure = last_pic_structure;
1545  h->droppable = last_pic_droppable;
1546  return AVERROR_PATCHWELCOME;
1547  }
1548  }
1549  }
1550  }
1551 
1552  while (h->poc.frame_num != h->poc.prev_frame_num && !h->first_field &&
1553  h->poc.frame_num != (h->poc.prev_frame_num + 1) % (1 << sps->log2_max_frame_num)) {
1554  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1555  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1556  h->poc.frame_num, h->poc.prev_frame_num);
1558  for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
1559  h->last_pocs[i] = INT_MIN;
1560  ret = h264_frame_start(h);
1561  if (ret < 0) {
1562  h->first_field = 0;
1563  return ret;
1564  }
1565 
1566  h->poc.prev_frame_num++;
1567  h->poc.prev_frame_num %= 1 << sps->log2_max_frame_num;
1570  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1571  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1572 
1573  h->explicit_ref_marking = 0;
1575  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1576  return ret;
1577  /* Error concealment: If a ref is missing, copy the previous ref
1578  * in its place.
1579  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1580  * many assumptions about there being no actual duplicates.
1581  * FIXME: This does not copy padding for out-of-frame motion
1582  * vectors. Given we are concealing a lost frame, this probably
1583  * is not noticeable by comparison, but it should be fixed. */
1584  if (h->short_ref_count) {
1585  if (prev &&
1586  h->short_ref[0]->f->width == prev->f->width &&
1587  h->short_ref[0]->f->height == prev->f->height &&
1588  h->short_ref[0]->f->format == prev->f->format) {
1589  ff_thread_await_progress(&prev->tf, INT_MAX, 0);
1590  if (prev->field_picture)
1591  ff_thread_await_progress(&prev->tf, INT_MAX, 1);
1592  av_image_copy(h->short_ref[0]->f->data,
1593  h->short_ref[0]->f->linesize,
1594  (const uint8_t **)prev->f->data,
1595  prev->f->linesize,
1596  prev->f->format,
1597  prev->f->width,
1598  prev->f->height);
1599  h->short_ref[0]->poc = prev->poc + 2;
1600  }
1601  h->short_ref[0]->frame_num = h->poc.prev_frame_num;
1602  }
1603  }
1604 
1605  /* See if we have a decoded first field looking for a pair...
1606  * We're using that to see whether to continue decoding in that
1607  * frame, or to allocate a new one. */
1608  if (h->first_field) {
1609  av_assert0(h->cur_pic_ptr);
1610  av_assert0(h->cur_pic_ptr->f->buf[0]);
1611  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1612 
1613  /* figure out if we have a complementary field pair */
1614  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1615  /* Previous field is unmatched. Don't display it, but let it
1616  * remain for reference if marked as such. */
1617  h->missing_fields ++;
1618  h->cur_pic_ptr = NULL;
1619  h->first_field = FIELD_PICTURE(h);
1620  } else {
1621  h->missing_fields = 0;
1622  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1625  /* This and the previous field had different frame_nums.
1626  * Consider this field first in pair. Throw away previous
1627  * one except for reference purposes. */
1628  h->first_field = 1;
1629  h->cur_pic_ptr = NULL;
1630  } else if (h->cur_pic_ptr->reference & DELAYED_PIC_REF) {
1631  /* This frame was already output, we cannot draw into it
1632  * anymore.
1633  */
1634  h->first_field = 1;
1635  h->cur_pic_ptr = NULL;
1636  } else {
1637  /* Second field in complementary pair */
1638  h->first_field = 0;
1639  }
1640  }
1641  } else {
1642  /* Frame or first field in a potentially complementary pair */
1643  h->first_field = FIELD_PICTURE(h);
1644  }
1645 
1646  if (!FIELD_PICTURE(h) || h->first_field) {
1647  if (h264_frame_start(h) < 0) {
1648  h->first_field = 0;
1649  return AVERROR_INVALIDDATA;
1650  }
1651  } else {
1652  int field = h->picture_structure == PICT_BOTTOM_FIELD;
1654  h->cur_pic_ptr->tf.owner[field] = h->avctx;
1655  }
1656  /* Some macroblocks can be accessed before they're available in case
1657  * of lost slices, MBAFF or threading. */
1658  if (FIELD_PICTURE(h)) {
1659  for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
1660  memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
1661  } else {
1662  memset(h->slice_table, -1,
1663  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
1664  }
1665 
1667  h->ps.sps, &h->poc, h->picture_structure, nal->ref_idc);
1668  if (ret < 0)
1669  return ret;
1670 
1671  memcpy(h->mmco, sl->mmco, sl->nb_mmco * sizeof(*h->mmco));
1672  h->nb_mmco = sl->nb_mmco;
1674 
1675  h->picture_idr = nal->type == H264_NAL_IDR_SLICE;
1676 
1677  if (h->sei.recovery_point.recovery_frame_cnt >= 0) {
1678  const int sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
1679 
1680  if (h->poc.frame_num != sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I)
1681  h->valid_recovery_point = 1;
1682 
1683  if ( h->recovery_frame < 0
1684  || av_mod_uintp2(h->recovery_frame - h->poc.frame_num, h->ps.sps->log2_max_frame_num) > sei_recovery_frame_cnt) {
1685  h->recovery_frame = av_mod_uintp2(h->poc.frame_num + sei_recovery_frame_cnt, h->ps.sps->log2_max_frame_num);
1686 
1687  if (!h->valid_recovery_point)
1688  h->recovery_frame = h->poc.frame_num;
1689  }
1690  }
1691 
1692  h->cur_pic_ptr->f->key_frame |= (nal->type == H264_NAL_IDR_SLICE);
1693 
1694  if (nal->type == H264_NAL_IDR_SLICE ||
1695  (h->recovery_frame == h->poc.frame_num && nal->ref_idc)) {
1696  h->recovery_frame = -1;
1697  h->cur_pic_ptr->recovered = 1;
1698  }
1699  // If we have an IDR, all frames after it in decoded order are
1700  // "recovered".
1701  if (nal->type == H264_NAL_IDR_SLICE)
1703 #if 1
1705 #else
1707 #endif
1708 
1709  /* Set the frame properties/side data. Only done for the second field in
1710  * field coded frames, since some SEI information is present for each field
1711  * and is merged by the SEI parsing code. */
1712  if (!FIELD_PICTURE(h) || !h->first_field || h->missing_fields > 1) {
1713  ret = h264_export_frame_props(h);
1714  if (ret < 0)
1715  return ret;
1716 
1717  ret = h264_select_output_frame(h);
1718  if (ret < 0)
1719  return ret;
1720  }
1721 
1722  return 0;
1723 }
1724 
1726  const H2645NAL *nal)
1727 {
1728  const SPS *sps;
1729  const PPS *pps;
1730  int ret;
1731  unsigned int slice_type, tmp, i;
1732  int field_pic_flag, bottom_field_flag;
1733  int first_slice = sl == h->slice_ctx && !h->current_slice;
1734  int picture_structure;
1735 
1736  if (first_slice)
1738 
1739  sl->first_mb_addr = get_ue_golomb_long(&sl->gb);
1740 
1741  slice_type = get_ue_golomb_31(&sl->gb);
1742  if (slice_type > 9) {
1744  "slice type %d too large at %d\n",
1745  slice_type, sl->first_mb_addr);
1746  return AVERROR_INVALIDDATA;
1747  }
1748  if (slice_type > 4) {
1749  slice_type -= 5;
1750  sl->slice_type_fixed = 1;
1751  } else
1752  sl->slice_type_fixed = 0;
1753 
1754  slice_type = ff_h264_golomb_to_pict_type[slice_type];
1755  sl->slice_type = slice_type;
1756  sl->slice_type_nos = slice_type & 3;
1757 
1758  if (nal->type == H264_NAL_IDR_SLICE &&
1760  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1761  return AVERROR_INVALIDDATA;
1762  }
1763 
1764  sl->pps_id = get_ue_golomb(&sl->gb);
1765  if (sl->pps_id >= MAX_PPS_COUNT) {
1766  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", sl->pps_id);
1767  return AVERROR_INVALIDDATA;
1768  }
1769  if (!h->ps.pps_list[sl->pps_id]) {
1771  "non-existing PPS %u referenced\n",
1772  sl->pps_id);
1773  return AVERROR_INVALIDDATA;
1774  }
1775  pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
1776 
1777  if (!h->ps.sps_list[pps->sps_id]) {
1779  "non-existing SPS %u referenced\n", pps->sps_id);
1780  return AVERROR_INVALIDDATA;
1781  }
1782  sps = (const SPS*)h->ps.sps_list[pps->sps_id]->data;
1783 
1784  sl->frame_num = get_bits(&sl->gb, sps->log2_max_frame_num);
1785  if (!first_slice) {
1786  if (h->poc.frame_num != sl->frame_num) {
1787  av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
1788  h->poc.frame_num, sl->frame_num);
1789  return AVERROR_INVALIDDATA;
1790  }
1791  }
1792 
1793  sl->mb_mbaff = 0;
1794 
1795  if (sps->frame_mbs_only_flag) {
1796  picture_structure = PICT_FRAME;
1797  } else {
1798  if (!sps->direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
1799  av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
1800  return -1;
1801  }
1802  field_pic_flag = get_bits1(&sl->gb);
1803  if (field_pic_flag) {
1804  bottom_field_flag = get_bits1(&sl->gb);
1805  picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1806  } else {
1807  picture_structure = PICT_FRAME;
1808  }
1809  }
1810  sl->picture_structure = picture_structure;
1811  sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
1812 
1813  if (picture_structure == PICT_FRAME) {
1814  sl->curr_pic_num = sl->frame_num;
1815  sl->max_pic_num = 1 << sps->log2_max_frame_num;
1816  } else {
1817  sl->curr_pic_num = 2 * sl->frame_num + 1;
1818  sl->max_pic_num = 1 << (sps->log2_max_frame_num + 1);
1819  }
1820 
1821  if (nal->type == H264_NAL_IDR_SLICE)
1822  get_ue_golomb_long(&sl->gb); /* idr_pic_id */
1823 
1824  if (sps->poc_type == 0) {
1825  sl->poc_lsb = get_bits(&sl->gb, sps->log2_max_poc_lsb);
1826 
1827  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1828  sl->delta_poc_bottom = get_se_golomb(&sl->gb);
1829  }
1830 
1831  if (sps->poc_type == 1 && !sps->delta_pic_order_always_zero_flag) {
1832  sl->delta_poc[0] = get_se_golomb(&sl->gb);
1833 
1834  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1835  sl->delta_poc[1] = get_se_golomb(&sl->gb);
1836  }
1837 
1838  sl->redundant_pic_count = 0;
1839  if (pps->redundant_pic_cnt_present)
1840  sl->redundant_pic_count = get_ue_golomb(&sl->gb);
1841 
1842  if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
1843  sl->direct_spatial_mv_pred = get_bits1(&sl->gb);
1844 
1846  &sl->gb, pps, sl->slice_type_nos,
1847  picture_structure, h->avctx);
1848  if (ret < 0)
1849  return ret;
1850 
1851  if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
1853  if (ret < 0) {
1854  sl->ref_count[1] = sl->ref_count[0] = 0;
1855  return ret;
1856  }
1857  }
1858 
1859  sl->pwt.use_weight = 0;
1860  for (i = 0; i < 2; i++) {
1861  sl->pwt.luma_weight_flag[i] = 0;
1862  sl->pwt.chroma_weight_flag[i] = 0;
1863  }
1864  if ((pps->weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
1865  (pps->weighted_bipred_idc == 1 &&
1867  ret = ff_h264_pred_weight_table(&sl->gb, sps, sl->ref_count,
1868  sl->slice_type_nos, &sl->pwt,
1869  picture_structure, h->avctx);
1870  if (ret < 0)
1871  return ret;
1872  }
1873 
1874  sl->explicit_ref_marking = 0;
1875  if (nal->ref_idc) {
1876  ret = ff_h264_decode_ref_pic_marking(sl, &sl->gb, nal, h->avctx);
1877  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1878  return AVERROR_INVALIDDATA;
1879  }
1880 
1881  if (sl->slice_type_nos != AV_PICTURE_TYPE_I && pps->cabac) {
1882  tmp = get_ue_golomb_31(&sl->gb);
1883  if (tmp > 2) {
1884  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1885  return AVERROR_INVALIDDATA;
1886  }
1887  sl->cabac_init_idc = tmp;
1888  }
1889 
1890  sl->last_qscale_diff = 0;
1891  tmp = pps->init_qp + (unsigned)get_se_golomb(&sl->gb);
1892  if (tmp > 51 + 6 * (sps->bit_depth_luma - 8)) {
1893  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
1894  return AVERROR_INVALIDDATA;
1895  }
1896  sl->qscale = tmp;
1897  sl->chroma_qp[0] = get_chroma_qp(pps, 0, sl->qscale);
1898  sl->chroma_qp[1] = get_chroma_qp(pps, 1, sl->qscale);
1899  // FIXME qscale / qp ... stuff
1900  if (sl->slice_type == AV_PICTURE_TYPE_SP)
1901  get_bits1(&sl->gb); /* sp_for_switch_flag */
1902  if (sl->slice_type == AV_PICTURE_TYPE_SP ||
1904  get_se_golomb(&sl->gb); /* slice_qs_delta */
1905 
1906  sl->deblocking_filter = 1;
1907  sl->slice_alpha_c0_offset = 0;
1908  sl->slice_beta_offset = 0;
1910  tmp = get_ue_golomb_31(&sl->gb);
1911  if (tmp > 2) {
1913  "deblocking_filter_idc %u out of range\n", tmp);
1914  return AVERROR_INVALIDDATA;
1915  }
1916  sl->deblocking_filter = tmp;
1917  if (sl->deblocking_filter < 2)
1918  sl->deblocking_filter ^= 1; // 1<->0
1919 
1920  if (sl->deblocking_filter) {
1921  int slice_alpha_c0_offset_div2 = get_se_golomb(&sl->gb);
1922  int slice_beta_offset_div2 = get_se_golomb(&sl->gb);
1923  if (slice_alpha_c0_offset_div2 > 6 ||
1924  slice_alpha_c0_offset_div2 < -6 ||
1925  slice_beta_offset_div2 > 6 ||
1926  slice_beta_offset_div2 < -6) {
1928  "deblocking filter parameters %d %d out of range\n",
1929  slice_alpha_c0_offset_div2, slice_beta_offset_div2);
1930  return AVERROR_INVALIDDATA;
1931  }
1932  sl->slice_alpha_c0_offset = slice_alpha_c0_offset_div2 * 2;
1933  sl->slice_beta_offset = slice_beta_offset_div2 * 2;
1934  }
1935  }
1936 
1937  return 0;
1938 }
1939 
1940 /* do all the per-slice initialization needed before we can start decoding the
1941  * actual MBs */
1943  const H2645NAL *nal)
1944 {
1945  int i, j, ret = 0;
1946 
1947  if (h->picture_idr && nal->type != H264_NAL_IDR_SLICE) {
1948  av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of IDR and non-IDR slices\n");
1949  return AVERROR_INVALIDDATA;
1950  }
1951 
1952  av_assert1(h->mb_num == h->mb_width * h->mb_height);
1953  if (sl->first_mb_addr << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
1954  sl->first_mb_addr >= h->mb_num) {
1955  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
1956  return AVERROR_INVALIDDATA;
1957  }
1958  sl->resync_mb_x = sl->mb_x = sl->first_mb_addr % h->mb_width;
1959  sl->resync_mb_y = sl->mb_y = (sl->first_mb_addr / h->mb_width) <<
1962  sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
1963  av_assert1(sl->mb_y < h->mb_height);
1964 
1965  ret = ff_h264_build_ref_list(h, sl);
1966  if (ret < 0)
1967  return ret;
1968 
1969  if (h->ps.pps->weighted_bipred_idc == 2 &&
1971  implicit_weight_table(h, sl, -1);
1972  if (FRAME_MBAFF(h)) {
1973  implicit_weight_table(h, sl, 0);
1974  implicit_weight_table(h, sl, 1);
1975  }
1976  }
1977 
1980  if (!h->setup_finished)
1982 
1983  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
1991  nal->ref_idc == 0))
1992  sl->deblocking_filter = 0;
1993 
1994  if (sl->deblocking_filter == 1 && h->nb_slice_ctx > 1) {
1995  if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) {
1996  /* Cheat slightly for speed:
1997  * Do not bother to deblock across slices. */
1998  sl->deblocking_filter = 2;
1999  } else {
2000  h->postpone_filter = 1;
2001  }
2002  }
2003  sl->qp_thresh = 15 -
2005  FFMAX3(0,
2006  h->ps.pps->chroma_qp_index_offset[0],
2007  h->ps.pps->chroma_qp_index_offset[1]) +
2008  6 * (h->ps.sps->bit_depth_luma - 8);
2009 
2010  sl->slice_num = ++h->current_slice;
2011 
2012  if (sl->slice_num)
2013  h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
2014  if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
2015  && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
2016  && sl->slice_num >= MAX_SLICES) {
2017  //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
2018  av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
2019  }
2020 
2021  for (j = 0; j < 2; j++) {
2022  int id_list[16];
2023  int *ref2frm = h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
2024  for (i = 0; i < 16; i++) {
2025  id_list[i] = 60;
2026  if (j < sl->list_count && i < sl->ref_count[j] &&
2027  sl->ref_list[j][i].parent->f->buf[0]) {
2028  int k;
2029  AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
2030  for (k = 0; k < h->short_ref_count; k++)
2031  if (h->short_ref[k]->f->buf[0]->buffer == buf) {
2032  id_list[i] = k;
2033  break;
2034  }
2035  for (k = 0; k < h->long_ref_count; k++)
2036  if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
2037  id_list[i] = h->short_ref_count + k;
2038  break;
2039  }
2040  }
2041  }
2042 
2043  ref2frm[0] =
2044  ref2frm[1] = -1;
2045  for (i = 0; i < 16; i++)
2046  ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
2047  ref2frm[18 + 0] =
2048  ref2frm[18 + 1] = -1;
2049  for (i = 16; i < 48; i++)
2050  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
2051  (sl->ref_list[j][i].reference & 3);
2052  }
2053 
2054  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
2056  "slice:%d %s mb:%d %c%s%s frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
2057  sl->slice_num,
2058  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
2059  sl->mb_y * h->mb_width + sl->mb_x,
2061  sl->slice_type_fixed ? " fix" : "",
2062  nal->type == H264_NAL_IDR_SLICE ? " IDR" : "",
2063  h->poc.frame_num,
2064  h->cur_pic_ptr->field_poc[0],
2065  h->cur_pic_ptr->field_poc[1],
2066  sl->ref_count[0], sl->ref_count[1],
2067  sl->qscale,
2068  sl->deblocking_filter,
2070  sl->pwt.use_weight,
2071  sl->pwt.use_weight == 1 && sl->pwt.use_weight_chroma ? "c" : "",
2072  sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
2073  }
2074 
2075  return 0;
2076 }
2077 
2079 {
2081  int first_slice = sl == h->slice_ctx && !h->current_slice;
2082  int ret;
2083 
2084  sl->gb = nal->gb;
2085 
2086  ret = h264_slice_header_parse(h, sl, nal);
2087  if (ret < 0)
2088  return ret;
2089 
2090  // discard redundant pictures
2091  if (sl->redundant_pic_count > 0) {
2092  sl->ref_count[0] = sl->ref_count[1] = 0;
2093  return 0;
2094  }
2095 
2096  if (sl->first_mb_addr == 0 || !h->current_slice) {
2097  if (h->setup_finished) {
2098  av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n");
2099  return AVERROR_INVALIDDATA;
2100  }
2101  }
2102 
2103  if (sl->first_mb_addr == 0) { // FIXME better field boundary detection
2104  if (h->current_slice) {
2105  // this slice starts a new field
2106  // first decode any pending queued slices
2107  if (h->nb_slice_ctx_queued) {
2108  H264SliceContext tmp_ctx;
2109 
2111  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
2112  return ret;
2113 
2114  memcpy(&tmp_ctx, h->slice_ctx, sizeof(tmp_ctx));
2115  memcpy(h->slice_ctx, sl, sizeof(tmp_ctx));
2116  memcpy(sl, &tmp_ctx, sizeof(tmp_ctx));
2117  sl = h->slice_ctx;
2118  }
2119 
2120  if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
2121  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2122  if (ret < 0)
2123  return ret;
2124  } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == H264_NAL_IDR_SLICE) {
2125  av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
2126  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2127  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
2128  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
2129  h->cur_pic_ptr = NULL;
2130  if (ret < 0)
2131  return ret;
2132  } else
2133  return AVERROR_INVALIDDATA;
2134  }
2135 
2136  if (!h->first_field) {
2137  if (h->cur_pic_ptr && !h->droppable) {
2140  }
2141  h->cur_pic_ptr = NULL;
2142  }
2143  }
2144 
2145  if (!h->current_slice)
2146  av_assert0(sl == h->slice_ctx);
2147 
2148  if (h->current_slice == 0 && !h->first_field) {
2149  if (
2150  (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
2154  h->avctx->skip_frame >= AVDISCARD_ALL) {
2155  return 0;
2156  }
2157  }
2158 
2159  if (!first_slice) {
2160  const PPS *pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
2161 
2162  if (h->ps.pps->sps_id != pps->sps_id ||
2163  h->ps.pps->transform_8x8_mode != pps->transform_8x8_mode /*||
2164  (h->setup_finished && h->ps.pps != pps)*/) {
2165  av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n");
2166  return AVERROR_INVALIDDATA;
2167  }
2168  if (h->ps.sps != (const SPS*)h->ps.sps_list[h->ps.pps->sps_id]->data) {
2170  "SPS changed in the middle of the frame\n");
2171  return AVERROR_INVALIDDATA;
2172  }
2173  }
2174 
2175  if (h->current_slice == 0) {
2176  ret = h264_field_start(h, sl, nal, first_slice);
2177  if (ret < 0)
2178  return ret;
2179  } else {
2180  if (h->picture_structure != sl->picture_structure ||
2181  h->droppable != (nal->ref_idc == 0)) {
2183  "Changing field mode (%d -> %d) between slices is not allowed\n",
2185  return AVERROR_INVALIDDATA;
2186  } else if (!h->cur_pic_ptr) {
2188  "unset cur_pic_ptr on slice %d\n",
2189  h->current_slice + 1);
2190  return AVERROR_INVALIDDATA;
2191  }
2192  }
2193 
2194  ret = h264_slice_init(h, sl, nal);
2195  if (ret < 0)
2196  return ret;
2197 
2198  h->nb_slice_ctx_queued++;
2199 
2200  return 0;
2201 }
2202 
2204 {
2205  switch (sl->slice_type) {
2206  case AV_PICTURE_TYPE_P:
2207  return 0;
2208  case AV_PICTURE_TYPE_B:
2209  return 1;
2210  case AV_PICTURE_TYPE_I:
2211  return 2;
2212  case AV_PICTURE_TYPE_SP:
2213  return 3;
2214  case AV_PICTURE_TYPE_SI:
2215  return 4;
2216  default:
2217  return AVERROR_INVALIDDATA;
2218  }
2219 }
2220 
2222  H264SliceContext *sl,
2223  int mb_type, int top_xy,
2224  int left_xy[LEFT_MBS],
2225  int top_type,
2226  int left_type[LEFT_MBS],
2227  int mb_xy, int list)
2228 {
2229  int b_stride = h->b_stride;
2230  int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
2231  int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
2232  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
2233  if (USES_LIST(top_type, list)) {
2234  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
2235  const int b8_xy = 4 * top_xy + 2;
2236  const int *ref2frm = &h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2237  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
2238  ref_cache[0 - 1 * 8] =
2239  ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]];
2240  ref_cache[2 - 1 * 8] =
2241  ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]];
2242  } else {
2243  AV_ZERO128(mv_dst - 1 * 8);
2244  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2245  }
2246 
2247  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
2248  if (USES_LIST(left_type[LTOP], list)) {
2249  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
2250  const int b8_xy = 4 * left_xy[LTOP] + 1;
2251  const int *ref2frm = &h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2252  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
2253  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
2254  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
2255  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
2256  ref_cache[-1 + 0] =
2257  ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
2258  ref_cache[-1 + 16] =
2259  ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
2260  } else {
2261  AV_ZERO32(mv_dst - 1 + 0);
2262  AV_ZERO32(mv_dst - 1 + 8);
2263  AV_ZERO32(mv_dst - 1 + 16);
2264  AV_ZERO32(mv_dst - 1 + 24);
2265  ref_cache[-1 + 0] =
2266  ref_cache[-1 + 8] =
2267  ref_cache[-1 + 16] =
2268  ref_cache[-1 + 24] = LIST_NOT_USED;
2269  }
2270  }
2271  }
2272 
2273  if (!USES_LIST(mb_type, list)) {
2274  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
2275  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2276  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2277  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2278  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2279  return;
2280  }
2281 
2282  {
2283  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
2284  const int *ref2frm = &h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2285  uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101;
2286  uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101;
2287  AV_WN32A(&ref_cache[0 * 8], ref01);
2288  AV_WN32A(&ref_cache[1 * 8], ref01);
2289  AV_WN32A(&ref_cache[2 * 8], ref23);
2290  AV_WN32A(&ref_cache[3 * 8], ref23);
2291  }
2292 
2293  {
2294  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
2295  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
2296  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
2297  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
2298  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
2299  }
2300 }
2301 
2302 /**
2303  * @return non zero if the loop filter can be skipped
2304  */
2305 static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
2306 {
2307  const int mb_xy = sl->mb_xy;
2308  int top_xy, left_xy[LEFT_MBS];
2309  int top_type, left_type[LEFT_MBS];
2310  uint8_t *nnz;
2311  uint8_t *nnz_cache;
2312 
2313  top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
2314 
2315  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
2316  if (FRAME_MBAFF(h)) {
2317  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
2318  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
2319  if (sl->mb_y & 1) {
2320  if (left_mb_field_flag != curr_mb_field_flag)
2321  left_xy[LTOP] -= h->mb_stride;
2322  } else {
2323  if (curr_mb_field_flag)
2324  top_xy += h->mb_stride &
2325  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
2326  if (left_mb_field_flag != curr_mb_field_flag)
2327  left_xy[LBOT] += h->mb_stride;
2328  }
2329  }
2330 
2331  sl->top_mb_xy = top_xy;
2332  sl->left_mb_xy[LTOP] = left_xy[LTOP];
2333  sl->left_mb_xy[LBOT] = left_xy[LBOT];
2334  {
2335  /* For sufficiently low qp, filtering wouldn't do anything.
2336  * This is a conservative estimate: could also check beta_offset
2337  * and more accurate chroma_qp. */
2338  int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
2339  int qp = h->cur_pic.qscale_table[mb_xy];
2340  if (qp <= qp_thresh &&
2341  (left_xy[LTOP] < 0 ||
2342  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
2343  (top_xy < 0 ||
2344  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
2345  if (!FRAME_MBAFF(h))
2346  return 1;
2347  if ((left_xy[LTOP] < 0 ||
2348  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
2349  (top_xy < h->mb_stride ||
2350  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
2351  return 1;
2352  }
2353  }
2354 
2355  top_type = h->cur_pic.mb_type[top_xy];
2356  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
2357  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
2358  if (sl->deblocking_filter == 2) {
2359  if (h->slice_table[top_xy] != sl->slice_num)
2360  top_type = 0;
2361  if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
2362  left_type[LTOP] = left_type[LBOT] = 0;
2363  } else {
2364  if (h->slice_table[top_xy] == 0xFFFF)
2365  top_type = 0;
2366  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
2367  left_type[LTOP] = left_type[LBOT] = 0;
2368  }
2369  sl->top_type = top_type;
2370  sl->left_type[LTOP] = left_type[LTOP];
2371  sl->left_type[LBOT] = left_type[LBOT];
2372 
2373  if (IS_INTRA(mb_type))
2374  return 0;
2375 
2376  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2377  top_type, left_type, mb_xy, 0);
2378  if (sl->list_count == 2)
2379  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2380  top_type, left_type, mb_xy, 1);
2381 
2382  nnz = h->non_zero_count[mb_xy];
2383  nnz_cache = sl->non_zero_count_cache;
2384  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2385  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2386  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2387  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2388  sl->cbp = h->cbp_table[mb_xy];
2389 
2390  if (top_type) {
2391  nnz = h->non_zero_count[top_xy];
2392  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2393  }
2394 
2395  if (left_type[LTOP]) {
2396  nnz = h->non_zero_count[left_xy[LTOP]];
2397  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2398  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2399  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2400  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2401  }
2402 
2403  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2404  * from what the loop filter needs */
2405  if (!CABAC(h) && h->ps.pps->transform_8x8_mode) {
2406  if (IS_8x8DCT(top_type)) {
2407  nnz_cache[4 + 8 * 0] =
2408  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2409  nnz_cache[6 + 8 * 0] =
2410  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2411  }
2412  if (IS_8x8DCT(left_type[LTOP])) {
2413  nnz_cache[3 + 8 * 1] =
2414  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2415  }
2416  if (IS_8x8DCT(left_type[LBOT])) {
2417  nnz_cache[3 + 8 * 3] =
2418  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2419  }
2420 
2421  if (IS_8x8DCT(mb_type)) {
2422  nnz_cache[scan8[0]] =
2423  nnz_cache[scan8[1]] =
2424  nnz_cache[scan8[2]] =
2425  nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
2426 
2427  nnz_cache[scan8[0 + 4]] =
2428  nnz_cache[scan8[1 + 4]] =
2429  nnz_cache[scan8[2 + 4]] =
2430  nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
2431 
2432  nnz_cache[scan8[0 + 8]] =
2433  nnz_cache[scan8[1 + 8]] =
2434  nnz_cache[scan8[2 + 8]] =
2435  nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
2436 
2437  nnz_cache[scan8[0 + 12]] =
2438  nnz_cache[scan8[1 + 12]] =
2439  nnz_cache[scan8[2 + 12]] =
2440  nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
2441  }
2442  }
2443 
2444  return 0;
2445 }
2446 
2447 static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
2448 {
2449  uint8_t *dest_y, *dest_cb, *dest_cr;
2450  int linesize, uvlinesize, mb_x, mb_y;
2451  const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
2452  const int old_slice_type = sl->slice_type;
2453  const int pixel_shift = h->pixel_shift;
2454  const int block_h = 16 >> h->chroma_y_shift;
2455 
2456  if (h->postpone_filter)
2457  return;
2458 
2459  if (sl->deblocking_filter) {
2460  for (mb_x = start_x; mb_x < end_x; mb_x++)
2461  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2462  int mb_xy, mb_type;
2463  mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
2464  mb_type = h->cur_pic.mb_type[mb_xy];
2465 
2466  if (FRAME_MBAFF(h))
2467  sl->mb_mbaff =
2468  sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2469 
2470  sl->mb_x = mb_x;
2471  sl->mb_y = mb_y;
2472  dest_y = h->cur_pic.f->data[0] +
2473  ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
2474  dest_cb = h->cur_pic.f->data[1] +
2475  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2476  mb_y * sl->uvlinesize * block_h;
2477  dest_cr = h->cur_pic.f->data[2] +
2478  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2479  mb_y * sl->uvlinesize * block_h;
2480  // FIXME simplify above
2481 
2482  if (MB_FIELD(sl)) {
2483  linesize = sl->mb_linesize = sl->linesize * 2;
2484  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
2485  if (mb_y & 1) { // FIXME move out of this function?
2486  dest_y -= sl->linesize * 15;
2487  dest_cb -= sl->uvlinesize * (block_h - 1);
2488  dest_cr -= sl->uvlinesize * (block_h - 1);
2489  }
2490  } else {
2491  linesize = sl->mb_linesize = sl->linesize;
2492  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
2493  }
2494  backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
2495  uvlinesize, 0);
2496  if (fill_filter_caches(h, sl, mb_type))
2497  continue;
2498  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, h->cur_pic.qscale_table[mb_xy]);
2499  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, h->cur_pic.qscale_table[mb_xy]);
2500 
2501  if (FRAME_MBAFF(h)) {
2502  ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2503  linesize, uvlinesize);
2504  } else {
2505  ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
2506  dest_cr, linesize, uvlinesize);
2507  }
2508  }
2509  }
2510  sl->slice_type = old_slice_type;
2511  sl->mb_x = end_x;
2512  sl->mb_y = end_mb_y - FRAME_MBAFF(h);
2513  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale);
2514  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale);
2515 }
2516 
2518 {
2519  const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
2520  int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
2521  h->cur_pic.mb_type[mb_xy - 1] :
2522  (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
2523  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2524  sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2525 }
2526 
2527 /**
2528  * Draw edges and report progress for the last MB row.
2529  */
2531 {
2532  int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
2533  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2534  int height = 16 << FRAME_MBAFF(h);
2535  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2536 
2537  if (sl->deblocking_filter) {
2538  if ((top + height) >= pic_height)
2539  height += deblock_border;
2540  top -= deblock_border;
2541  }
2542 
2543  if (top >= pic_height || (top + height) < 0)
2544  return;
2545 
2546  height = FFMIN(height, pic_height - top);
2547  if (top < 0) {
2548  height = top + height;
2549  top = 0;
2550  }
2551 
2552  ff_h264_draw_horiz_band(h, sl, top, height);
2553 
2554  if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
2555  return;
2556 
2557  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2559 }
2560 
2562  int startx, int starty,
2563  int endx, int endy, int status)
2564 {
2565  if (!sl->h264->enable_er)
2566  return;
2567 
2568  if (CONFIG_ERROR_RESILIENCE) {
2569  ERContext *er = &sl->h264->slice_ctx[0].er;
2570 
2571  ff_er_add_slice(er, startx, starty, endx, endy, status);
2572  }
2573 }
2574 
2575 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2576 {
2577  H264SliceContext *sl = arg;
2578  const H264Context *h = sl->h264;
2579  int lf_x_start = sl->mb_x;
2580  int orig_deblock = sl->deblocking_filter;
2581  int ret;
2582 
2583  sl->linesize = h->cur_pic_ptr->f->linesize[0];
2584  sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
2585 
2586  ret = alloc_scratch_buffers(sl, sl->linesize);
2587  if (ret < 0)
2588  return ret;
2589 
2590  sl->mb_skip_run = -1;
2591 
2592  av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
2593 
2594  if (h->postpone_filter)
2595  sl->deblocking_filter = 0;
2596 
2597  sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
2598  (CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY));
2599 
2601  const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
2602  if (start_i) {
2603  int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
2604  prev_status &= ~ VP_START;
2605  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
2606  h->slice_ctx[0].er.error_occurred = 1;
2607  }
2608  }
2609 
2610  if (h->ps.pps->cabac) {
2611  /* realign */
2612  align_get_bits(&sl->gb);
2613 
2614  /* init cabac */
2615  ret = ff_init_cabac_decoder(&sl->cabac,
2616  sl->gb.buffer + get_bits_count(&sl->gb) / 8,
2617  (get_bits_left(&sl->gb) + 7) / 8);
2618  if (ret < 0)
2619  return ret;
2620 
2622 
2623  for (;;) {
2624  // START_TIMER
2625  int ret, eos;
2626  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2627  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2628  sl->next_slice_idx);
2629  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2630  sl->mb_y, ER_MB_ERROR);
2631  return AVERROR_INVALIDDATA;
2632  }
2633 
2634  ret = ff_h264_decode_mb_cabac(h, sl);
2635  // STOP_TIMER("decode_mb_cabac")
2636 
2637  if (ret >= 0)
2638  ff_h264_hl_decode_mb(h, sl);
2639 
2640  // FIXME optimal? or let mb_decode decode 16x32 ?
2641  if (ret >= 0 && FRAME_MBAFF(h)) {
2642  sl->mb_y++;
2643 
2644  ret = ff_h264_decode_mb_cabac(h, sl);
2645 
2646  if (ret >= 0)
2647  ff_h264_hl_decode_mb(h, sl);
2648  sl->mb_y--;
2649  }
2650  eos = get_cabac_terminate(&sl->cabac);
2651 
2652  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2653  sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
2654  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2655  sl->mb_y, ER_MB_END);
2656  if (sl->mb_x >= lf_x_start)
2657  loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
2658  goto finish;
2659  }
2660  if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
2661  av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
2662  if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
2664  "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
2665  sl->mb_x, sl->mb_y,
2666  sl->cabac.bytestream_end - sl->cabac.bytestream);
2667  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2668  sl->mb_y, ER_MB_ERROR);
2669  return AVERROR_INVALIDDATA;
2670  }
2671 
2672  if (++sl->mb_x >= h->mb_width) {
2673  loop_filter(h, sl, lf_x_start, sl->mb_x);
2674  sl->mb_x = lf_x_start = 0;
2675  decode_finish_row(h, sl);
2676  ++sl->mb_y;
2677  if (FIELD_OR_MBAFF_PICTURE(h)) {
2678  ++sl->mb_y;
2679  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2681  }
2682  }
2683 
2684  if (eos || sl->mb_y >= h->mb_height) {
2685  ff_tlog(h->avctx, "slice end %d %d\n",
2686  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2687  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2688  sl->mb_y, ER_MB_END);
2689  if (sl->mb_x > lf_x_start)
2690  loop_filter(h, sl, lf_x_start, sl->mb_x);
2691  goto finish;
2692  }
2693  }
2694  } else {
2695  for (;;) {
2696  int ret;
2697 
2698  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2699  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2700  sl->next_slice_idx);
2701  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2702  sl->mb_y, ER_MB_ERROR);
2703  return AVERROR_INVALIDDATA;
2704  }
2705 
2706  ret = ff_h264_decode_mb_cavlc(h, sl);
2707 
2708  if (ret >= 0)
2709  ff_h264_hl_decode_mb(h, sl);
2710 
2711  // FIXME optimal? or let mb_decode decode 16x32 ?
2712  if (ret >= 0 && FRAME_MBAFF(h)) {
2713  sl->mb_y++;
2714  ret = ff_h264_decode_mb_cavlc(h, sl);
2715 
2716  if (ret >= 0)
2717  ff_h264_hl_decode_mb(h, sl);
2718  sl->mb_y--;
2719  }
2720 
2721  if (ret < 0) {
2723  "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
2724  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2725  sl->mb_y, ER_MB_ERROR);
2726  return ret;
2727  }
2728 
2729  if (++sl->mb_x >= h->mb_width) {
2730  loop_filter(h, sl, lf_x_start, sl->mb_x);
2731  sl->mb_x = lf_x_start = 0;
2732  decode_finish_row(h, sl);
2733  ++sl->mb_y;
2734  if (FIELD_OR_MBAFF_PICTURE(h)) {
2735  ++sl->mb_y;
2736  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2738  }
2739  if (sl->mb_y >= h->mb_height) {
2740  ff_tlog(h->avctx, "slice end %d %d\n",
2741  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2742 
2743  if ( get_bits_left(&sl->gb) == 0
2744  || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
2745  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2746  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2747 
2748  goto finish;
2749  } else {
2750  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2751  sl->mb_x, sl->mb_y, ER_MB_END);
2752 
2753  return AVERROR_INVALIDDATA;
2754  }
2755  }
2756  }
2757 
2758  if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
2759  ff_tlog(h->avctx, "slice end %d %d\n",
2760  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2761 
2762  if (get_bits_left(&sl->gb) == 0) {
2763  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2764  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2765  if (sl->mb_x > lf_x_start)
2766  loop_filter(h, sl, lf_x_start, sl->mb_x);
2767 
2768  goto finish;
2769  } else {
2770  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2771  sl->mb_y, ER_MB_ERROR);
2772 
2773  return AVERROR_INVALIDDATA;
2774  }
2775  }
2776  }
2777  }
2778 
2779 finish:
2780  sl->deblocking_filter = orig_deblock;
2781  return 0;
2782 }
2783 
2784 /**
2785  * Call decode_slice() for each context.
2786  *
2787  * @param h h264 master context
2788  */
2790 {
2791  AVCodecContext *const avctx = h->avctx;
2792  H264SliceContext *sl;
2793  int context_count = h->nb_slice_ctx_queued;
2794  int ret = 0;
2795  int i, j;
2796 
2797  h->slice_ctx[0].next_slice_idx = INT_MAX;
2798 
2799  if (h->avctx->hwaccel || context_count < 1)
2800  return 0;
2801 
2802  av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
2803 
2804  if (context_count == 1) {
2805 
2806  h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height;
2807  h->postpone_filter = 0;
2808 
2809  ret = decode_slice(avctx, &h->slice_ctx[0]);
2810  h->mb_y = h->slice_ctx[0].mb_y;
2811  if (ret < 0)
2812  goto finish;
2813  } else {
2814  av_assert0(context_count > 0);
2815  for (i = 0; i < context_count; i++) {
2816  int next_slice_idx = h->mb_width * h->mb_height;
2817  int slice_idx;
2818 
2819  sl = &h->slice_ctx[i];
2820  if (CONFIG_ERROR_RESILIENCE) {
2821  sl->er.error_count = 0;
2822  }
2823 
2824  /* make sure none of those slices overlap */
2825  slice_idx = sl->mb_y * h->mb_width + sl->mb_x;
2826  for (j = 0; j < context_count; j++) {
2827  H264SliceContext *sl2 = &h->slice_ctx[j];
2828  int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x;
2829 
2830  if (i == j || slice_idx2 < slice_idx)
2831  continue;
2832  next_slice_idx = FFMIN(next_slice_idx, slice_idx2);
2833  }
2834  sl->next_slice_idx = next_slice_idx;
2835  }
2836 
2837  avctx->execute(avctx, decode_slice, h->slice_ctx,
2838  NULL, context_count, sizeof(h->slice_ctx[0]));
2839 
2840  /* pull back stuff from slices to master context */
2841  sl = &h->slice_ctx[context_count - 1];
2842  h->mb_y = sl->mb_y;
2843  if (CONFIG_ERROR_RESILIENCE) {
2844  for (i = 1; i < context_count; i++)
2846  }
2847 
2848  if (h->postpone_filter) {
2849  h->postpone_filter = 0;
2850 
2851  for (i = 0; i < context_count; i++) {
2852  int y_end, x_end;
2853 
2854  sl = &h->slice_ctx[i];
2855  y_end = FFMIN(sl->mb_y + 1, h->mb_height);
2856  x_end = (sl->mb_y >= h->mb_height) ? h->mb_width : sl->mb_x;
2857 
2858  for (j = sl->resync_mb_y; j < y_end; j += 1 + FIELD_OR_MBAFF_PICTURE(h)) {
2859  sl->mb_y = j;
2860  loop_filter(h, sl, j > sl->resync_mb_y ? 0 : sl->resync_mb_x,
2861  j == y_end - 1 ? x_end : h->mb_width);
2862  }
2863  }
2864  }
2865  }
2866 
2867 finish:
2868  h->nb_slice_ctx_queued = 0;
2869  return ret;
2870 }
int chroma_format_idc
Definition: h264_ps.h:48
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
Definition: stereo3d.h:167
int video_signal_type_present_flag
Definition: h264_ps.h:74
struct H264Context * h264
Definition: h264dec.h:178
#define AV_EF_AGGRESSIVE
consider things that a sane encoder should not do as an error
Definition: avcodec.h:2681
#define ff_tlog(ctx,...)
Definition: internal.h:75
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
int ff_thread_can_start_frame(AVCodecContext *avctx)
const struct AVCodec * codec
Definition: avcodec.h:1549
AVRational framerate
Definition: avcodec.h:3073
discard all frames except keyframes
Definition: avcodec.h:802
int nb_mmco
Definition: h264dec.h:474
int workaround_bugs
Definition: h264dec.h:367
int long_ref
1->long term reference 0->short term reference
Definition: h264dec.h:154
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int sei_recovery_frame_cnt
Definition: h264dec.h:163
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal)
Submit a slice for decoding.
Definition: h264_slice.c:2078
H264POCContext poc
Definition: h264dec.h:460
int mb_num
Definition: h264dec.h:437
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
Definition: buffer.c:125
int mb_aff_frame
Definition: h264dec.h:406
int recovery_frame_cnt
recovery_frame_cnt
Definition: h264_sei.h:134
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264dec.h:299
enum AVStereo3DView view
Determines which views are packed.
Definition: stereo3d.h:190
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:394
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:237
int edge_emu_buffer_allocated
Definition: h264dec.h:287
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:1728
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2530
const char * fmt
Definition: avisynth_c.h:769
int first_field
Definition: h264dec.h:408
uint8_t field_scan8x8_q0[64]
Definition: h264dec.h:431
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:381
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
AVFrame * f
Definition: thread.h:35
int weighted_bipred_idc
Definition: h264_ps.h:117
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:299
int left_mb_xy[LEFT_MBS]
Definition: h264dec.h:211
int chroma_qp_index_offset[2]
Definition: h264_ps.h:120
AVBufferRef * sps_list[MAX_SPS_COUNT]
Definition: h264_ps.h:139
const uint8_t * bytestream_end
Definition: cabac.h:49
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
Get the chroma qp.
Definition: h264dec.h:681
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:417
hardware decoding through Videotoolbox
Definition: pixfmt.h:282
H264ChromaContext h264chroma
Definition: h264dec.h:342
uint16_t * cbp_table
Definition: h264dec.h:413
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264_parse.h:35
MMCO mmco[MAX_MMCO_COUNT]
memory management control operations buffer.
Definition: h264dec.h:473
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:665
Sequence parameter set.
Definition: h264_ps.h:44
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2171
int mb_y
Definition: h264dec.h:434
int coded_picture_number
Definition: h264dec.h:363
int bitstream_restriction_flag
Definition: h264_ps.h:85
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
int num
Numerator.
Definition: rational.h:59
Timecode which conforms to SMPTE ST 12-1.
Definition: frame.h:168
AVBufferRef * mb_type_buf
Definition: h264dec.h:138
int repeat_pict
When decoding, this signals how much the picture must be delayed.
Definition: frame.h:368
int bipred_scratchpad_allocated
Definition: h264dec.h:286
Views are next to each other, but when upscaling apply a checkerboard pattern.
Definition: stereo3d.h:117
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:67
Frame contains only the right view.
Definition: stereo3d.h:161
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:400
#define VP_START
< current MB is the first after a resync marker
AVBufferPool * mb_type_pool
Definition: h264dec.h:550
int ff_h264_init_poc(int pic_field_poc[2], int *pic_poc, const SPS *sps, H264POCContext *pc, int picture_structure, int nal_ref_idc)
Definition: h264_parse.c:272
int chroma_x_shift
Definition: h264dec.h:360
const uint8_t * buffer
Definition: get_bits.h:62
Picture parameter set.
Definition: h264_ps.h:109
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:1919
int16_t(*[2] motion_val)[2]
Definition: h264dec.h:136
int flags
Definition: h264dec.h:366
void ff_h264_flush_change(H264Context *h)
Definition: h264dec.c:483
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1750
int frame_mbs_only_flag
Definition: h264_ps.h:62
int mb_height
Definition: h264dec.h:435
H264Picture * delayed_pic[MAX_DELAYED_PIC_COUNT+2]
Definition: h264dec.h:465
#define tc
Definition: regdef.h:69
int is_avc
Used to parse AVC variant of H.264.
Definition: h264dec.h:450
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
AVBufferPool * ref_index_pool
Definition: h264dec.h:552
int height_from_caller
Definition: h264dec.h:543
uint8_t zigzag_scan8x8_cavlc[64]
Definition: h264dec.h:423
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:388
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
ERPicture last_pic
H264SEIDisplayOrientation display_orientation
Definition: h264_sei.h:185
mpegvideo header.
int current_frame_is_frame0_flag
Definition: h264_sei.h:150
int next_slice_idx
Definition: h264dec.h:236
static const uint8_t zigzag_scan8x8_cavlc[64+1]
Definition: h264_slice.c:97
H264Context.
Definition: h264dec.h:337
discard all non intra frames
Definition: avcodec.h:801
discard all
Definition: avcodec.h:803
AVFrame * f
Definition: h264dec.h:129
Views are next to each other.
Definition: stereo3d.h:67
size_t crop_bottom
Definition: frame.h:585
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2767
uint32_t num_units_in_tick
Definition: h264_ps.h:81
static const uint8_t field_scan[16+1]
Definition: h264_slice.c:51
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:2700
H264Picture * long_ref[32]
Definition: h264dec.h:464
#define src
Definition: vp8dsp.c:254
int profile
profile
Definition: avcodec.h:2869
int picture_structure
Definition: h264dec.h:407
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB)
Definition: pixfmt.h:494
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
#define AV_COPY32(d, s)
Definition: intreadwrite.h:586
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
Definition: display.c:65
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264dec.h:267
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:265
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:267
MMCO mmco[MAX_MMCO_COUNT]
Definition: h264dec.h:322
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure counterclockwise rotation by the specified angle...
Definition: display.c:50
Frame contains only the left view.
Definition: stereo3d.h:156
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:288
Switching Intra.
Definition: avutil.h:278
int setup_finished
Definition: h264dec.h:534
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:3008
int ff_h264_execute_decode_slices(H264Context *h)
Call decode_slice() for each context.
Definition: h264_slice.c:2789
H264SEIContext sei
Definition: h264dec.h:547
AVBufferRef * buf_ref
Definition: h264_sei.h:119
unsigned int crop_top
frame_cropping_rect_top_offset
Definition: h264_ps.h:70
#define USES_LIST(a, list)
Definition: mpegutils.h:99
void ff_color_frame(AVFrame *frame, const int color[4])
Definition: utils.c:412
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
const uint8_t * bytestream
Definition: cabac.h:48
int ref2frm[MAX_SLICES][2][64]
reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 ...
Definition: h264dec.h:553
int deblocking_filter_parameters_present
deblocking_filter_parameters_present_flag
Definition: h264_ps.h:121
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:112
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
const PPS * pps
Definition: h264_ps.h:145
4: bottom field, top field, in that order
Definition: h264_sei.h:50
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
Definition: h264_slice.c:1002
uint8_t
int full_range
Definition: h264_ps.h:75
unsigned int crop_left
frame_cropping_rect_left_offset
Definition: h264_ps.h:68
int gaps_in_frame_num_allowed_flag
Definition: h264_ps.h:58
#define MB_MBAFF(h)
Definition: h264dec.h:71
int slice_alpha_c0_offset
Definition: h264dec.h:194
Stereo 3D type: this structure describes how two videos are packed within a single video surface...
Definition: stereo3d.h:176
int poc
Definition: h264dec.h:171
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src)
Definition: h264_picture.c:131
int field_picture
whether or not picture was encoded in separate fields
Definition: h264dec.h:158
int bit_depth_chroma
bit_depth_chroma_minus8 + 8
Definition: h264_ps.h:99
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:799
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:2622
size_t crop_left
Definition: frame.h:586
enum AVColorPrimaries color_primaries
Definition: h264_ps.h:77
int poc
frame POC
Definition: h264dec.h:148
int frame_num_offset
for POC type 2
Definition: h264_parse.h:51
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264_parse.h:36
Multithreading support functions.
#define ER_MB_ERROR
int cabac
entropy_coding_mode_flag
Definition: h264_ps.h:111
#define MB_FIELD(sl)
Definition: h264dec.h:72
const char * from
Definition: jacosubdec.c:65
unsigned int crop_right
frame_cropping_rect_right_offset
Definition: h264_ps.h:69
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:399
uint8_t(*[2] top_borders)[(16 *3)*2]
Definition: h264dec.h:285
int invalid_gap
Definition: h264dec.h:162
ERPicture cur_pic
int frame_recovered
Initial frame has been completely recovered.
Definition: h264dec.h:524
Structure to hold side data for an AVFrame.
Definition: frame.h:188
int height
Definition: h264dec.h:359
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:38
#define height
#define MAX_PPS_COUNT
Definition: h264_ps.h:38
int pt
Definition: rtp.c:35
int transform_bypass
qpprime_y_zero_transform_bypass_flag
Definition: h264_ps.h:49
static void finish(void)
Definition: movenc.c:345
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:88
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
#define ER_MV_END
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:119
int redundant_pic_cnt_present
redundant_pic_cnt_present_flag
Definition: h264_ps.h:123
int picture_structure
Definition: h264dec.h:240
int chroma_y_shift
Definition: h264dec.h:360
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int interlaced_frame
The content of the picture is interlaced.
Definition: frame.h:373
Video is not stereoscopic (and metadata has to be there).
Definition: stereo3d.h:55
AVBufferRef * qscale_table_buf
Definition: h264dec.h:132
static int h264_export_frame_props(H264Context *h)
Definition: h264_slice.c:1132
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:389
H264Picture * parent
Definition: h264dec.h:174
#define FRAME_RECOVERED_SEI
Sufficient number of frames have been decoded since a SEI recovery point, so all the following frames...
Definition: h264dec.h:522
H264SEIAFD afd
Definition: h264_sei.h:179
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:870
high precision timer, useful to profile code
int recovered
picture at IDR or recovery point + recovery count
Definition: h264dec.h:161
Active Format Description data consisting of a single byte as specified in ETSI TS 101 154 using AVAc...
Definition: frame.h:89
#define AV_COPY64(d, s)
Definition: intreadwrite.h:590
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx)
Definition: h264_refs.c:421
#define FFALIGN(x, a)
Definition: macros.h:48
int chroma_qp[2]
Definition: h264dec.h:188
#define av_log(a,...)
int last_pocs[MAX_DELAYED_PIC_COUNT]
Definition: h264dec.h:466
const char * to
Definition: webvttdec.c:34
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:121
int width
Definition: h264dec.h:359
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:456
H.264 common definitions.
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height)
Definition: h264dec.c:102
#define U(x)
Definition: vp56_arith.h:37
int timecode_cnt
Number of timecode in use.
Definition: h264_sei.h:110
#define HWACCEL_MAX
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:814
H.264 parameter set handling.
H264Picture DPB[H264_MAX_PICTURE_COUNT]
Definition: h264dec.h:345
enum AVColorTransferCharacteristic color_trc
Definition: h264_ps.h:78
int mb_aff
mb_adaptive_frame_field_flag
Definition: h264_ps.h:63
H264PredContext hpc
Definition: h264dec.h:386
AVBufferRef * sps_ref
Definition: h264_ps.h:143
int chroma_log2_weight_denom
Definition: h264_parse.h:34
int width
Definition: frame.h:284
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:1830
#define td
Definition: regdef.h:70
int flags
Additional information about the frame packing.
Definition: stereo3d.h:185
static int get_ue_golomb(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to 8190.
Definition: golomb.h:53
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
Definition: h264_slice.c:129
int poc_type
pic_order_cnt_type
Definition: h264_ps.h:51
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
int context_initialized
Definition: h264dec.h:365
#define PTRDIFF_SPECIFIER
Definition: internal.h:261
ERContext er
Definition: h264dec.h:180
int nal_unit_type
Definition: h264dec.h:443
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb, const H2645NAL *nal, void *logctx)
Definition: h264_refs.c:832
int ff_h264_get_profile(const SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264_parse.c:510
int num_reorder_frames
Definition: h264_ps.h:86
discard all bidirectional frames
Definition: avcodec.h:800
#define AVERROR(e)
Definition: error.h:43
H264_SEI_FpaType arrangement_type
Definition: h264_sei.h:146
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264dec.h:142
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2526
Display matrix.
Views are packed per line, as if interlaced.
Definition: stereo3d.h:129
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:2814
static const uint8_t field_scan8x8[64+1]
Definition: h264_slice.c:58
const uint8_t ff_zigzag_scan[16+1]
Definition: mathtables.c:109
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
ATSC A53 Part 4 Closed Captions.
Definition: frame.h:58
#define FIELD_PICTURE(h)
Definition: h264dec.h:74
int picture_idr
Definition: h264dec.h:378
static int init_dimensions(H264Context *h)
Definition: h264_slice.c:876
const char * arg
Definition: jacosubdec.c:66
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264dec.h:193
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:417
int prev_interlaced_frame
Complement sei_pic_struct SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced...
Definition: h264dec.h:498
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1620
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
Definition: h264_slice.c:2305
ThreadFrame tf
Definition: h264dec.h:130
simple assert() macros that are a bit more flexible than ISO C assert().
int weighted_pred
weighted_pred_flag
Definition: h264_ps.h:116
#define PICT_TOP_FIELD
Definition: mpegutils.h:37
H264QpelContext h264qpel
Definition: h264dec.h:343
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:387
int direct_spatial_mv_pred
Definition: h264dec.h:251
H264SEIUnregistered unregistered
Definition: h264_sei.h:181
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264dec.h:149
const uint8_t ff_h264_golomb_to_pict_type[5]
Definition: h264data.c:37
#define MAX_SLICES
Definition: dxva2_hevc.c:29
int valid_recovery_point
Are the SEI recovery points looking valid.
Definition: h264dec.h:503
GLsizei count
Definition: opengl_enc.c:109
int ff_h264_get_slice_type(const H264SliceContext *sl)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:2203
#define FFMAX(a, b)
Definition: common.h:94
#define fail()
Definition: checkasm.h:117
uint8_t active_format_description
Definition: h264_sei.h:115
int delta_pic_order_always_zero_flag
Definition: h264_ps.h:53
void av_image_copy(uint8_t *dst_data[4], int dst_linesizes[4], const uint8_t *src_data[4], const int src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height)
Copy image in src_data to dst_data.
Definition: imgutils.c:387
int * mb_index2xy
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264dec.h:184
uint8_t zigzag_scan8x8[64]
Definition: h264dec.h:422
AVBufferRef * hwaccel_priv_buf
Definition: h264dec.h:141
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
Definition: stereo3d.c:33
int crop_bottom
Definition: h264dec.h:383
uint8_t * error_status_table
size_t crop_top
Definition: frame.h:584
Views are alternated temporally.
Definition: stereo3d.h:92
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:488
int ff_h264_parse_ref_count(int *plist_count, int ref_count[2], GetBitContext *gb, const PPS *pps, int slice_type_nos, int picture_structure, void *logctx)
Definition: h264_parse.c:219
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
Definition: h264dec.h:451
useful rectangle filling function
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:382
int refs
number of reference frames
Definition: avcodec.h:2124
int prev_poc_msb
poc_msb of the last reference pic for POC type 0
Definition: h264_parse.h:49
AVBufferRef * motion_val_buf[2]
Definition: h264dec.h:135
int ref_frame_count
num_ref_frames
Definition: h264_ps.h:57
enum AVPixelFormat * pix_fmts
array of supported pixel formats, or NULL if unknown, array is terminated by -1
Definition: avcodec.h:3462
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:309
int flags
Frame flags, a combination of AV_FRAME_FLAGS.
Definition: frame.h:463
H264_SEI_PicStructType pic_struct
Definition: h264_sei.h:83
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2665
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
int x264_build
Definition: h264dec.h:368
int ct_type
Bit set of clock types for fields/frames in picture timing SEI message.
Definition: h264_sei.h:90
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
Allocate and clear a buffer, reusing the given one if large enough.
Definition: mem.c:493
#define FFMIN(a, b)
Definition: common.h:96
uint16_t * slice_table
slice_table_base + 2*mb_stride + 1
Definition: h264dec.h:403
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:272
static int h264_field_start(H264Context *h, const H264SliceContext *sl, const H2645NAL *nal, int first_slice)
Definition: h264_slice.c:1447
uint8_t field_scan8x8_cavlc[64]
Definition: h264dec.h:426
#define IS_DIRECT(a)
Definition: mpegutils.h:84
CABACContext cabac
Cabac.
Definition: h264dec.h:318
int colour_description_present_flag
Definition: h264_ps.h:76
unsigned int first_mb_addr
Definition: h264dec.h:234
int reference
Definition: h264dec.h:160
static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2561
#define LEFT_MBS
Definition: h264dec.h:75
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
AVRational sar
Definition: h264_ps.h:73
#define width
AVFrameSideData * av_frame_new_side_data_from_buf(AVFrame *frame, enum AVFrameSideDataType type, AVBufferRef *buf)
Add a new side data to a frame from an existing AVBufferRef.
Definition: frame.c:690
int width
picture width / height.
Definition: avcodec.h:1713
int redundant_pic_count
Definition: h264dec.h:244
int nb_slice_ctx
Definition: h264dec.h:351
uint8_t w
Definition: llviddspenc.c:38
H264PredWeightTable pwt
Definition: h264dec.h:197
int long_ref_count
number of actual long term references
Definition: h264dec.h:478
#define ER_DC_END
uint32_t * mb_type
Definition: h264dec.h:139
#define AV_FRAME_FLAG_CORRUPT
The frame data may be corrupted, e.g.
Definition: frame.h:451
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
Definition: h264_slice.c:1013
int size_in_bits
Definition: get_bits.h:68
int32_t
int ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:177
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2150
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:2807
Context Adaptive Binary Arithmetic Coder inline functions.
int level
level
Definition: avcodec.h:2986
int init_qp
pic_init_qp_minus26 + 26
Definition: h264_ps.h:118
H.264 / AVC / MPEG-4 part10 codec.
int mmco_reset
Definition: h264dec.h:475
H264SliceContext * slice_ctx
Definition: h264dec.h:350
int direct_8x8_inference_flag
Definition: h264_ps.h:64
static int h264_select_output_frame(H264Context *h)
Definition: h264_slice.c:1344
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2676
int reference
Definition: h264dec.h:170
int ticks_per_frame
For some codecs, the time base is closer to the field rate than the frame rate.
Definition: avcodec.h:1672
int top_borders_allocated[2]
Definition: h264dec.h:288
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:825
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264dec.h:91
int frames
Definition: movenc.c:65
int ref_idc
H.264 only, nal_ref_idc.
Definition: h2645_parse.h:64
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:729
static int av_unused get_cabac_terminate(CABACContext *c)
int quincunx_sampling_flag
Definition: h264_sei.h:149
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:383
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:402
HW acceleration through CUDA.
Definition: pixfmt.h:235
int type
NAL unit type.
Definition: h2645_parse.h:51
#define FF_ARRAY_ELEMS(a)
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:519
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:161
uint8_t * edge_emu_buffer
Definition: h264dec.h:284
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:103
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int pic_order_present
pic_order_present_flag
Definition: h264_ps.h:112
uint8_t zigzag_scan_q0[16]
Definition: h264dec.h:427
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:299
int bit_depth_luma
luma bit depth from sps to detect changes
Definition: h264dec.h:453
int chroma_format_idc
chroma format from sps to detect changes
Definition: h264dec.h:454
VideoDSPContext vdsp
Definition: h264dec.h:340
int timing_info_present_flag
Definition: h264_ps.h:80
int coded_picture_number
picture number in bitstream order
Definition: frame.h:340
enum AVStereo3DType type
How views are packed within the video.
Definition: stereo3d.h:180
int mb_stride
Definition: h264dec.h:436
Views are packed in a checkerboard-like structure per pixel.
Definition: stereo3d.h:104
int postpone_filter
Definition: h264dec.h:373
#define IS_INTERLACED(a)
Definition: mpegutils.h:83
AVCodecContext * avctx
Definition: h264dec.h:339
uint8_t zigzag_scan8x8_q0[64]
Definition: h264dec.h:428
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:392
5: top field, bottom field, top field repeated, in that order
Definition: h264_sei.h:51
Libavcodec external API header.
#define MAX_DELAYED_PIC_COUNT
Definition: h264dec.h:56
Views are on top of each other.
Definition: stereo3d.h:79
int last_qscale_diff
Definition: h264dec.h:190
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
Definition: frame.h:84
AVBufferRef * pps_list[MAX_PPS_COUNT]
Definition: h264_ps.h:140
enum AVCodecID codec_id
Definition: avcodec.h:1550
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:118
int crop_left
Definition: h264dec.h:380
int delta_poc_bottom
Definition: h264_parse.h:46
ERPicture next_pic
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:257
H264Picture * short_ref[32]
Definition: h264dec.h:463
int next_outputed_poc
Definition: h264dec.h:468
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cabac.c:1914
int explicit_ref_marking
Definition: h264dec.h:476
#define AV_CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:910
int field_poc[2]
top/bottom POC
Definition: h264dec.h:147
int debug
debug
Definition: avcodec.h:2621
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
int recovery_frame
recovery_frame is the frame_num at which the next frame should be fully constructed.
Definition: h264dec.h:511
main external API structure.
Definition: avcodec.h:1540
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264dec.h:189
int explicit_ref_marking
Definition: h264dec.h:324
uint8_t * data
The data buffer.
Definition: buffer.h:89
H264SEITimeCode timecode[3]
Maximum three timecodes in a pic_timing SEI.
Definition: h264_sei.h:105
#define fp
Definition: regdef.h:44
uint8_t * data
Definition: frame.h:190
static int h264_slice_header_parse(const H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1725
H264SEIA53Caption a53_caption
Definition: h264_sei.h:180
void * buf
Definition: avisynth_c.h:690
int implicit_weight[48][48][2]
Definition: h264_parse.h:40
size_t crop_right
Definition: frame.h:587
int8_t * qscale_table
Definition: h264dec.h:133
static const uint8_t scan8[16 *3+3]
Definition: h264dec.h:644
#define CABAC(h)
Definition: h264_cabac.c:28
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:83
AVBuffer * buffer
Definition: buffer.h:82
static const uint8_t field_scan8x8_cavlc[64+1]
Definition: h264_slice.c:77
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:487
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:384
AVCodecContext * owner[2]
Definition: thread.h:36
int coded_height
Definition: avcodec.h:1728
Switching Predicted.
Definition: avutil.h:279
int prev_frame_num
frame_num of the last pic for POC type 1/2
Definition: h264_parse.h:53
#define FF_CODEC_PROPERTY_CLOSED_CAPTIONS
Definition: avcodec.h:3197
static int FUNC() pps(CodedBitstreamContext *ctx, RWContext *rw, H264RawPPS *current)
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, int size)
Add a new side data to a frame.
Definition: frame.c:722
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264dec.h:294
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:275
#define FRAME_MBAFF(h)
Definition: h264dec.h:73
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2164
Rational number (pair of numerator and denominator).
Definition: rational.h:58
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2157
#define LBOT
Definition: h264dec.h:77
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:197
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
Definition: h264dec.h:660
int8_t * ref_index[2]
Definition: h264dec.h:145
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:66
A reference counted buffer type.
int pixel_shift
0 for 8-bit H.264, 1 for high-bit-depth H.264
Definition: h264dec.h:356
int mmco_reset
MMCO_RESET set this 1.
Definition: h264dec.h:150
int content_interpretation_type
Definition: h264_sei.h:148
H264Picture * cur_pic_ptr
Definition: h264dec.h:346
#define LIST_NOT_USED
Definition: h264dec.h:390
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
ptrdiff_t mb_uvlinesize
Definition: h264dec.h:228
static int h264_slice_header_init(H264Context *h)
Definition: h264_slice.c:918
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264dec.h:242
enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
int enable_er
Definition: h264dec.h:545
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:381
#define IS_INTER(a)
Definition: mpegutils.h:79
#define FF_COMPLIANCE_STRICT
Strictly conform to all the things in the spec no matter what consequences.
Definition: avcodec.h:2601
const SPS * sps
Definition: h264_ps.h:146
unsigned int sps_id
Definition: h264_ps.h:110
#define TRANSPOSE(x)
H264SEIPictureTiming picture_timing
Definition: h264_sei.h:178
int width_from_caller
Definition: h264dec.h:542
int log2_max_poc_lsb
log2_max_pic_order_cnt_lsb_minus4
Definition: h264_ps.h:52
H264SEIRecoveryPoint recovery_point
Definition: h264_sei.h:182
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264dec.h:227
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer. ...
Definition: pixfmt.h:137
int16_t slice_row[MAX_SLICES]
to detect when MAX_SLICES is too low
Definition: h264dec.h:538
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:266
3: top field, bottom field, in that order
Definition: h264_sei.h:49
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:188
ptrdiff_t linesize
Definition: h264dec.h:226
int block_offset[2 *(16 *3)]
block_offset[ 0..23] for frame macroblocks block_offset[24..47] for field macroblocks ...
Definition: h264dec.h:397
uint32_t time_scale
Definition: h264_ps.h:82
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:393
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:401
int transform_8x8_mode
transform_8x8_mode_flag
Definition: h264_ps.h:124
ptrdiff_t uvlinesize
Definition: h264dec.h:226
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:385
static int h264_slice_init(H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1942
int pic_struct_present_flag
Definition: h264_ps.h:92
#define CHROMA444(h)
Definition: h264dec.h:99
unsigned int list_count
Definition: h264dec.h:268
uint8_t zigzag_scan[16]
Definition: h264dec.h:421
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:391
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:240
int prev_poc_lsb
poc_lsb of the last reference pic for POC type 0
Definition: h264_parse.h:50
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:116
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264dec.c:180
#define AV_ZERO128(d)
Definition: intreadwrite.h:622
Hardware surfaces for Direct3D11.
Definition: pixfmt.h:313
the normal 219*2^(n-8) "MPEG" YUV ranges
Definition: pixfmt.h:518
int left_type[LEFT_MBS]
Definition: h264dec.h:216
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:89
int nb_slice_ctx_queued
Definition: h264dec.h:352
discard all non reference
Definition: avcodec.h:799
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup)
Definition: h264_picture.c:154
AVBufferPool * qscale_table_pool
Definition: h264dec.h:549
H264Picture * next_output_pic
Definition: h264dec.h:467
int mb_height
Definition: h264_ps.h:61
AVBufferPool * motion_val_pool
Definition: h264dec.h:551
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
int delta_poc_bottom
Definition: h264dec.h:328
#define IS_8x8DCT(a)
Definition: h264dec.h:104
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:279
AVBufferPool * av_buffer_pool_init(int size, AVBufferRef *(*alloc)(int size))
Allocate and initialize a buffer pool.
Definition: buffer.c:238
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
#define AV_COPY128(d, s)
Definition: intreadwrite.h:594
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
Definition: h264_slice.c:763
AVBufferRef * pps_ref
Definition: h264_ps.h:142
int log2_max_frame_num
log2_max_frame_num_minus4 + 4
Definition: h264_ps.h:50
int missing_fields
Definition: h264dec.h:528
static double c[64]
const char * av_color_transfer_name(enum AVColorTransferCharacteristic transfer)
Definition: pixdesc.c:2867
H264ParamSets ps
Definition: h264dec.h:456
H264SEIFramePacking frame_packing
Definition: h264_sei.h:184
H.264 / AVC / MPEG-4 part10 motion vector prediction.
AVBufferRef * av_buffer_ref(AVBufferRef *buf)
Create a new reference to an AVBuffer.
Definition: buffer.c:93
Bi-dir predicted.
Definition: avutil.h:276
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
Stereoscopic video.
Views are packed per column.
Definition: stereo3d.h:141
int cur_chroma_format_idc
Definition: h264dec.h:536
int8_t * intra4x4_pred_mode
Definition: h264dec.h:206
unsigned properties
Properties of the stream that gets decoded.
Definition: avcodec.h:3195
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
Definition: avcodec.h:2994
int den
Denominator.
Definition: rational.h:60
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
Definition: h264_slice.c:2517
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cavlc.c:702
GetBitContext gb
Definition: h2645_parse.h:46
int bit_depth_luma
bit_depth_luma_minus8 + 8
Definition: h264_ps.h:98
#define IS_INTRA(x, y)
int present
Definition: h264_sei.h:114
int delta_poc[2]
Definition: h264_parse.h:47
void ff_h264_free_tables(H264Context *h)
Definition: h264dec.c:137
void * priv_data
Definition: avcodec.h:1567
#define LTOP
Definition: h264dec.h:76
#define PICT_FRAME
Definition: mpegutils.h:39
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:563
uint8_t zigzag_scan8x8_cavlc_q0[64]
Definition: h264dec.h:429
int8_t ref_cache[2][5 *8]
Definition: h264dec.h:300
#define AV_CODEC_FLAG_OUTPUT_CORRUPT
Output even those frames that might be corrupted.
Definition: avcodec.h:850
unsigned int pps_id
Definition: h264dec.h:278
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:2835
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: frame.h:378
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:3719
#define CHROMA422(h)
Definition: h264dec.h:98
#define FF_BUG_TRUNCATED
Definition: avcodec.h:2584
H264Picture cur_pic
Definition: h264dec.h:347
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:304
#define AV_ZERO32(d)
Definition: intreadwrite.h:614
int mb_width
Definition: h264dec.h:435
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:253
int current_slice
current slice number, used to initialize slice_num of each thread/context
Definition: h264dec.h:488
int ff_h264_execute_ref_pic_marking(H264Context *h)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:608
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:658
int ff_h264_pred_weight_table(GetBitContext *gb, const SPS *sps, const int *ref_count, int slice_type_nos, H264PredWeightTable *pwt, int picture_structure, void *logctx)
Definition: h264_parse.c:27
int mb_width
pic_width_in_mbs_minus1 + 1
Definition: h264_ps.h:59
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:1627
uint32_t * mb2b_xy
Definition: h264dec.h:399
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264dec.h:269
uint8_t field_scan8x8_cavlc_q0[64]
Definition: h264dec.h:432
int cur_bit_depth_luma
Definition: h264dec.h:537
int crop_top
Definition: h264dec.h:382
atomic_int error_count
AVBufferRef * ref_index_buf[2]
Definition: h264dec.h:144
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:67
int frame_number
Frame counter, set by libavcodec.
Definition: avcodec.h:2227
H264DSPContext h264dsp
Definition: h264dec.h:341
void ff_er_frame_start(ERContext *s)
int height
Definition: frame.h:284
#define AV_CODEC_FLAG2_SHOW_ALL
Show all frames before the first keyframe.
Definition: avcodec.h:938
FILE * out
Definition: movenc.c:54
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:313
uint8_t field_scan8x8[64]
Definition: h264dec.h:425
int slice_type_fixed
Definition: h264dec.h:185
static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:2221
#define av_freep(p)
int prev_frame_num_offset
for POC type 2
Definition: h264_parse.h:52
#define av_always_inline
Definition: attributes.h:39
HW decoding through Direct3D11 via old API, Picture.data[3] contains a ID3D11VideoDecoderOutputView p...
Definition: pixfmt.h:229
int slice_beta_offset
Definition: h264dec.h:195
int8_t * intra4x4_pred_mode
Definition: h264dec.h:385
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:334
#define ER_AC_END
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2575
int delta_poc[2]
Definition: h264dec.h:329
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:62
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2414
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264dec.c:238
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:113
uint8_t field_scan_q0[16]
Definition: h264dec.h:430
int mb_field_decoding_flag
Definition: h264dec.h:241
uint8_t(* non_zero_count)[48]
Definition: h264dec.h:388
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
Definition: h264_slice.c:2447
unsigned int crop_bottom
frame_cropping_rect_bottom_offset
Definition: h264_ps.h:71
exp golomb vlc stuff
uint8_t * bipred_scratchpad
Definition: h264dec.h:283
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:45
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
av_cold void ff_h264qpel_init(H264QpelContext *c, int bit_depth)
Definition: h264qpel.c:49
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1151
int droppable
Definition: h264dec.h:362
int level_idc
Definition: h264_ps.h:47
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:2599
int crop_right
Definition: h264dec.h:381
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
int nal_ref_idc
Definition: h264dec.h:442
GetBitContext gb
Definition: h264dec.h:179
uint8_t field_scan[16]
Definition: h264dec.h:424
int cabac_init_idc
Definition: h264dec.h:320
#define FRAME_RECOVERED_IDR
We have seen an IDR, so all the following frames in coded order are correctly decodable.
Definition: h264dec.h:517
for(j=16;j >0;--j)
6: bottom field, top field, bottom field repeated, in that order
Definition: h264_sei.h:52
#define FFMAX3(a, b, c)
Definition: common.h:95
int b_stride
Definition: h264dec.h:401
Predicted.
Definition: avutil.h:275
#define tb
Definition: regdef.h:68
Context Adaptive Binary Arithmetic Coder.
#define H264_MAX_PICTURE_COUNT
Definition: h264dec.h:52
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl)
Definition: h264_cabac.c:1263
int short_ref_count
number of actual short term references
Definition: h264dec.h:479
static uint8_t tmp[11]
Definition: aes_ctr.c:26
enum AVColorSpace colorspace
Definition: h264_ps.h:79