FFmpeg
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/display.h"
30 #include "libavutil/imgutils.h"
32 #include "libavutil/stereo3d.h"
33 #include "libavutil/timecode.h"
34 #include "internal.h"
35 #include "cabac.h"
36 #include "cabac_functions.h"
37 #include "error_resilience.h"
38 #include "avcodec.h"
39 #include "h264.h"
40 #include "h264dec.h"
41 #include "h264data.h"
42 #include "h264chroma.h"
43 #include "h264_mvpred.h"
44 #include "h264_ps.h"
45 #include "golomb.h"
46 #include "mathops.h"
47 #include "mpegutils.h"
48 #include "rectangle.h"
49 #include "thread.h"
50 
51 static const uint8_t field_scan[16+1] = {
52  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
53  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
54  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
55  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
56 };
57 
58 static const uint8_t field_scan8x8[64+1] = {
59  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
60  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
61  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
62  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
63  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
64  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
65  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
66  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
67  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
68  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
69  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
70  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
71  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
72  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
73  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
74  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
75 };
76 
77 static const uint8_t field_scan8x8_cavlc[64+1] = {
78  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
79  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
80  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
81  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
82  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
83  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
84  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
85  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
86  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
87  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
88  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
89  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
90  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
91  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
92  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
93  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
94 };
95 
96 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
97 static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
98  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
99  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
100  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
101  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
102  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
103  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
104  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
105  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
106  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
107  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
108  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
109  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
110  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
111  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
112  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
113  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
114 };
115 
116 static void release_unused_pictures(H264Context *h, int remove_current)
117 {
118  int i;
119 
120  /* release non reference frames */
121  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
122  if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
123  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
124  ff_h264_unref_picture(h, &h->DPB[i]);
125  }
126  }
127 }
128 
129 static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
130 {
131  const H264Context *h = sl->h264;
132  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
133 
134  av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
135  // edge emu needs blocksize + filter length - 1
136  // (= 21x21 for H.264)
137  av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
138 
140  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
142  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
143 
144  if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
145  !sl->top_borders[0] || !sl->top_borders[1]) {
148  av_freep(&sl->top_borders[0]);
149  av_freep(&sl->top_borders[1]);
150 
153  sl->top_borders_allocated[0] = 0;
154  sl->top_borders_allocated[1] = 0;
155  return AVERROR(ENOMEM);
156  }
157 
158  return 0;
159 }
160 
162 {
163  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
164  const int mb_array_size = h->mb_stride * h->mb_height;
165  const int b4_stride = h->mb_width * 4 + 1;
166  const int b4_array_size = b4_stride * h->mb_height * 4;
167 
168  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
170  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
171  sizeof(uint32_t), av_buffer_allocz);
172  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
173  sizeof(int16_t), av_buffer_allocz);
174  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
175 
176  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
177  !h->ref_index_pool) {
178  av_buffer_pool_uninit(&h->qscale_table_pool);
179  av_buffer_pool_uninit(&h->mb_type_pool);
180  av_buffer_pool_uninit(&h->motion_val_pool);
181  av_buffer_pool_uninit(&h->ref_index_pool);
182  return AVERROR(ENOMEM);
183  }
184 
185  return 0;
186 }
187 
189 {
190  int i, ret = 0;
191 
192  av_assert0(!pic->f->data[0]);
193 
194  pic->tf.f = pic->f;
195  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
197  if (ret < 0)
198  goto fail;
199 
200  if (pic->needs_fg) {
201  pic->tf_grain.f = pic->f_grain;
202  pic->f_grain->format = pic->f->format;
203  pic->f_grain->width = pic->f->width;
204  pic->f_grain->height = pic->f->height;
205  ret = ff_thread_get_buffer(h->avctx, &pic->tf_grain, 0);
206  if (ret < 0)
207  goto fail;
208  }
209 
210  if (h->avctx->hwaccel) {
211  const AVHWAccel *hwaccel = h->avctx->hwaccel;
213  if (hwaccel->frame_priv_data_size) {
215  if (!pic->hwaccel_priv_buf)
216  return AVERROR(ENOMEM);
218  }
219  }
220  if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) {
221  int h_chroma_shift, v_chroma_shift;
223  &h_chroma_shift, &v_chroma_shift);
224 
225  for(i=0; i<AV_CEIL_RSHIFT(pic->f->height, v_chroma_shift); i++) {
226  memset(pic->f->data[1] + pic->f->linesize[1]*i,
227  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
228  memset(pic->f->data[2] + pic->f->linesize[2]*i,
229  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
230  }
231  }
232 
233  if (!h->qscale_table_pool) {
235  if (ret < 0)
236  goto fail;
237  }
238 
239  pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool);
240  pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool);
241  if (!pic->qscale_table_buf || !pic->mb_type_buf)
242  goto fail;
243 
244  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
245  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
246 
247  for (i = 0; i < 2; i++) {
248  pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool);
249  pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool);
250  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
251  goto fail;
252 
253  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
254  pic->ref_index[i] = pic->ref_index_buf[i]->data;
255  }
256 
257  pic->pps_buf = av_buffer_ref(h->ps.pps_ref);
258  if (!pic->pps_buf)
259  goto fail;
260  pic->pps = (const PPS*)pic->pps_buf->data;
261 
262  pic->mb_width = h->mb_width;
263  pic->mb_height = h->mb_height;
264  pic->mb_stride = h->mb_stride;
265 
266  return 0;
267 fail:
268  ff_h264_unref_picture(h, pic);
269  return (ret < 0) ? ret : AVERROR(ENOMEM);
270 }
271 
273 {
274  int i;
275 
276  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
277  if (!h->DPB[i].f->buf[0])
278  return i;
279  }
280  return AVERROR_INVALIDDATA;
281 }
282 
283 
284 #define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size))))
285 
286 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
287  (((pic) && (pic) >= (old_ctx)->DPB && \
288  (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
289  &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
290 
291 static void copy_picture_range(H264Picture **to, H264Picture **from, int count,
292  H264Context *new_base,
293  H264Context *old_base)
294 {
295  int i;
296 
297  for (i = 0; i < count; i++) {
298  av_assert1(!from[i] ||
299  IN_RANGE(from[i], old_base, 1) ||
300  IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT));
301  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
302  }
303 }
304 
306 
308  const AVCodecContext *src)
309 {
310  H264Context *h = dst->priv_data, *h1 = src->priv_data;
311  int inited = h->context_initialized, err = 0;
312  int need_reinit = 0;
313  int i, ret;
314 
315  if (dst == src)
316  return 0;
317 
318  if (inited && !h1->ps.sps)
319  return AVERROR_INVALIDDATA;
320 
321  if (inited &&
322  (h->width != h1->width ||
323  h->height != h1->height ||
324  h->mb_width != h1->mb_width ||
325  h->mb_height != h1->mb_height ||
326  !h->ps.sps ||
327  h->ps.sps->bit_depth_luma != h1->ps.sps->bit_depth_luma ||
328  h->ps.sps->chroma_format_idc != h1->ps.sps->chroma_format_idc ||
329  h->ps.sps->colorspace != h1->ps.sps->colorspace)) {
330  need_reinit = 1;
331  }
332 
333  /* copy block_offset since frame_start may not be called */
334  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
335 
336  // SPS/PPS
337  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.sps_list); i++) {
338  ret = av_buffer_replace(&h->ps.sps_list[i], h1->ps.sps_list[i]);
339  if (ret < 0)
340  return ret;
341  }
342  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.pps_list); i++) {
343  ret = av_buffer_replace(&h->ps.pps_list[i], h1->ps.pps_list[i]);
344  if (ret < 0)
345  return ret;
346  }
347 
348  ret = av_buffer_replace(&h->ps.pps_ref, h1->ps.pps_ref);
349  if (ret < 0)
350  return ret;
351  h->ps.pps = NULL;
352  h->ps.sps = NULL;
353  if (h1->ps.pps_ref) {
354  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
355  h->ps.sps = h->ps.pps->sps;
356  }
357 
358  if (need_reinit || !inited) {
359  h->width = h1->width;
360  h->height = h1->height;
361  h->mb_height = h1->mb_height;
362  h->mb_width = h1->mb_width;
363  h->mb_num = h1->mb_num;
364  h->mb_stride = h1->mb_stride;
365  h->b_stride = h1->b_stride;
366  h->x264_build = h1->x264_build;
367 
368  if (h->context_initialized || h1->context_initialized) {
369  if ((err = h264_slice_header_init(h)) < 0) {
370  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
371  return err;
372  }
373  }
374 
375  /* copy block_offset since frame_start may not be called */
376  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
377  }
378 
379  h->avctx->coded_height = h1->avctx->coded_height;
380  h->avctx->coded_width = h1->avctx->coded_width;
381  h->avctx->width = h1->avctx->width;
382  h->avctx->height = h1->avctx->height;
383  h->width_from_caller = h1->width_from_caller;
384  h->height_from_caller = h1->height_from_caller;
385  h->coded_picture_number = h1->coded_picture_number;
386  h->first_field = h1->first_field;
387  h->picture_structure = h1->picture_structure;
388  h->mb_aff_frame = h1->mb_aff_frame;
389  h->droppable = h1->droppable;
390 
391  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
392  ret = ff_h264_replace_picture(h, &h->DPB[i], &h1->DPB[i]);
393  if (ret < 0)
394  return ret;
395  }
396 
397  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
398  ret = ff_h264_replace_picture(h, &h->cur_pic, &h1->cur_pic);
399  if (ret < 0)
400  return ret;
401 
402  h->enable_er = h1->enable_er;
403  h->workaround_bugs = h1->workaround_bugs;
404  h->droppable = h1->droppable;
405 
406  // extradata/NAL handling
407  h->is_avc = h1->is_avc;
408  h->nal_length_size = h1->nal_length_size;
409 
410  memcpy(&h->poc, &h1->poc, sizeof(h->poc));
411 
412  memcpy(h->short_ref, h1->short_ref, sizeof(h->short_ref));
413  memcpy(h->long_ref, h1->long_ref, sizeof(h->long_ref));
414  memcpy(h->delayed_pic, h1->delayed_pic, sizeof(h->delayed_pic));
415  memcpy(h->last_pocs, h1->last_pocs, sizeof(h->last_pocs));
416 
417  h->next_output_pic = h1->next_output_pic;
418  h->next_outputed_poc = h1->next_outputed_poc;
419  h->poc_offset = h1->poc_offset;
420 
421  memcpy(h->mmco, h1->mmco, sizeof(h->mmco));
422  h->nb_mmco = h1->nb_mmco;
423  h->mmco_reset = h1->mmco_reset;
424  h->explicit_ref_marking = h1->explicit_ref_marking;
425  h->long_ref_count = h1->long_ref_count;
426  h->short_ref_count = h1->short_ref_count;
427 
428  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
429  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
430  copy_picture_range(h->delayed_pic, h1->delayed_pic,
431  MAX_DELAYED_PIC_COUNT + 2, h, h1);
432 
433  h->frame_recovered = h1->frame_recovered;
434 
435  ret = av_buffer_replace(&h->sei.a53_caption.buf_ref, h1->sei.a53_caption.buf_ref);
436  if (ret < 0)
437  return ret;
438 
439  for (i = 0; i < h->sei.unregistered.nb_buf_ref; i++)
440  av_buffer_unref(&h->sei.unregistered.buf_ref[i]);
441  h->sei.unregistered.nb_buf_ref = 0;
442 
443  if (h1->sei.unregistered.nb_buf_ref) {
444  ret = av_reallocp_array(&h->sei.unregistered.buf_ref,
445  h1->sei.unregistered.nb_buf_ref,
446  sizeof(*h->sei.unregistered.buf_ref));
447  if (ret < 0)
448  return ret;
449 
450  for (i = 0; i < h1->sei.unregistered.nb_buf_ref; i++) {
451  h->sei.unregistered.buf_ref[i] = av_buffer_ref(h1->sei.unregistered.buf_ref[i]);
452  if (!h->sei.unregistered.buf_ref[i])
453  return AVERROR(ENOMEM);
454  h->sei.unregistered.nb_buf_ref++;
455  }
456  }
457  h->sei.unregistered.x264_build = h1->sei.unregistered.x264_build;
458 
459  if (!h->cur_pic_ptr)
460  return 0;
461 
462  if (!h->droppable) {
464  h->poc.prev_poc_msb = h->poc.poc_msb;
465  h->poc.prev_poc_lsb = h->poc.poc_lsb;
466  }
467  h->poc.prev_frame_num_offset = h->poc.frame_num_offset;
468  h->poc.prev_frame_num = h->poc.frame_num;
469 
470  h->recovery_frame = h1->recovery_frame;
471 
472  return err;
473 }
474 
476  const AVCodecContext *src)
477 {
478  H264Context *h = dst->priv_data;
479  const H264Context *h1 = src->priv_data;
480 
481  h->is_avc = h1->is_avc;
482  h->nal_length_size = h1->nal_length_size;
483 
484  return 0;
485 }
486 
488 {
489  H264Picture *pic;
490  int i, ret;
491  const int pixel_shift = h->pixel_shift;
492 
493  if (!ff_thread_can_start_frame(h->avctx)) {
494  av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
495  return -1;
496  }
497 
499  h->cur_pic_ptr = NULL;
500 
502  if (i < 0) {
503  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
504  return i;
505  }
506  pic = &h->DPB[i];
507 
508  pic->reference = h->droppable ? 0 : h->picture_structure;
509  pic->f->coded_picture_number = h->coded_picture_number++;
510  pic->field_picture = h->picture_structure != PICT_FRAME;
511  pic->frame_num = h->poc.frame_num;
512  /*
513  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
514  * in later.
515  * See decode_nal_units().
516  */
517  pic->f->key_frame = 0;
518  pic->mmco_reset = 0;
519  pic->recovered = 0;
520  pic->invalid_gap = 0;
521  pic->sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
522 
523  pic->f->pict_type = h->slice_ctx[0].slice_type;
524 
525  pic->f->crop_left = h->crop_left;
526  pic->f->crop_right = h->crop_right;
527  pic->f->crop_top = h->crop_top;
528  pic->f->crop_bottom = h->crop_bottom;
529 
530  pic->needs_fg = h->sei.film_grain_characteristics.present && !h->avctx->hwaccel &&
531  !(h->avctx->export_side_data & AV_CODEC_EXPORT_DATA_FILM_GRAIN);
532 
533  if ((ret = alloc_picture(h, pic)) < 0)
534  return ret;
535 
536  h->cur_pic_ptr = pic;
537  ff_h264_unref_picture(h, &h->cur_pic);
538  if (CONFIG_ERROR_RESILIENCE) {
539  ff_h264_set_erpic(&h->slice_ctx[0].er.cur_pic, NULL);
540  }
541 
542  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
543  return ret;
544 
545  for (i = 0; i < h->nb_slice_ctx; i++) {
546  h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
547  h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
548  }
549 
550  if (CONFIG_ERROR_RESILIENCE && h->enable_er) {
551  ff_er_frame_start(&h->slice_ctx[0].er);
552  ff_h264_set_erpic(&h->slice_ctx[0].er.last_pic, NULL);
553  ff_h264_set_erpic(&h->slice_ctx[0].er.next_pic, NULL);
554  }
555 
556  for (i = 0; i < 16; i++) {
557  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
558  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
559  }
560  for (i = 0; i < 16; i++) {
561  h->block_offset[16 + i] =
562  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
563  h->block_offset[48 + 16 + i] =
564  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
565  }
566 
567  /* We mark the current picture as non-reference after allocating it, so
568  * that if we break out due to an error it can be released automatically
569  * in the next ff_mpv_frame_start().
570  */
571  h->cur_pic_ptr->reference = 0;
572 
573  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
574 
575  h->next_output_pic = NULL;
576 
577  h->postpone_filter = 0;
578 
579  h->mb_aff_frame = h->ps.sps->mb_aff && (h->picture_structure == PICT_FRAME);
580 
581  if (h->sei.unregistered.x264_build >= 0)
582  h->x264_build = h->sei.unregistered.x264_build;
583 
584  assert(h->cur_pic_ptr->long_ref == 0);
585 
586  return 0;
587 }
588 
590  uint8_t *src_y,
591  uint8_t *src_cb, uint8_t *src_cr,
592  int linesize, int uvlinesize,
593  int simple)
594 {
595  uint8_t *top_border;
596  int top_idx = 1;
597  const int pixel_shift = h->pixel_shift;
598  int chroma444 = CHROMA444(h);
599  int chroma422 = CHROMA422(h);
600 
601  src_y -= linesize;
602  src_cb -= uvlinesize;
603  src_cr -= uvlinesize;
604 
605  if (!simple && FRAME_MBAFF(h)) {
606  if (sl->mb_y & 1) {
607  if (!MB_MBAFF(sl)) {
608  top_border = sl->top_borders[0][sl->mb_x];
609  AV_COPY128(top_border, src_y + 15 * linesize);
610  if (pixel_shift)
611  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
612  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
613  if (chroma444) {
614  if (pixel_shift) {
615  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
616  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
617  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
618  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
619  } else {
620  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
621  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
622  }
623  } else if (chroma422) {
624  if (pixel_shift) {
625  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
626  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
627  } else {
628  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
629  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
630  }
631  } else {
632  if (pixel_shift) {
633  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
634  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
635  } else {
636  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
637  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
638  }
639  }
640  }
641  }
642  } else if (MB_MBAFF(sl)) {
643  top_idx = 0;
644  } else
645  return;
646  }
647 
648  top_border = sl->top_borders[top_idx][sl->mb_x];
649  /* There are two lines saved, the line above the top macroblock
650  * of a pair, and the line above the bottom macroblock. */
651  AV_COPY128(top_border, src_y + 16 * linesize);
652  if (pixel_shift)
653  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
654 
655  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
656  if (chroma444) {
657  if (pixel_shift) {
658  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
659  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
660  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
661  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
662  } else {
663  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
664  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
665  }
666  } else if (chroma422) {
667  if (pixel_shift) {
668  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
669  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
670  } else {
671  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
672  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
673  }
674  } else {
675  if (pixel_shift) {
676  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
677  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
678  } else {
679  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
680  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
681  }
682  }
683  }
684 }
685 
686 /**
687  * Initialize implicit_weight table.
688  * @param field 0/1 initialize the weight for interlaced MBAFF
689  * -1 initializes the rest
690  */
692 {
693  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
694 
695  for (i = 0; i < 2; i++) {
696  sl->pwt.luma_weight_flag[i] = 0;
697  sl->pwt.chroma_weight_flag[i] = 0;
698  }
699 
700  if (field < 0) {
701  if (h->picture_structure == PICT_FRAME) {
702  cur_poc = h->cur_pic_ptr->poc;
703  } else {
704  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
705  }
706  if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
707  sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2LL * cur_poc) {
708  sl->pwt.use_weight = 0;
709  sl->pwt.use_weight_chroma = 0;
710  return;
711  }
712  ref_start = 0;
713  ref_count0 = sl->ref_count[0];
714  ref_count1 = sl->ref_count[1];
715  } else {
716  cur_poc = h->cur_pic_ptr->field_poc[field];
717  ref_start = 16;
718  ref_count0 = 16 + 2 * sl->ref_count[0];
719  ref_count1 = 16 + 2 * sl->ref_count[1];
720  }
721 
722  sl->pwt.use_weight = 2;
723  sl->pwt.use_weight_chroma = 2;
724  sl->pwt.luma_log2_weight_denom = 5;
726 
727  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
728  int64_t poc0 = sl->ref_list[0][ref0].poc;
729  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
730  int w = 32;
731  if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
732  int poc1 = sl->ref_list[1][ref1].poc;
733  int td = av_clip_int8(poc1 - poc0);
734  if (td) {
735  int tb = av_clip_int8(cur_poc - poc0);
736  int tx = (16384 + (FFABS(td) >> 1)) / td;
737  int dist_scale_factor = (tb * tx + 32) >> 8;
738  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
739  w = 64 - dist_scale_factor;
740  }
741  }
742  if (field < 0) {
743  sl->pwt.implicit_weight[ref0][ref1][0] =
744  sl->pwt.implicit_weight[ref0][ref1][1] = w;
745  } else {
746  sl->pwt.implicit_weight[ref0][ref1][field] = w;
747  }
748  }
749  }
750 }
751 
752 /**
753  * initialize scan tables
754  */
756 {
757  int i;
758  for (i = 0; i < 16; i++) {
759 #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
760  h->zigzag_scan[i] = TRANSPOSE(ff_zigzag_scan[i]);
761  h->field_scan[i] = TRANSPOSE(field_scan[i]);
762 #undef TRANSPOSE
763  }
764  for (i = 0; i < 64; i++) {
765 #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
766  h->zigzag_scan8x8[i] = TRANSPOSE(ff_zigzag_direct[i]);
767  h->zigzag_scan8x8_cavlc[i] = TRANSPOSE(zigzag_scan8x8_cavlc[i]);
768  h->field_scan8x8[i] = TRANSPOSE(field_scan8x8[i]);
769  h->field_scan8x8_cavlc[i] = TRANSPOSE(field_scan8x8_cavlc[i]);
770 #undef TRANSPOSE
771  }
772  if (h->ps.sps->transform_bypass) { // FIXME same ugly
773  memcpy(h->zigzag_scan_q0 , ff_zigzag_scan , sizeof(h->zigzag_scan_q0 ));
774  memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
775  memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
776  memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
777  memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
778  memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
779  } else {
780  memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
781  memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
782  memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
783  memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
784  memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
785  memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
786  }
787 }
788 
789 static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
790 {
791 #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
792  (CONFIG_H264_D3D11VA_HWACCEL * 2) + \
793  CONFIG_H264_NVDEC_HWACCEL + \
794  CONFIG_H264_VAAPI_HWACCEL + \
795  CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \
796  CONFIG_H264_VDPAU_HWACCEL)
797  enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
798  const enum AVPixelFormat *choices = pix_fmts;
799  int i;
800 
801  switch (h->ps.sps->bit_depth_luma) {
802  case 9:
803  if (CHROMA444(h)) {
804  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
805  *fmt++ = AV_PIX_FMT_GBRP9;
806  } else
807  *fmt++ = AV_PIX_FMT_YUV444P9;
808  } else if (CHROMA422(h))
809  *fmt++ = AV_PIX_FMT_YUV422P9;
810  else
811  *fmt++ = AV_PIX_FMT_YUV420P9;
812  break;
813  case 10:
814 #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
815  if (h->avctx->colorspace != AVCOL_SPC_RGB)
816  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
817 #endif
818  if (CHROMA444(h)) {
819  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
820  *fmt++ = AV_PIX_FMT_GBRP10;
821  } else
822  *fmt++ = AV_PIX_FMT_YUV444P10;
823  } else if (CHROMA422(h))
824  *fmt++ = AV_PIX_FMT_YUV422P10;
825  else
826  *fmt++ = AV_PIX_FMT_YUV420P10;
827  break;
828  case 12:
829  if (CHROMA444(h)) {
830  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
831  *fmt++ = AV_PIX_FMT_GBRP12;
832  } else
833  *fmt++ = AV_PIX_FMT_YUV444P12;
834  } else if (CHROMA422(h))
835  *fmt++ = AV_PIX_FMT_YUV422P12;
836  else
837  *fmt++ = AV_PIX_FMT_YUV420P12;
838  break;
839  case 14:
840  if (CHROMA444(h)) {
841  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
842  *fmt++ = AV_PIX_FMT_GBRP14;
843  } else
844  *fmt++ = AV_PIX_FMT_YUV444P14;
845  } else if (CHROMA422(h))
846  *fmt++ = AV_PIX_FMT_YUV422P14;
847  else
848  *fmt++ = AV_PIX_FMT_YUV420P14;
849  break;
850  case 8:
851 #if CONFIG_H264_VDPAU_HWACCEL
852  *fmt++ = AV_PIX_FMT_VDPAU;
853 #endif
854 #if CONFIG_H264_NVDEC_HWACCEL
855  *fmt++ = AV_PIX_FMT_CUDA;
856 #endif
857 #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
858  if (h->avctx->colorspace != AVCOL_SPC_RGB)
859  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
860 #endif
861  if (CHROMA444(h)) {
862  if (h->avctx->colorspace == AVCOL_SPC_RGB)
863  *fmt++ = AV_PIX_FMT_GBRP;
864  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
865  *fmt++ = AV_PIX_FMT_YUVJ444P;
866  else
867  *fmt++ = AV_PIX_FMT_YUV444P;
868  } else if (CHROMA422(h)) {
869  if (h->avctx->color_range == AVCOL_RANGE_JPEG)
870  *fmt++ = AV_PIX_FMT_YUVJ422P;
871  else
872  *fmt++ = AV_PIX_FMT_YUV422P;
873  } else {
874 #if CONFIG_H264_DXVA2_HWACCEL
875  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
876 #endif
877 #if CONFIG_H264_D3D11VA_HWACCEL
878  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
879  *fmt++ = AV_PIX_FMT_D3D11;
880 #endif
881 #if CONFIG_H264_VAAPI_HWACCEL
882  *fmt++ = AV_PIX_FMT_VAAPI;
883 #endif
884  if (h->avctx->codec->pix_fmts)
885  choices = h->avctx->codec->pix_fmts;
886  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
887  *fmt++ = AV_PIX_FMT_YUVJ420P;
888  else
889  *fmt++ = AV_PIX_FMT_YUV420P;
890  }
891  break;
892  default:
893  av_log(h->avctx, AV_LOG_ERROR,
894  "Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma);
895  return AVERROR_INVALIDDATA;
896  }
897 
898  *fmt = AV_PIX_FMT_NONE;
899 
900  for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
901  if (choices[i] == h->avctx->pix_fmt && !force_callback)
902  return choices[i];
903  return ff_thread_get_format(h->avctx, choices);
904 }
905 
906 /* export coded and cropped frame dimensions to AVCodecContext */
908 {
909  const SPS *sps = (const SPS*)h->ps.sps;
910  int cr = sps->crop_right;
911  int cl = sps->crop_left;
912  int ct = sps->crop_top;
913  int cb = sps->crop_bottom;
914  int width = h->width - (cr + cl);
915  int height = h->height - (ct + cb);
916  av_assert0(sps->crop_right + sps->crop_left < (unsigned)h->width);
917  av_assert0(sps->crop_top + sps->crop_bottom < (unsigned)h->height);
918 
919  /* handle container cropping */
920  if (h->width_from_caller > 0 && h->height_from_caller > 0 &&
921  !sps->crop_top && !sps->crop_left &&
922  FFALIGN(h->width_from_caller, 16) == FFALIGN(width, 16) &&
923  FFALIGN(h->height_from_caller, 16) == FFALIGN(height, 16) &&
924  h->width_from_caller <= width &&
925  h->height_from_caller <= height) {
926  width = h->width_from_caller;
927  height = h->height_from_caller;
928  cl = 0;
929  ct = 0;
930  cr = h->width - width;
931  cb = h->height - height;
932  } else {
933  h->width_from_caller = 0;
934  h->height_from_caller = 0;
935  }
936 
937  h->avctx->coded_width = h->width;
938  h->avctx->coded_height = h->height;
939  h->avctx->width = width;
940  h->avctx->height = height;
941  h->crop_right = cr;
942  h->crop_left = cl;
943  h->crop_top = ct;
944  h->crop_bottom = cb;
945 }
946 
948 {
949  const SPS *sps = h->ps.sps;
950  int i, ret;
951 
952  if (!sps) {
954  goto fail;
955  }
956 
957  ff_set_sar(h->avctx, sps->sar);
958  av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt,
959  &h->chroma_x_shift, &h->chroma_y_shift);
960 
961  if (sps->timing_info_present_flag) {
962  int64_t den = sps->time_scale;
963  if (h->x264_build < 44U)
964  den *= 2;
965  av_reduce(&h->avctx->framerate.den, &h->avctx->framerate.num,
966  sps->num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
967  }
968 
970 
971  h->first_field = 0;
972  h->prev_interlaced_frame = 1;
973 
976  if (ret < 0) {
977  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
978  goto fail;
979  }
980 
981  if (sps->bit_depth_luma < 8 || sps->bit_depth_luma > 14 ||
982  sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13
983  ) {
984  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
985  sps->bit_depth_luma);
987  goto fail;
988  }
989 
990  h->cur_bit_depth_luma =
991  h->avctx->bits_per_raw_sample = sps->bit_depth_luma;
992  h->cur_chroma_format_idc = sps->chroma_format_idc;
993  h->pixel_shift = sps->bit_depth_luma > 8;
994  h->chroma_format_idc = sps->chroma_format_idc;
995  h->bit_depth_luma = sps->bit_depth_luma;
996 
997  ff_h264dsp_init(&h->h264dsp, sps->bit_depth_luma,
998  sps->chroma_format_idc);
999  ff_h264chroma_init(&h->h264chroma, sps->bit_depth_chroma);
1000  ff_h264qpel_init(&h->h264qpel, sps->bit_depth_luma);
1001  ff_h264_pred_init(&h->hpc, h->avctx->codec_id, sps->bit_depth_luma,
1002  sps->chroma_format_idc);
1003  ff_videodsp_init(&h->vdsp, sps->bit_depth_luma);
1004 
1005  if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
1006  ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
1007  if (ret < 0) {
1008  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
1009  goto fail;
1010  }
1011  } else {
1012  for (i = 0; i < h->nb_slice_ctx; i++) {
1013  H264SliceContext *sl = &h->slice_ctx[i];
1014 
1015  sl->h264 = h;
1016  sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
1017  sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
1018  sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
1019 
1020  if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
1021  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
1022  goto fail;
1023  }
1024  }
1025  }
1026 
1027  h->context_initialized = 1;
1028 
1029  return 0;
1030 fail:
1032  h->context_initialized = 0;
1033  return ret;
1034 }
1035 
1037 {
1038  switch (a) {
1042  default:
1043  return a;
1044  }
1045 }
1046 
1047 static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
1048 {
1049  const SPS *sps;
1050  int needs_reinit = 0, must_reinit, ret;
1051 
1052  if (first_slice) {
1053  av_buffer_unref(&h->ps.pps_ref);
1054  h->ps.pps = NULL;
1055  h->ps.pps_ref = av_buffer_ref(h->ps.pps_list[sl->pps_id]);
1056  if (!h->ps.pps_ref)
1057  return AVERROR(ENOMEM);
1058  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
1059  }
1060 
1061  if (h->ps.sps != h->ps.pps->sps) {
1062  h->ps.sps = (const SPS*)h->ps.pps->sps;
1063 
1064  if (h->mb_width != h->ps.sps->mb_width ||
1065  h->mb_height != h->ps.sps->mb_height ||
1066  h->cur_bit_depth_luma != h->ps.sps->bit_depth_luma ||
1067  h->cur_chroma_format_idc != h->ps.sps->chroma_format_idc
1068  )
1069  needs_reinit = 1;
1070 
1071  if (h->bit_depth_luma != h->ps.sps->bit_depth_luma ||
1072  h->chroma_format_idc != h->ps.sps->chroma_format_idc)
1073  needs_reinit = 1;
1074  }
1075  sps = h->ps.sps;
1076 
1077  must_reinit = (h->context_initialized &&
1078  ( 16*sps->mb_width != h->avctx->coded_width
1079  || 16*sps->mb_height != h->avctx->coded_height
1080  || h->cur_bit_depth_luma != sps->bit_depth_luma
1081  || h->cur_chroma_format_idc != sps->chroma_format_idc
1082  || h->mb_width != sps->mb_width
1083  || h->mb_height != sps->mb_height
1084  ));
1085  if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
1086  || (non_j_pixfmt(h->avctx->pix_fmt) != non_j_pixfmt(get_pixel_format(h, 0))))
1087  must_reinit = 1;
1088 
1089  if (first_slice && av_cmp_q(sps->sar, h->avctx->sample_aspect_ratio))
1090  must_reinit = 1;
1091 
1092  if (!h->setup_finished) {
1093  h->avctx->profile = ff_h264_get_profile(sps);
1094  h->avctx->level = sps->level_idc;
1095  h->avctx->refs = sps->ref_frame_count;
1096 
1097  h->mb_width = sps->mb_width;
1098  h->mb_height = sps->mb_height;
1099  h->mb_num = h->mb_width * h->mb_height;
1100  h->mb_stride = h->mb_width + 1;
1101 
1102  h->b_stride = h->mb_width * 4;
1103 
1104  h->chroma_y_shift = sps->chroma_format_idc <= 1; // 400 uses yuv420p
1105 
1106  h->width = 16 * h->mb_width;
1107  h->height = 16 * h->mb_height;
1108 
1109  init_dimensions(h);
1110 
1111  if (sps->video_signal_type_present_flag) {
1112  h->avctx->color_range = sps->full_range > 0 ? AVCOL_RANGE_JPEG
1113  : AVCOL_RANGE_MPEG;
1114  if (sps->colour_description_present_flag) {
1115  if (h->avctx->colorspace != sps->colorspace)
1116  needs_reinit = 1;
1117  h->avctx->color_primaries = sps->color_primaries;
1118  h->avctx->color_trc = sps->color_trc;
1119  h->avctx->colorspace = sps->colorspace;
1120  }
1121  }
1122 
1123  if (h->sei.alternative_transfer.present &&
1124  av_color_transfer_name(h->sei.alternative_transfer.preferred_transfer_characteristics) &&
1125  h->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
1126  h->avctx->color_trc = h->sei.alternative_transfer.preferred_transfer_characteristics;
1127  }
1128  }
1129  h->avctx->chroma_sample_location = sps->chroma_location;
1130 
1131  if (!h->context_initialized || must_reinit || needs_reinit) {
1132  int flush_changes = h->context_initialized;
1133  h->context_initialized = 0;
1134  if (sl != h->slice_ctx) {
1135  av_log(h->avctx, AV_LOG_ERROR,
1136  "changing width %d -> %d / height %d -> %d on "
1137  "slice %d\n",
1138  h->width, h->avctx->coded_width,
1139  h->height, h->avctx->coded_height,
1140  h->current_slice + 1);
1141  return AVERROR_INVALIDDATA;
1142  }
1143 
1144  av_assert1(first_slice);
1145 
1146  if (flush_changes)
1148 
1149  if ((ret = get_pixel_format(h, 1)) < 0)
1150  return ret;
1151  h->avctx->pix_fmt = ret;
1152 
1153  av_log(h->avctx, AV_LOG_VERBOSE, "Reinit context to %dx%d, "
1154  "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
1155 
1156  if ((ret = h264_slice_header_init(h)) < 0) {
1157  av_log(h->avctx, AV_LOG_ERROR,
1158  "h264_slice_header_init() failed\n");
1159  return ret;
1160  }
1161  }
1162 
1163  return 0;
1164 }
1165 
1167 {
1168  const SPS *sps = h->ps.sps;
1169  H264Picture *cur = h->cur_pic_ptr;
1170  AVFrame *out = cur->f;
1171 
1172  out->interlaced_frame = 0;
1173  out->repeat_pict = 0;
1174 
1175  /* Signal interlacing information externally. */
1176  /* Prioritize picture timing SEI information over used
1177  * decoding process if it exists. */
1178  if (h->sei.picture_timing.present) {
1179  int ret = ff_h264_sei_process_picture_timing(&h->sei.picture_timing, sps,
1180  h->avctx);
1181  if (ret < 0) {
1182  av_log(h->avctx, AV_LOG_ERROR, "Error processing a picture timing SEI\n");
1183  if (h->avctx->err_recognition & AV_EF_EXPLODE)
1184  return ret;
1185  h->sei.picture_timing.present = 0;
1186  }
1187  }
1188 
1189  if (sps->pic_struct_present_flag && h->sei.picture_timing.present) {
1190  H264SEIPictureTiming *pt = &h->sei.picture_timing;
1191  switch (pt->pic_struct) {
1193  break;
1196  out->interlaced_frame = 1;
1197  break;
1201  out->interlaced_frame = 1;
1202  else
1203  // try to flag soft telecine progressive
1204  out->interlaced_frame = h->prev_interlaced_frame;
1205  break;
1208  /* Signal the possibility of telecined film externally
1209  * (pic_struct 5,6). From these hints, let the applications
1210  * decide if they apply deinterlacing. */
1211  out->repeat_pict = 1;
1212  break;
1214  out->repeat_pict = 2;
1215  break;
1217  out->repeat_pict = 4;
1218  break;
1219  }
1220 
1221  if ((pt->ct_type & 3) &&
1222  pt->pic_struct <= H264_SEI_PIC_STRUCT_BOTTOM_TOP)
1223  out->interlaced_frame = (pt->ct_type & (1 << 1)) != 0;
1224  } else {
1225  /* Derive interlacing flag from used decoding process. */
1226  out->interlaced_frame = FIELD_OR_MBAFF_PICTURE(h);
1227  }
1228  h->prev_interlaced_frame = out->interlaced_frame;
1229 
1230  if (cur->field_poc[0] != cur->field_poc[1]) {
1231  /* Derive top_field_first from field pocs. */
1232  out->top_field_first = cur->field_poc[0] < cur->field_poc[1];
1233  } else {
1234  if (sps->pic_struct_present_flag && h->sei.picture_timing.present) {
1235  /* Use picture timing SEI information. Even if it is a
1236  * information of a past frame, better than nothing. */
1237  if (h->sei.picture_timing.pic_struct == H264_SEI_PIC_STRUCT_TOP_BOTTOM ||
1238  h->sei.picture_timing.pic_struct == H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
1239  out->top_field_first = 1;
1240  else
1241  out->top_field_first = 0;
1242  } else if (out->interlaced_frame) {
1243  /* Default to top field first when pic_struct_present_flag
1244  * is not set but interlaced frame detected */
1245  out->top_field_first = 1;
1246  } else {
1247  /* Most likely progressive */
1248  out->top_field_first = 0;
1249  }
1250  }
1251 
1252  if (h->sei.frame_packing.present &&
1253  h->sei.frame_packing.arrangement_type <= 6 &&
1254  h->sei.frame_packing.content_interpretation_type > 0 &&
1255  h->sei.frame_packing.content_interpretation_type < 3) {
1256  H264SEIFramePacking *fp = &h->sei.frame_packing;
1258  if (stereo) {
1259  switch (fp->arrangement_type) {
1261  stereo->type = AV_STEREO3D_CHECKERBOARD;
1262  break;
1264  stereo->type = AV_STEREO3D_COLUMNS;
1265  break;
1267  stereo->type = AV_STEREO3D_LINES;
1268  break;
1270  if (fp->quincunx_sampling_flag)
1272  else
1273  stereo->type = AV_STEREO3D_SIDEBYSIDE;
1274  break;
1276  stereo->type = AV_STEREO3D_TOPBOTTOM;
1277  break;
1279  stereo->type = AV_STEREO3D_FRAMESEQUENCE;
1280  break;
1281  case H264_SEI_FPA_TYPE_2D:
1282  stereo->type = AV_STEREO3D_2D;
1283  break;
1284  }
1285 
1286  if (fp->content_interpretation_type == 2)
1287  stereo->flags = AV_STEREO3D_FLAG_INVERT;
1288 
1289  if (fp->arrangement_type == H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL) {
1290  if (fp->current_frame_is_frame0_flag)
1291  stereo->view = AV_STEREO3D_VIEW_LEFT;
1292  else
1293  stereo->view = AV_STEREO3D_VIEW_RIGHT;
1294  }
1295  }
1296  }
1297 
1298  if (h->sei.display_orientation.present &&
1299  (h->sei.display_orientation.anticlockwise_rotation ||
1300  h->sei.display_orientation.hflip ||
1301  h->sei.display_orientation.vflip)) {
1302  H264SEIDisplayOrientation *o = &h->sei.display_orientation;
1303  double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16);
1306  sizeof(int32_t) * 9);
1307  if (rotation) {
1308  av_display_rotation_set((int32_t *)rotation->data, angle);
1309  av_display_matrix_flip((int32_t *)rotation->data,
1310  o->hflip, o->vflip);
1311  }
1312  }
1313 
1314  if (h->sei.afd.present) {
1316  sizeof(uint8_t));
1317 
1318  if (sd) {
1319  *sd->data = h->sei.afd.active_format_description;
1320  h->sei.afd.present = 0;
1321  }
1322  }
1323 
1324  if (h->sei.a53_caption.buf_ref) {
1325  H264SEIA53Caption *a53 = &h->sei.a53_caption;
1326 
1328  if (!sd)
1329  av_buffer_unref(&a53->buf_ref);
1330  a53->buf_ref = NULL;
1331 
1332  h->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
1333  }
1334 
1335  for (int i = 0; i < h->sei.unregistered.nb_buf_ref; i++) {
1336  H264SEIUnregistered *unreg = &h->sei.unregistered;
1337 
1338  if (unreg->buf_ref[i]) {
1341  unreg->buf_ref[i]);
1342  if (!sd)
1343  av_buffer_unref(&unreg->buf_ref[i]);
1344  unreg->buf_ref[i] = NULL;
1345  }
1346  }
1347  h->sei.unregistered.nb_buf_ref = 0;
1348 
1349  if (h->sei.film_grain_characteristics.present) {
1350  H264SEIFilmGrainCharacteristics *fgc = &h->sei.film_grain_characteristics;
1352  if (!fgp)
1353  return AVERROR(ENOMEM);
1354 
1356  fgp->seed = cur->poc + (h->poc_offset << 5);
1357 
1358  fgp->codec.h274.model_id = fgc->model_id;
1362  fgp->codec.h274.color_range = fgc->full_range + 1;
1365  fgp->codec.h274.color_space = fgc->matrix_coeffs;
1366  } else {
1367  fgp->codec.h274.bit_depth_luma = sps->bit_depth_luma;
1368  fgp->codec.h274.bit_depth_chroma = sps->bit_depth_chroma;
1369  if (sps->video_signal_type_present_flag)
1370  fgp->codec.h274.color_range = sps->full_range + 1;
1371  else
1373  if (sps->colour_description_present_flag) {
1374  fgp->codec.h274.color_primaries = sps->color_primaries;
1375  fgp->codec.h274.color_trc = sps->color_trc;
1376  fgp->codec.h274.color_space = sps->colorspace;
1377  } else {
1381  }
1382  }
1385 
1387  sizeof(fgp->codec.h274.component_model_present));
1389  sizeof(fgp->codec.h274.num_intensity_intervals));
1390  memcpy(&fgp->codec.h274.num_model_values, &fgc->num_model_values,
1391  sizeof(fgp->codec.h274.num_model_values));
1396  memcpy(&fgp->codec.h274.comp_model_value, &fgc->comp_model_value,
1397  sizeof(fgp->codec.h274.comp_model_value));
1398 
1399  fgc->present = !!fgc->repetition_period;
1400 
1401  h->avctx->properties |= FF_CODEC_PROPERTY_FILM_GRAIN;
1402  }
1403 
1404  if (h->sei.picture_timing.timecode_cnt > 0) {
1405  uint32_t *tc_sd;
1406  char tcbuf[AV_TIMECODE_STR_SIZE];
1407 
1410  sizeof(uint32_t)*4);
1411  if (!tcside)
1412  return AVERROR(ENOMEM);
1413 
1414  tc_sd = (uint32_t*)tcside->data;
1415  tc_sd[0] = h->sei.picture_timing.timecode_cnt;
1416 
1417  for (int i = 0; i < tc_sd[0]; i++) {
1418  int drop = h->sei.picture_timing.timecode[i].dropframe;
1419  int hh = h->sei.picture_timing.timecode[i].hours;
1420  int mm = h->sei.picture_timing.timecode[i].minutes;
1421  int ss = h->sei.picture_timing.timecode[i].seconds;
1422  int ff = h->sei.picture_timing.timecode[i].frame;
1423 
1424  tc_sd[i + 1] = av_timecode_get_smpte(h->avctx->framerate, drop, hh, mm, ss, ff);
1425  av_timecode_make_smpte_tc_string2(tcbuf, h->avctx->framerate, tc_sd[i + 1], 0, 0);
1426  av_dict_set(&out->metadata, "timecode", tcbuf, 0);
1427  }
1428  h->sei.picture_timing.timecode_cnt = 0;
1429  }
1430 
1431  return 0;
1432 }
1433 
1435 {
1436  const SPS *sps = h->ps.sps;
1437  H264Picture *out = h->cur_pic_ptr;
1438  H264Picture *cur = h->cur_pic_ptr;
1439  int i, pics, out_of_order, out_idx;
1440 
1441  cur->mmco_reset = h->mmco_reset;
1442  h->mmco_reset = 0;
1443 
1444  if (sps->bitstream_restriction_flag ||
1445  h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT) {
1446  h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, sps->num_reorder_frames);
1447  }
1448 
1449  for (i = 0; 1; i++) {
1450  if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
1451  if(i)
1452  h->last_pocs[i-1] = cur->poc;
1453  break;
1454  } else if(i) {
1455  h->last_pocs[i-1]= h->last_pocs[i];
1456  }
1457  }
1458  out_of_order = MAX_DELAYED_PIC_COUNT - i;
1459  if( cur->f->pict_type == AV_PICTURE_TYPE_B
1460  || (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - (int64_t)h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2))
1461  out_of_order = FFMAX(out_of_order, 1);
1462  if (out_of_order == MAX_DELAYED_PIC_COUNT) {
1463  av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
1464  for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
1465  h->last_pocs[i] = INT_MIN;
1466  h->last_pocs[0] = cur->poc;
1467  cur->mmco_reset = 1;
1468  } else if(h->avctx->has_b_frames < out_of_order && !sps->bitstream_restriction_flag){
1469  int loglevel = h->avctx->frame_number > 1 ? AV_LOG_WARNING : AV_LOG_VERBOSE;
1470  av_log(h->avctx, loglevel, "Increasing reorder buffer to %d\n", out_of_order);
1471  h->avctx->has_b_frames = out_of_order;
1472  }
1473 
1474  pics = 0;
1475  while (h->delayed_pic[pics])
1476  pics++;
1477 
1479 
1480  h->delayed_pic[pics++] = cur;
1481  if (cur->reference == 0)
1482  cur->reference = DELAYED_PIC_REF;
1483 
1484  out = h->delayed_pic[0];
1485  out_idx = 0;
1486  for (i = 1; h->delayed_pic[i] &&
1487  !h->delayed_pic[i]->f->key_frame &&
1488  !h->delayed_pic[i]->mmco_reset;
1489  i++)
1490  if (h->delayed_pic[i]->poc < out->poc) {
1491  out = h->delayed_pic[i];
1492  out_idx = i;
1493  }
1494  if (h->avctx->has_b_frames == 0 &&
1495  (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset))
1496  h->next_outputed_poc = INT_MIN;
1497  out_of_order = out->poc < h->next_outputed_poc;
1498 
1499  if (out_of_order || pics > h->avctx->has_b_frames) {
1500  out->reference &= ~DELAYED_PIC_REF;
1501  for (i = out_idx; h->delayed_pic[i]; i++)
1502  h->delayed_pic[i] = h->delayed_pic[i + 1];
1503  }
1504  if (!out_of_order && pics > h->avctx->has_b_frames) {
1505  h->next_output_pic = out;
1506  if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) {
1507  h->next_outputed_poc = INT_MIN;
1508  } else
1509  h->next_outputed_poc = out->poc;
1510 
1511  if (out->recovered) {
1512  // We have reached an recovery point and all frames after it in
1513  // display order are "recovered".
1514  h->frame_recovered |= FRAME_RECOVERED_SEI;
1515  }
1516  out->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI);
1517 
1518  if (!out->recovered) {
1519  if (!(h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) &&
1520  !(h->avctx->flags2 & AV_CODEC_FLAG2_SHOW_ALL)) {
1521  h->next_output_pic = NULL;
1522  } else {
1523  out->f->flags |= AV_FRAME_FLAG_CORRUPT;
1524  }
1525  }
1526  } else {
1527  av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
1528  }
1529 
1530  return 0;
1531 }
1532 
1533 /* This function is called right after decoding the slice header for a first
1534  * slice in a field (or a frame). It decides whether we are decoding a new frame
1535  * or a second field in a pair and does the necessary setup.
1536  */
1538  const H2645NAL *nal, int first_slice)
1539 {
1540  int i;
1541  const SPS *sps;
1542 
1543  int last_pic_structure, last_pic_droppable, ret;
1544 
1545  ret = h264_init_ps(h, sl, first_slice);
1546  if (ret < 0)
1547  return ret;
1548 
1549  sps = h->ps.sps;
1550 
1551  if (sps && sps->bitstream_restriction_flag &&
1552  h->avctx->has_b_frames < sps->num_reorder_frames) {
1553  h->avctx->has_b_frames = sps->num_reorder_frames;
1554  }
1555 
1556  last_pic_droppable = h->droppable;
1557  last_pic_structure = h->picture_structure;
1558  h->droppable = (nal->ref_idc == 0);
1559  h->picture_structure = sl->picture_structure;
1560 
1561  h->poc.frame_num = sl->frame_num;
1562  h->poc.poc_lsb = sl->poc_lsb;
1563  h->poc.delta_poc_bottom = sl->delta_poc_bottom;
1564  h->poc.delta_poc[0] = sl->delta_poc[0];
1565  h->poc.delta_poc[1] = sl->delta_poc[1];
1566 
1567  if (nal->type == H264_NAL_IDR_SLICE)
1568  h->poc_offset = sl->idr_pic_id;
1569  else if (h->picture_intra_only)
1570  h->poc_offset = 0;
1571 
1572  /* Shorten frame num gaps so we don't have to allocate reference
1573  * frames just to throw them away */
1574  if (h->poc.frame_num != h->poc.prev_frame_num) {
1575  int unwrap_prev_frame_num = h->poc.prev_frame_num;
1576  int max_frame_num = 1 << sps->log2_max_frame_num;
1577 
1578  if (unwrap_prev_frame_num > h->poc.frame_num)
1579  unwrap_prev_frame_num -= max_frame_num;
1580 
1581  if ((h->poc.frame_num - unwrap_prev_frame_num) > sps->ref_frame_count) {
1582  unwrap_prev_frame_num = (h->poc.frame_num - sps->ref_frame_count) - 1;
1583  if (unwrap_prev_frame_num < 0)
1584  unwrap_prev_frame_num += max_frame_num;
1585 
1586  h->poc.prev_frame_num = unwrap_prev_frame_num;
1587  }
1588  }
1589 
1590  /* See if we have a decoded first field looking for a pair...
1591  * Here, we're using that to see if we should mark previously
1592  * decode frames as "finished".
1593  * We have to do that before the "dummy" in-between frame allocation,
1594  * since that can modify h->cur_pic_ptr. */
1595  if (h->first_field) {
1596  int last_field = last_pic_structure == PICT_BOTTOM_FIELD;
1597  av_assert0(h->cur_pic_ptr);
1598  av_assert0(h->cur_pic_ptr->f->buf[0]);
1599  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1600 
1601  /* Mark old field/frame as completed */
1602  if (h->cur_pic_ptr->tf.owner[last_field] == h->avctx) {
1603  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_field);
1604  }
1605 
1606  /* figure out if we have a complementary field pair */
1607  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1608  /* Previous field is unmatched. Don't display it, but let it
1609  * remain for reference if marked as such. */
1610  if (last_pic_structure != PICT_FRAME) {
1611  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
1612  last_pic_structure == PICT_TOP_FIELD);
1613  }
1614  } else {
1615  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1616  /* This and previous field were reference, but had
1617  * different frame_nums. Consider this field first in
1618  * pair. Throw away previous field except for reference
1619  * purposes. */
1620  if (last_pic_structure != PICT_FRAME) {
1621  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
1622  last_pic_structure == PICT_TOP_FIELD);
1623  }
1624  } else {
1625  /* Second field in complementary pair */
1626  if (!((last_pic_structure == PICT_TOP_FIELD &&
1627  h->picture_structure == PICT_BOTTOM_FIELD) ||
1628  (last_pic_structure == PICT_BOTTOM_FIELD &&
1629  h->picture_structure == PICT_TOP_FIELD))) {
1630  av_log(h->avctx, AV_LOG_ERROR,
1631  "Invalid field mode combination %d/%d\n",
1632  last_pic_structure, h->picture_structure);
1633  h->picture_structure = last_pic_structure;
1634  h->droppable = last_pic_droppable;
1635  return AVERROR_INVALIDDATA;
1636  } else if (last_pic_droppable != h->droppable) {
1637  avpriv_request_sample(h->avctx,
1638  "Found reference and non-reference fields in the same frame, which");
1639  h->picture_structure = last_pic_structure;
1640  h->droppable = last_pic_droppable;
1641  return AVERROR_PATCHWELCOME;
1642  }
1643  }
1644  }
1645  }
1646 
1647  while (h->poc.frame_num != h->poc.prev_frame_num && !h->first_field &&
1648  h->poc.frame_num != (h->poc.prev_frame_num + 1) % (1 << sps->log2_max_frame_num)) {
1649  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1650  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1651  h->poc.frame_num, h->poc.prev_frame_num);
1652  if (!sps->gaps_in_frame_num_allowed_flag)
1653  for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
1654  h->last_pocs[i] = INT_MIN;
1655  ret = h264_frame_start(h);
1656  if (ret < 0) {
1657  h->first_field = 0;
1658  return ret;
1659  }
1660 
1661  h->poc.prev_frame_num++;
1662  h->poc.prev_frame_num %= 1 << sps->log2_max_frame_num;
1663  h->cur_pic_ptr->frame_num = h->poc.prev_frame_num;
1664  h->cur_pic_ptr->invalid_gap = !sps->gaps_in_frame_num_allowed_flag;
1665  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1666  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1667 
1668  h->explicit_ref_marking = 0;
1670  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1671  return ret;
1672  /* Error concealment: If a ref is missing, copy the previous ref
1673  * in its place.
1674  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1675  * many assumptions about there being no actual duplicates.
1676  * FIXME: This does not copy padding for out-of-frame motion
1677  * vectors. Given we are concealing a lost frame, this probably
1678  * is not noticeable by comparison, but it should be fixed. */
1679  if (h->short_ref_count) {
1680  int c[4] = {
1681  1<<(h->ps.sps->bit_depth_luma-1),
1682  1<<(h->ps.sps->bit_depth_chroma-1),
1683  1<<(h->ps.sps->bit_depth_chroma-1),
1684  -1
1685  };
1686 
1687  if (prev &&
1688  h->short_ref[0]->f->width == prev->f->width &&
1689  h->short_ref[0]->f->height == prev->f->height &&
1690  h->short_ref[0]->f->format == prev->f->format) {
1691  ff_thread_await_progress(&prev->tf, INT_MAX, 0);
1692  if (prev->field_picture)
1693  ff_thread_await_progress(&prev->tf, INT_MAX, 1);
1694  ff_thread_release_buffer(h->avctx, &h->short_ref[0]->tf);
1695  h->short_ref[0]->tf.f = h->short_ref[0]->f;
1696  ret = ff_thread_ref_frame(&h->short_ref[0]->tf, &prev->tf);
1697  if (ret < 0)
1698  return ret;
1699  h->short_ref[0]->poc = prev->poc + 2U;
1700  ff_thread_report_progress(&h->short_ref[0]->tf, INT_MAX, 0);
1701  if (h->short_ref[0]->field_picture)
1702  ff_thread_report_progress(&h->short_ref[0]->tf, INT_MAX, 1);
1703  } else if (!h->frame_recovered && !h->avctx->hwaccel)
1704  ff_color_frame(h->short_ref[0]->f, c);
1705  h->short_ref[0]->frame_num = h->poc.prev_frame_num;
1706  }
1707  }
1708 
1709  /* See if we have a decoded first field looking for a pair...
1710  * We're using that to see whether to continue decoding in that
1711  * frame, or to allocate a new one. */
1712  if (h->first_field) {
1713  av_assert0(h->cur_pic_ptr);
1714  av_assert0(h->cur_pic_ptr->f->buf[0]);
1715  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1716 
1717  /* figure out if we have a complementary field pair */
1718  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1719  /* Previous field is unmatched. Don't display it, but let it
1720  * remain for reference if marked as such. */
1721  h->missing_fields ++;
1722  h->cur_pic_ptr = NULL;
1723  h->first_field = FIELD_PICTURE(h);
1724  } else {
1725  h->missing_fields = 0;
1726  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1727  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
1728  h->picture_structure==PICT_BOTTOM_FIELD);
1729  /* This and the previous field had different frame_nums.
1730  * Consider this field first in pair. Throw away previous
1731  * one except for reference purposes. */
1732  h->first_field = 1;
1733  h->cur_pic_ptr = NULL;
1734  } else if (h->cur_pic_ptr->reference & DELAYED_PIC_REF) {
1735  /* This frame was already output, we cannot draw into it
1736  * anymore.
1737  */
1738  h->first_field = 1;
1739  h->cur_pic_ptr = NULL;
1740  } else {
1741  /* Second field in complementary pair */
1742  h->first_field = 0;
1743  }
1744  }
1745  } else {
1746  /* Frame or first field in a potentially complementary pair */
1747  h->first_field = FIELD_PICTURE(h);
1748  }
1749 
1750  if (!FIELD_PICTURE(h) || h->first_field) {
1751  if (h264_frame_start(h) < 0) {
1752  h->first_field = 0;
1753  return AVERROR_INVALIDDATA;
1754  }
1755  } else {
1756  int field = h->picture_structure == PICT_BOTTOM_FIELD;
1758  h->cur_pic_ptr->tf.owner[field] = h->avctx;
1759  }
1760  /* Some macroblocks can be accessed before they're available in case
1761  * of lost slices, MBAFF or threading. */
1762  if (FIELD_PICTURE(h)) {
1763  for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
1764  memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
1765  } else {
1766  memset(h->slice_table, -1,
1767  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
1768  }
1769 
1770  ret = ff_h264_init_poc(h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc,
1771  h->ps.sps, &h->poc, h->picture_structure, nal->ref_idc);
1772  if (ret < 0)
1773  return ret;
1774 
1775  memcpy(h->mmco, sl->mmco, sl->nb_mmco * sizeof(*h->mmco));
1776  h->nb_mmco = sl->nb_mmco;
1777  h->explicit_ref_marking = sl->explicit_ref_marking;
1778 
1779  h->picture_idr = nal->type == H264_NAL_IDR_SLICE;
1780 
1781  if (h->sei.recovery_point.recovery_frame_cnt >= 0) {
1782  const int sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
1783 
1784  if (h->poc.frame_num != sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I)
1785  h->valid_recovery_point = 1;
1786 
1787  if ( h->recovery_frame < 0
1788  || av_mod_uintp2(h->recovery_frame - h->poc.frame_num, h->ps.sps->log2_max_frame_num) > sei_recovery_frame_cnt) {
1789  h->recovery_frame = av_mod_uintp2(h->poc.frame_num + sei_recovery_frame_cnt, h->ps.sps->log2_max_frame_num);
1790 
1791  if (!h->valid_recovery_point)
1792  h->recovery_frame = h->poc.frame_num;
1793  }
1794  }
1795 
1796  h->cur_pic_ptr->f->key_frame |= (nal->type == H264_NAL_IDR_SLICE);
1797 
1798  if (nal->type == H264_NAL_IDR_SLICE ||
1799  (h->recovery_frame == h->poc.frame_num && nal->ref_idc)) {
1800  h->recovery_frame = -1;
1801  h->cur_pic_ptr->recovered = 1;
1802  }
1803  // If we have an IDR, all frames after it in decoded order are
1804  // "recovered".
1805  if (nal->type == H264_NAL_IDR_SLICE)
1806  h->frame_recovered |= FRAME_RECOVERED_IDR;
1807 #if 1
1808  h->cur_pic_ptr->recovered |= h->frame_recovered;
1809 #else
1810  h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR);
1811 #endif
1812 
1813  /* Set the frame properties/side data. Only done for the second field in
1814  * field coded frames, since some SEI information is present for each field
1815  * and is merged by the SEI parsing code. */
1816  if (!FIELD_PICTURE(h) || !h->first_field || h->missing_fields > 1) {
1818  if (ret < 0)
1819  return ret;
1820 
1822  if (ret < 0)
1823  return ret;
1824  }
1825 
1826  return 0;
1827 }
1828 
1830  const H2645NAL *nal)
1831 {
1832  const SPS *sps;
1833  const PPS *pps;
1834  int ret;
1835  unsigned int slice_type, tmp, i;
1836  int field_pic_flag, bottom_field_flag;
1837  int first_slice = sl == h->slice_ctx && !h->current_slice;
1838  int picture_structure;
1839 
1840  if (first_slice)
1841  av_assert0(!h->setup_finished);
1842 
1843  sl->first_mb_addr = get_ue_golomb_long(&sl->gb);
1844 
1845  slice_type = get_ue_golomb_31(&sl->gb);
1846  if (slice_type > 9) {
1847  av_log(h->avctx, AV_LOG_ERROR,
1848  "slice type %d too large at %d\n",
1849  slice_type, sl->first_mb_addr);
1850  return AVERROR_INVALIDDATA;
1851  }
1852  if (slice_type > 4) {
1853  slice_type -= 5;
1854  sl->slice_type_fixed = 1;
1855  } else
1856  sl->slice_type_fixed = 0;
1857 
1858  slice_type = ff_h264_golomb_to_pict_type[slice_type];
1859  sl->slice_type = slice_type;
1860  sl->slice_type_nos = slice_type & 3;
1861 
1862  if (nal->type == H264_NAL_IDR_SLICE &&
1864  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1865  return AVERROR_INVALIDDATA;
1866  }
1867 
1868  sl->pps_id = get_ue_golomb(&sl->gb);
1869  if (sl->pps_id >= MAX_PPS_COUNT) {
1870  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", sl->pps_id);
1871  return AVERROR_INVALIDDATA;
1872  }
1873  if (!h->ps.pps_list[sl->pps_id]) {
1874  av_log(h->avctx, AV_LOG_ERROR,
1875  "non-existing PPS %u referenced\n",
1876  sl->pps_id);
1877  return AVERROR_INVALIDDATA;
1878  }
1879  pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
1880  sps = pps->sps;
1881 
1882  sl->frame_num = get_bits(&sl->gb, sps->log2_max_frame_num);
1883  if (!first_slice) {
1884  if (h->poc.frame_num != sl->frame_num) {
1885  av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
1886  h->poc.frame_num, sl->frame_num);
1887  return AVERROR_INVALIDDATA;
1888  }
1889  }
1890 
1891  sl->mb_mbaff = 0;
1892 
1893  if (sps->frame_mbs_only_flag) {
1894  picture_structure = PICT_FRAME;
1895  } else {
1896  if (!sps->direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
1897  av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
1898  return -1;
1899  }
1900  field_pic_flag = get_bits1(&sl->gb);
1901  if (field_pic_flag) {
1902  bottom_field_flag = get_bits1(&sl->gb);
1903  picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1904  } else {
1905  picture_structure = PICT_FRAME;
1906  }
1907  }
1908  sl->picture_structure = picture_structure;
1909  sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
1910 
1911  if (picture_structure == PICT_FRAME) {
1912  sl->curr_pic_num = sl->frame_num;
1913  sl->max_pic_num = 1 << sps->log2_max_frame_num;
1914  } else {
1915  sl->curr_pic_num = 2 * sl->frame_num + 1;
1916  sl->max_pic_num = 1 << (sps->log2_max_frame_num + 1);
1917  }
1918 
1919  if (nal->type == H264_NAL_IDR_SLICE) {
1920  unsigned idr_pic_id = get_ue_golomb_long(&sl->gb);
1921  if (idr_pic_id < 65536) {
1922  sl->idr_pic_id = idr_pic_id;
1923  } else
1924  av_log(h->avctx, AV_LOG_WARNING, "idr_pic_id is invalid\n");
1925  }
1926 
1927  sl->poc_lsb = 0;
1928  sl->delta_poc_bottom = 0;
1929  if (sps->poc_type == 0) {
1930  sl->poc_lsb = get_bits(&sl->gb, sps->log2_max_poc_lsb);
1931 
1932  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1933  sl->delta_poc_bottom = get_se_golomb(&sl->gb);
1934  }
1935 
1936  sl->delta_poc[0] = sl->delta_poc[1] = 0;
1937  if (sps->poc_type == 1 && !sps->delta_pic_order_always_zero_flag) {
1938  sl->delta_poc[0] = get_se_golomb(&sl->gb);
1939 
1940  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1941  sl->delta_poc[1] = get_se_golomb(&sl->gb);
1942  }
1943 
1944  sl->redundant_pic_count = 0;
1945  if (pps->redundant_pic_cnt_present)
1946  sl->redundant_pic_count = get_ue_golomb(&sl->gb);
1947 
1948  if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
1949  sl->direct_spatial_mv_pred = get_bits1(&sl->gb);
1950 
1952  &sl->gb, pps, sl->slice_type_nos,
1953  picture_structure, h->avctx);
1954  if (ret < 0)
1955  return ret;
1956 
1957  if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
1959  if (ret < 0) {
1960  sl->ref_count[1] = sl->ref_count[0] = 0;
1961  return ret;
1962  }
1963  }
1964 
1965  sl->pwt.use_weight = 0;
1966  for (i = 0; i < 2; i++) {
1967  sl->pwt.luma_weight_flag[i] = 0;
1968  sl->pwt.chroma_weight_flag[i] = 0;
1969  }
1970  if ((pps->weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
1971  (pps->weighted_bipred_idc == 1 &&
1974  sl->slice_type_nos, &sl->pwt,
1975  picture_structure, h->avctx);
1976  if (ret < 0)
1977  return ret;
1978  }
1979 
1980  sl->explicit_ref_marking = 0;
1981  if (nal->ref_idc) {
1982  ret = ff_h264_decode_ref_pic_marking(sl, &sl->gb, nal, h->avctx);
1983  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1984  return AVERROR_INVALIDDATA;
1985  }
1986 
1987  if (sl->slice_type_nos != AV_PICTURE_TYPE_I && pps->cabac) {
1988  tmp = get_ue_golomb_31(&sl->gb);
1989  if (tmp > 2) {
1990  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1991  return AVERROR_INVALIDDATA;
1992  }
1993  sl->cabac_init_idc = tmp;
1994  }
1995 
1996  sl->last_qscale_diff = 0;
1997  tmp = pps->init_qp + (unsigned)get_se_golomb(&sl->gb);
1998  if (tmp > 51 + 6 * (sps->bit_depth_luma - 8)) {
1999  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
2000  return AVERROR_INVALIDDATA;
2001  }
2002  sl->qscale = tmp;
2003  sl->chroma_qp[0] = get_chroma_qp(pps, 0, sl->qscale);
2004  sl->chroma_qp[1] = get_chroma_qp(pps, 1, sl->qscale);
2005  // FIXME qscale / qp ... stuff
2006  if (sl->slice_type == AV_PICTURE_TYPE_SP)
2007  get_bits1(&sl->gb); /* sp_for_switch_flag */
2008  if (sl->slice_type == AV_PICTURE_TYPE_SP ||
2010  get_se_golomb(&sl->gb); /* slice_qs_delta */
2011 
2012  sl->deblocking_filter = 1;
2013  sl->slice_alpha_c0_offset = 0;
2014  sl->slice_beta_offset = 0;
2015  if (pps->deblocking_filter_parameters_present) {
2016  tmp = get_ue_golomb_31(&sl->gb);
2017  if (tmp > 2) {
2018  av_log(h->avctx, AV_LOG_ERROR,
2019  "deblocking_filter_idc %u out of range\n", tmp);
2020  return AVERROR_INVALIDDATA;
2021  }
2022  sl->deblocking_filter = tmp;
2023  if (sl->deblocking_filter < 2)
2024  sl->deblocking_filter ^= 1; // 1<->0
2025 
2026  if (sl->deblocking_filter) {
2027  int slice_alpha_c0_offset_div2 = get_se_golomb(&sl->gb);
2028  int slice_beta_offset_div2 = get_se_golomb(&sl->gb);
2029  if (slice_alpha_c0_offset_div2 > 6 ||
2030  slice_alpha_c0_offset_div2 < -6 ||
2031  slice_beta_offset_div2 > 6 ||
2032  slice_beta_offset_div2 < -6) {
2033  av_log(h->avctx, AV_LOG_ERROR,
2034  "deblocking filter parameters %d %d out of range\n",
2035  slice_alpha_c0_offset_div2, slice_beta_offset_div2);
2036  return AVERROR_INVALIDDATA;
2037  }
2038  sl->slice_alpha_c0_offset = slice_alpha_c0_offset_div2 * 2;
2039  sl->slice_beta_offset = slice_beta_offset_div2 * 2;
2040  }
2041  }
2042 
2043  return 0;
2044 }
2045 
2046 /* do all the per-slice initialization needed before we can start decoding the
2047  * actual MBs */
2049  const H2645NAL *nal)
2050 {
2051  int i, j, ret = 0;
2052 
2053  if (h->picture_idr && nal->type != H264_NAL_IDR_SLICE) {
2054  av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of IDR and non-IDR slices\n");
2055  return AVERROR_INVALIDDATA;
2056  }
2057 
2058  av_assert1(h->mb_num == h->mb_width * h->mb_height);
2059  if (sl->first_mb_addr << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
2060  sl->first_mb_addr >= h->mb_num) {
2061  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
2062  return AVERROR_INVALIDDATA;
2063  }
2064  sl->resync_mb_x = sl->mb_x = sl->first_mb_addr % h->mb_width;
2065  sl->resync_mb_y = sl->mb_y = (sl->first_mb_addr / h->mb_width) <<
2067  if (h->picture_structure == PICT_BOTTOM_FIELD)
2068  sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
2069  av_assert1(sl->mb_y < h->mb_height);
2070 
2071  ret = ff_h264_build_ref_list(h, sl);
2072  if (ret < 0)
2073  return ret;
2074 
2075  if (h->ps.pps->weighted_bipred_idc == 2 &&
2077  implicit_weight_table(h, sl, -1);
2078  if (FRAME_MBAFF(h)) {
2079  implicit_weight_table(h, sl, 0);
2080  implicit_weight_table(h, sl, 1);
2081  }
2082  }
2083 
2086  if (!h->setup_finished)
2088 
2089  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
2090  (h->avctx->skip_loop_filter >= AVDISCARD_NONKEY &&
2091  h->nal_unit_type != H264_NAL_IDR_SLICE) ||
2092  (h->avctx->skip_loop_filter >= AVDISCARD_NONINTRA &&
2094  (h->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
2096  (h->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
2097  nal->ref_idc == 0))
2098  sl->deblocking_filter = 0;
2099 
2100  if (sl->deblocking_filter == 1 && h->nb_slice_ctx > 1) {
2101  if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) {
2102  /* Cheat slightly for speed:
2103  * Do not bother to deblock across slices. */
2104  sl->deblocking_filter = 2;
2105  } else {
2106  h->postpone_filter = 1;
2107  }
2108  }
2109  sl->qp_thresh = 15 -
2111  FFMAX3(0,
2112  h->ps.pps->chroma_qp_index_offset[0],
2113  h->ps.pps->chroma_qp_index_offset[1]) +
2114  6 * (h->ps.sps->bit_depth_luma - 8);
2115 
2116  sl->slice_num = ++h->current_slice;
2117 
2118  if (sl->slice_num)
2119  h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
2120  if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
2121  && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
2122  && sl->slice_num >= MAX_SLICES) {
2123  //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
2124  av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
2125  }
2126 
2127  for (j = 0; j < 2; j++) {
2128  int id_list[16];
2129  int *ref2frm = h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
2130  for (i = 0; i < 16; i++) {
2131  id_list[i] = 60;
2132  if (j < sl->list_count && i < sl->ref_count[j] &&
2133  sl->ref_list[j][i].parent->f->buf[0]) {
2134  int k;
2135  AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
2136  for (k = 0; k < h->short_ref_count; k++)
2137  if (h->short_ref[k]->f->buf[0]->buffer == buf) {
2138  id_list[i] = k;
2139  break;
2140  }
2141  for (k = 0; k < h->long_ref_count; k++)
2142  if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
2143  id_list[i] = h->short_ref_count + k;
2144  break;
2145  }
2146  }
2147  }
2148 
2149  ref2frm[0] =
2150  ref2frm[1] = -1;
2151  for (i = 0; i < 16; i++)
2152  ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
2153  ref2frm[18 + 0] =
2154  ref2frm[18 + 1] = -1;
2155  for (i = 16; i < 48; i++)
2156  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
2157  (sl->ref_list[j][i].reference & 3);
2158  }
2159 
2160  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
2161  av_log(h->avctx, AV_LOG_DEBUG,
2162  "slice:%d %s mb:%d %c%s%s frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
2163  sl->slice_num,
2164  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
2165  sl->mb_y * h->mb_width + sl->mb_x,
2167  sl->slice_type_fixed ? " fix" : "",
2168  nal->type == H264_NAL_IDR_SLICE ? " IDR" : "",
2169  h->poc.frame_num,
2170  h->cur_pic_ptr->field_poc[0],
2171  h->cur_pic_ptr->field_poc[1],
2172  sl->ref_count[0], sl->ref_count[1],
2173  sl->qscale,
2174  sl->deblocking_filter,
2176  sl->pwt.use_weight,
2177  sl->pwt.use_weight == 1 && sl->pwt.use_weight_chroma ? "c" : "",
2178  sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
2179  }
2180 
2181  return 0;
2182 }
2183 
2185 {
2186  H264SliceContext *sl = h->slice_ctx + h->nb_slice_ctx_queued;
2187  int first_slice = sl == h->slice_ctx && !h->current_slice;
2188  int ret;
2189 
2190  sl->gb = nal->gb;
2191 
2192  ret = h264_slice_header_parse(h, sl, nal);
2193  if (ret < 0)
2194  return ret;
2195 
2196  // discard redundant pictures
2197  if (sl->redundant_pic_count > 0) {
2198  sl->ref_count[0] = sl->ref_count[1] = 0;
2199  return 0;
2200  }
2201 
2202  if (sl->first_mb_addr == 0 || !h->current_slice) {
2203  if (h->setup_finished) {
2204  av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n");
2205  return AVERROR_INVALIDDATA;
2206  }
2207  }
2208 
2209  if (sl->first_mb_addr == 0) { // FIXME better field boundary detection
2210  if (h->current_slice) {
2211  // this slice starts a new field
2212  // first decode any pending queued slices
2213  if (h->nb_slice_ctx_queued) {
2214  H264SliceContext tmp_ctx;
2215 
2217  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
2218  return ret;
2219 
2220  memcpy(&tmp_ctx, h->slice_ctx, sizeof(tmp_ctx));
2221  memcpy(h->slice_ctx, sl, sizeof(tmp_ctx));
2222  memcpy(sl, &tmp_ctx, sizeof(tmp_ctx));
2223  sl = h->slice_ctx;
2224  }
2225 
2226  if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
2227  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2228  if (ret < 0)
2229  return ret;
2230  } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == H264_NAL_IDR_SLICE) {
2231  av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
2232  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2233  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
2234  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
2235  h->cur_pic_ptr = NULL;
2236  if (ret < 0)
2237  return ret;
2238  } else
2239  return AVERROR_INVALIDDATA;
2240  }
2241 
2242  if (!h->first_field) {
2243  if (h->cur_pic_ptr && !h->droppable) {
2244  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
2245  h->picture_structure == PICT_BOTTOM_FIELD);
2246  }
2247  h->cur_pic_ptr = NULL;
2248  }
2249  }
2250 
2251  if (!h->current_slice)
2252  av_assert0(sl == h->slice_ctx);
2253 
2254  if (h->current_slice == 0 && !h->first_field) {
2255  if (
2256  (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
2257  (h->avctx->skip_frame >= AVDISCARD_BIDIR && sl->slice_type_nos == AV_PICTURE_TYPE_B) ||
2258  (h->avctx->skip_frame >= AVDISCARD_NONINTRA && sl->slice_type_nos != AV_PICTURE_TYPE_I) ||
2259  (h->avctx->skip_frame >= AVDISCARD_NONKEY && h->nal_unit_type != H264_NAL_IDR_SLICE && h->sei.recovery_point.recovery_frame_cnt < 0) ||
2260  h->avctx->skip_frame >= AVDISCARD_ALL) {
2261  return 0;
2262  }
2263  }
2264 
2265  if (!first_slice) {
2266  const PPS *pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
2267 
2268  if (h->ps.pps->sps_id != pps->sps_id ||
2269  h->ps.pps->transform_8x8_mode != pps->transform_8x8_mode /*||
2270  (h->setup_finished && h->ps.pps != pps)*/) {
2271  av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n");
2272  return AVERROR_INVALIDDATA;
2273  }
2274  if (h->ps.sps != pps->sps) {
2275  av_log(h->avctx, AV_LOG_ERROR,
2276  "SPS changed in the middle of the frame\n");
2277  return AVERROR_INVALIDDATA;
2278  }
2279  }
2280 
2281  if (h->current_slice == 0) {
2282  ret = h264_field_start(h, sl, nal, first_slice);
2283  if (ret < 0)
2284  return ret;
2285  } else {
2286  if (h->picture_structure != sl->picture_structure ||
2287  h->droppable != (nal->ref_idc == 0)) {
2288  av_log(h->avctx, AV_LOG_ERROR,
2289  "Changing field mode (%d -> %d) between slices is not allowed\n",
2290  h->picture_structure, sl->picture_structure);
2291  return AVERROR_INVALIDDATA;
2292  } else if (!h->cur_pic_ptr) {
2293  av_log(h->avctx, AV_LOG_ERROR,
2294  "unset cur_pic_ptr on slice %d\n",
2295  h->current_slice + 1);
2296  return AVERROR_INVALIDDATA;
2297  }
2298  }
2299 
2300  ret = h264_slice_init(h, sl, nal);
2301  if (ret < 0)
2302  return ret;
2303 
2304  h->nb_slice_ctx_queued++;
2305 
2306  return 0;
2307 }
2308 
2310 {
2311  switch (sl->slice_type) {
2312  case AV_PICTURE_TYPE_P:
2313  return 0;
2314  case AV_PICTURE_TYPE_B:
2315  return 1;
2316  case AV_PICTURE_TYPE_I:
2317  return 2;
2318  case AV_PICTURE_TYPE_SP:
2319  return 3;
2320  case AV_PICTURE_TYPE_SI:
2321  return 4;
2322  default:
2323  return AVERROR_INVALIDDATA;
2324  }
2325 }
2326 
2328  H264SliceContext *sl,
2329  int mb_type, int top_xy,
2330  int left_xy[LEFT_MBS],
2331  int top_type,
2332  int left_type[LEFT_MBS],
2333  int mb_xy, int list)
2334 {
2335  int b_stride = h->b_stride;
2336  int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
2337  int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
2338  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
2339  if (USES_LIST(top_type, list)) {
2340  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
2341  const int b8_xy = 4 * top_xy + 2;
2342  const int *ref2frm = &h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2343  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
2344  ref_cache[0 - 1 * 8] =
2345  ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]];
2346  ref_cache[2 - 1 * 8] =
2347  ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]];
2348  } else {
2349  AV_ZERO128(mv_dst - 1 * 8);
2350  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2351  }
2352 
2353  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
2354  if (USES_LIST(left_type[LTOP], list)) {
2355  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
2356  const int b8_xy = 4 * left_xy[LTOP] + 1;
2357  const int *ref2frm = &h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2358  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
2359  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
2360  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
2361  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
2362  ref_cache[-1 + 0] =
2363  ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
2364  ref_cache[-1 + 16] =
2365  ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
2366  } else {
2367  AV_ZERO32(mv_dst - 1 + 0);
2368  AV_ZERO32(mv_dst - 1 + 8);
2369  AV_ZERO32(mv_dst - 1 + 16);
2370  AV_ZERO32(mv_dst - 1 + 24);
2371  ref_cache[-1 + 0] =
2372  ref_cache[-1 + 8] =
2373  ref_cache[-1 + 16] =
2374  ref_cache[-1 + 24] = LIST_NOT_USED;
2375  }
2376  }
2377  }
2378 
2379  if (!USES_LIST(mb_type, list)) {
2380  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
2381  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2382  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2383  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2384  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2385  return;
2386  }
2387 
2388  {
2389  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
2390  const int *ref2frm = &h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2391  uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101;
2392  uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101;
2393  AV_WN32A(&ref_cache[0 * 8], ref01);
2394  AV_WN32A(&ref_cache[1 * 8], ref01);
2395  AV_WN32A(&ref_cache[2 * 8], ref23);
2396  AV_WN32A(&ref_cache[3 * 8], ref23);
2397  }
2398 
2399  {
2400  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
2401  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
2402  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
2403  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
2404  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
2405  }
2406 }
2407 
2408 /**
2409  * @return non zero if the loop filter can be skipped
2410  */
2411 static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
2412 {
2413  const int mb_xy = sl->mb_xy;
2414  int top_xy, left_xy[LEFT_MBS];
2415  int top_type, left_type[LEFT_MBS];
2416  uint8_t *nnz;
2417  uint8_t *nnz_cache;
2418 
2419  top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
2420 
2421  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
2422  if (FRAME_MBAFF(h)) {
2423  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
2424  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
2425  if (sl->mb_y & 1) {
2426  if (left_mb_field_flag != curr_mb_field_flag)
2427  left_xy[LTOP] -= h->mb_stride;
2428  } else {
2429  if (curr_mb_field_flag)
2430  top_xy += h->mb_stride &
2431  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
2432  if (left_mb_field_flag != curr_mb_field_flag)
2433  left_xy[LBOT] += h->mb_stride;
2434  }
2435  }
2436 
2437  sl->top_mb_xy = top_xy;
2438  sl->left_mb_xy[LTOP] = left_xy[LTOP];
2439  sl->left_mb_xy[LBOT] = left_xy[LBOT];
2440  {
2441  /* For sufficiently low qp, filtering wouldn't do anything.
2442  * This is a conservative estimate: could also check beta_offset
2443  * and more accurate chroma_qp. */
2444  int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
2445  int qp = h->cur_pic.qscale_table[mb_xy];
2446  if (qp <= qp_thresh &&
2447  (left_xy[LTOP] < 0 ||
2448  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
2449  (top_xy < 0 ||
2450  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
2451  if (!FRAME_MBAFF(h))
2452  return 1;
2453  if ((left_xy[LTOP] < 0 ||
2454  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
2455  (top_xy < h->mb_stride ||
2456  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
2457  return 1;
2458  }
2459  }
2460 
2461  top_type = h->cur_pic.mb_type[top_xy];
2462  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
2463  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
2464  if (sl->deblocking_filter == 2) {
2465  if (h->slice_table[top_xy] != sl->slice_num)
2466  top_type = 0;
2467  if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
2468  left_type[LTOP] = left_type[LBOT] = 0;
2469  } else {
2470  if (h->slice_table[top_xy] == 0xFFFF)
2471  top_type = 0;
2472  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
2473  left_type[LTOP] = left_type[LBOT] = 0;
2474  }
2475  sl->top_type = top_type;
2476  sl->left_type[LTOP] = left_type[LTOP];
2477  sl->left_type[LBOT] = left_type[LBOT];
2478 
2479  if (IS_INTRA(mb_type))
2480  return 0;
2481 
2482  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2483  top_type, left_type, mb_xy, 0);
2484  if (sl->list_count == 2)
2485  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2486  top_type, left_type, mb_xy, 1);
2487 
2488  nnz = h->non_zero_count[mb_xy];
2489  nnz_cache = sl->non_zero_count_cache;
2490  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2491  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2492  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2493  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2494  sl->cbp = h->cbp_table[mb_xy];
2495 
2496  if (top_type) {
2497  nnz = h->non_zero_count[top_xy];
2498  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2499  }
2500 
2501  if (left_type[LTOP]) {
2502  nnz = h->non_zero_count[left_xy[LTOP]];
2503  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2504  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2505  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2506  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2507  }
2508 
2509  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2510  * from what the loop filter needs */
2511  if (!CABAC(h) && h->ps.pps->transform_8x8_mode) {
2512  if (IS_8x8DCT(top_type)) {
2513  nnz_cache[4 + 8 * 0] =
2514  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2515  nnz_cache[6 + 8 * 0] =
2516  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2517  }
2518  if (IS_8x8DCT(left_type[LTOP])) {
2519  nnz_cache[3 + 8 * 1] =
2520  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2521  }
2522  if (IS_8x8DCT(left_type[LBOT])) {
2523  nnz_cache[3 + 8 * 3] =
2524  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2525  }
2526 
2527  if (IS_8x8DCT(mb_type)) {
2528  nnz_cache[scan8[0]] =
2529  nnz_cache[scan8[1]] =
2530  nnz_cache[scan8[2]] =
2531  nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
2532 
2533  nnz_cache[scan8[0 + 4]] =
2534  nnz_cache[scan8[1 + 4]] =
2535  nnz_cache[scan8[2 + 4]] =
2536  nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
2537 
2538  nnz_cache[scan8[0 + 8]] =
2539  nnz_cache[scan8[1 + 8]] =
2540  nnz_cache[scan8[2 + 8]] =
2541  nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
2542 
2543  nnz_cache[scan8[0 + 12]] =
2544  nnz_cache[scan8[1 + 12]] =
2545  nnz_cache[scan8[2 + 12]] =
2546  nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
2547  }
2548  }
2549 
2550  return 0;
2551 }
2552 
2553 static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
2554 {
2555  uint8_t *dest_y, *dest_cb, *dest_cr;
2556  int linesize, uvlinesize, mb_x, mb_y;
2557  const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
2558  const int old_slice_type = sl->slice_type;
2559  const int pixel_shift = h->pixel_shift;
2560  const int block_h = 16 >> h->chroma_y_shift;
2561 
2562  if (h->postpone_filter)
2563  return;
2564 
2565  if (sl->deblocking_filter) {
2566  for (mb_x = start_x; mb_x < end_x; mb_x++)
2567  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2568  int mb_xy, mb_type;
2569  mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
2570  mb_type = h->cur_pic.mb_type[mb_xy];
2571 
2572  if (FRAME_MBAFF(h))
2573  sl->mb_mbaff =
2574  sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2575 
2576  sl->mb_x = mb_x;
2577  sl->mb_y = mb_y;
2578  dest_y = h->cur_pic.f->data[0] +
2579  ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
2580  dest_cb = h->cur_pic.f->data[1] +
2581  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2582  mb_y * sl->uvlinesize * block_h;
2583  dest_cr = h->cur_pic.f->data[2] +
2584  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2585  mb_y * sl->uvlinesize * block_h;
2586  // FIXME simplify above
2587 
2588  if (MB_FIELD(sl)) {
2589  linesize = sl->mb_linesize = sl->linesize * 2;
2590  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
2591  if (mb_y & 1) { // FIXME move out of this function?
2592  dest_y -= sl->linesize * 15;
2593  dest_cb -= sl->uvlinesize * (block_h - 1);
2594  dest_cr -= sl->uvlinesize * (block_h - 1);
2595  }
2596  } else {
2597  linesize = sl->mb_linesize = sl->linesize;
2598  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
2599  }
2600  backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
2601  uvlinesize, 0);
2602  if (fill_filter_caches(h, sl, mb_type))
2603  continue;
2604  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, h->cur_pic.qscale_table[mb_xy]);
2605  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, h->cur_pic.qscale_table[mb_xy]);
2606 
2607  if (FRAME_MBAFF(h)) {
2608  ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2609  linesize, uvlinesize);
2610  } else {
2611  ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
2612  dest_cr, linesize, uvlinesize);
2613  }
2614  }
2615  }
2616  sl->slice_type = old_slice_type;
2617  sl->mb_x = end_x;
2618  sl->mb_y = end_mb_y - FRAME_MBAFF(h);
2619  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale);
2620  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale);
2621 }
2622 
2624 {
2625  const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
2626  int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
2627  h->cur_pic.mb_type[mb_xy - 1] :
2628  (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
2629  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2630  sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2631 }
2632 
2633 /**
2634  * Draw edges and report progress for the last MB row.
2635  */
2637 {
2638  int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
2639  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2640  int height = 16 << FRAME_MBAFF(h);
2641  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2642 
2643  if (sl->deblocking_filter) {
2644  if ((top + height) >= pic_height)
2645  height += deblock_border;
2646  top -= deblock_border;
2647  }
2648 
2649  if (top >= pic_height || (top + height) < 0)
2650  return;
2651 
2652  height = FFMIN(height, pic_height - top);
2653  if (top < 0) {
2654  height = top + height;
2655  top = 0;
2656  }
2657 
2658  ff_h264_draw_horiz_band(h, sl, top, height);
2659 
2660  if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
2661  return;
2662 
2663  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2664  h->picture_structure == PICT_BOTTOM_FIELD);
2665 }
2666 
2668  int startx, int starty,
2669  int endx, int endy, int status)
2670 {
2671  if (!sl->h264->enable_er)
2672  return;
2673 
2674  if (CONFIG_ERROR_RESILIENCE) {
2675  ERContext *er = &sl->h264->slice_ctx[0].er;
2676 
2677  ff_er_add_slice(er, startx, starty, endx, endy, status);
2678  }
2679 }
2680 
2681 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2682 {
2683  H264SliceContext *sl = arg;
2684  const H264Context *h = sl->h264;
2685  int lf_x_start = sl->mb_x;
2686  int orig_deblock = sl->deblocking_filter;
2687  int ret;
2688 
2689  sl->linesize = h->cur_pic_ptr->f->linesize[0];
2690  sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
2691 
2692  ret = alloc_scratch_buffers(sl, sl->linesize);
2693  if (ret < 0)
2694  return ret;
2695 
2696  sl->mb_skip_run = -1;
2697 
2698  av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
2699 
2700  if (h->postpone_filter)
2701  sl->deblocking_filter = 0;
2702 
2703  sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
2704  (CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY));
2705 
2706  if (!(h->avctx->active_thread_type & FF_THREAD_SLICE) && h->picture_structure == PICT_FRAME && h->slice_ctx[0].er.error_status_table) {
2707  const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
2708  if (start_i) {
2709  int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
2710  prev_status &= ~ VP_START;
2711  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
2712  h->slice_ctx[0].er.error_occurred = 1;
2713  }
2714  }
2715 
2716  if (h->ps.pps->cabac) {
2717  /* realign */
2718  align_get_bits(&sl->gb);
2719 
2720  /* init cabac */
2722  sl->gb.buffer + get_bits_count(&sl->gb) / 8,
2723  (get_bits_left(&sl->gb) + 7) / 8);
2724  if (ret < 0)
2725  return ret;
2726 
2728 
2729  for (;;) {
2730  int ret, eos;
2731  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2732  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2733  sl->next_slice_idx);
2734  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2735  sl->mb_y, ER_MB_ERROR);
2736  return AVERROR_INVALIDDATA;
2737  }
2738 
2739  ret = ff_h264_decode_mb_cabac(h, sl);
2740 
2741  if (ret >= 0)
2742  ff_h264_hl_decode_mb(h, sl);
2743 
2744  // FIXME optimal? or let mb_decode decode 16x32 ?
2745  if (ret >= 0 && FRAME_MBAFF(h)) {
2746  sl->mb_y++;
2747 
2748  ret = ff_h264_decode_mb_cabac(h, sl);
2749 
2750  if (ret >= 0)
2751  ff_h264_hl_decode_mb(h, sl);
2752  sl->mb_y--;
2753  }
2754  eos = get_cabac_terminate(&sl->cabac);
2755 
2756  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2757  sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
2758  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2759  sl->mb_y, ER_MB_END);
2760  if (sl->mb_x >= lf_x_start)
2761  loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
2762  goto finish;
2763  }
2764  if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
2765  av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
2766  if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
2767  av_log(h->avctx, AV_LOG_ERROR,
2768  "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
2769  sl->mb_x, sl->mb_y,
2770  sl->cabac.bytestream_end - sl->cabac.bytestream);
2771  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2772  sl->mb_y, ER_MB_ERROR);
2773  return AVERROR_INVALIDDATA;
2774  }
2775 
2776  if (++sl->mb_x >= h->mb_width) {
2777  loop_filter(h, sl, lf_x_start, sl->mb_x);
2778  sl->mb_x = lf_x_start = 0;
2779  decode_finish_row(h, sl);
2780  ++sl->mb_y;
2781  if (FIELD_OR_MBAFF_PICTURE(h)) {
2782  ++sl->mb_y;
2783  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2785  }
2786  }
2787 
2788  if (eos || sl->mb_y >= h->mb_height) {
2789  ff_tlog(h->avctx, "slice end %d %d\n",
2790  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2791  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2792  sl->mb_y, ER_MB_END);
2793  if (sl->mb_x > lf_x_start)
2794  loop_filter(h, sl, lf_x_start, sl->mb_x);
2795  goto finish;
2796  }
2797  }
2798  } else {
2799  for (;;) {
2800  int ret;
2801 
2802  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2803  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2804  sl->next_slice_idx);
2805  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2806  sl->mb_y, ER_MB_ERROR);
2807  return AVERROR_INVALIDDATA;
2808  }
2809 
2810  ret = ff_h264_decode_mb_cavlc(h, sl);
2811 
2812  if (ret >= 0)
2813  ff_h264_hl_decode_mb(h, sl);
2814 
2815  // FIXME optimal? or let mb_decode decode 16x32 ?
2816  if (ret >= 0 && FRAME_MBAFF(h)) {
2817  sl->mb_y++;
2818  ret = ff_h264_decode_mb_cavlc(h, sl);
2819 
2820  if (ret >= 0)
2821  ff_h264_hl_decode_mb(h, sl);
2822  sl->mb_y--;
2823  }
2824 
2825  if (ret < 0) {
2826  av_log(h->avctx, AV_LOG_ERROR,
2827  "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
2828  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2829  sl->mb_y, ER_MB_ERROR);
2830  return ret;
2831  }
2832 
2833  if (++sl->mb_x >= h->mb_width) {
2834  loop_filter(h, sl, lf_x_start, sl->mb_x);
2835  sl->mb_x = lf_x_start = 0;
2836  decode_finish_row(h, sl);
2837  ++sl->mb_y;
2838  if (FIELD_OR_MBAFF_PICTURE(h)) {
2839  ++sl->mb_y;
2840  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2842  }
2843  if (sl->mb_y >= h->mb_height) {
2844  ff_tlog(h->avctx, "slice end %d %d\n",
2845  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2846 
2847  if ( get_bits_left(&sl->gb) == 0
2848  || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
2849  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2850  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2851 
2852  goto finish;
2853  } else {
2854  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2855  sl->mb_x, sl->mb_y, ER_MB_END);
2856 
2857  return AVERROR_INVALIDDATA;
2858  }
2859  }
2860  }
2861 
2862  if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
2863  ff_tlog(h->avctx, "slice end %d %d\n",
2864  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2865 
2866  if (get_bits_left(&sl->gb) == 0) {
2867  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2868  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2869  if (sl->mb_x > lf_x_start)
2870  loop_filter(h, sl, lf_x_start, sl->mb_x);
2871 
2872  goto finish;
2873  } else {
2874  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2875  sl->mb_y, ER_MB_ERROR);
2876 
2877  return AVERROR_INVALIDDATA;
2878  }
2879  }
2880  }
2881  }
2882 
2883 finish:
2884  sl->deblocking_filter = orig_deblock;
2885  return 0;
2886 }
2887 
2888 /**
2889  * Call decode_slice() for each context.
2890  *
2891  * @param h h264 master context
2892  */
2894 {
2895  AVCodecContext *const avctx = h->avctx;
2896  H264SliceContext *sl;
2897  int context_count = h->nb_slice_ctx_queued;
2898  int ret = 0;
2899  int i, j;
2900 
2901  h->slice_ctx[0].next_slice_idx = INT_MAX;
2902 
2903  if (h->avctx->hwaccel || context_count < 1)
2904  return 0;
2905 
2906  av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
2907 
2908  if (context_count == 1) {
2909 
2910  h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height;
2911  h->postpone_filter = 0;
2912 
2913  ret = decode_slice(avctx, &h->slice_ctx[0]);
2914  h->mb_y = h->slice_ctx[0].mb_y;
2915  if (ret < 0)
2916  goto finish;
2917  } else {
2918  av_assert0(context_count > 0);
2919  for (i = 0; i < context_count; i++) {
2920  int next_slice_idx = h->mb_width * h->mb_height;
2921  int slice_idx;
2922 
2923  sl = &h->slice_ctx[i];
2924  if (CONFIG_ERROR_RESILIENCE) {
2925  sl->er.error_count = 0;
2926  }
2927 
2928  /* make sure none of those slices overlap */
2929  slice_idx = sl->mb_y * h->mb_width + sl->mb_x;
2930  for (j = 0; j < context_count; j++) {
2931  H264SliceContext *sl2 = &h->slice_ctx[j];
2932  int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x;
2933 
2934  if (i == j || slice_idx2 < slice_idx)
2935  continue;
2936  next_slice_idx = FFMIN(next_slice_idx, slice_idx2);
2937  }
2938  sl->next_slice_idx = next_slice_idx;
2939  }
2940 
2941  avctx->execute(avctx, decode_slice, h->slice_ctx,
2942  NULL, context_count, sizeof(h->slice_ctx[0]));
2943 
2944  /* pull back stuff from slices to master context */
2945  sl = &h->slice_ctx[context_count - 1];
2946  h->mb_y = sl->mb_y;
2947  if (CONFIG_ERROR_RESILIENCE) {
2948  for (i = 1; i < context_count; i++)
2949  h->slice_ctx[0].er.error_count += h->slice_ctx[i].er.error_count;
2950  }
2951 
2952  if (h->postpone_filter) {
2953  h->postpone_filter = 0;
2954 
2955  for (i = 0; i < context_count; i++) {
2956  int y_end, x_end;
2957 
2958  sl = &h->slice_ctx[i];
2959  y_end = FFMIN(sl->mb_y + 1, h->mb_height);
2960  x_end = (sl->mb_y >= h->mb_height) ? h->mb_width : sl->mb_x;
2961 
2962  for (j = sl->resync_mb_y; j < y_end; j += 1 + FIELD_OR_MBAFF_PICTURE(h)) {
2963  sl->mb_y = j;
2964  loop_filter(h, sl, j > sl->resync_mb_y ? 0 : sl->resync_mb_x,
2965  j == y_end - 1 ? x_end : h->mb_width);
2966  }
2967  }
2968  }
2969  }
2970 
2971 finish:
2972  h->nb_slice_ctx_queued = 0;
2973  return ret;
2974 }
PICT_FRAME
#define PICT_FRAME
Definition: mpegutils.h:38
er_add_slice
static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2667
ff_h264_filter_mb_fast
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
Definition: h264_loopfilter.c:419
h264_slice_header_init
static int h264_slice_header_init(H264Context *h)
Definition: h264_slice.c:947
implicit_weight_table
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:691
H264SliceContext::mb_xy
int mb_xy
Definition: h264dec.h:243
ff_h264_unref_picture
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:44
av_buffer_pool_init
AVBufferPool * av_buffer_pool_init(size_t size, AVBufferRef *(*alloc)(size_t size))
Allocate and initialize a buffer pool.
Definition: buffer.c:280
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:186
AV_TIMECODE_STR_SIZE
#define AV_TIMECODE_STR_SIZE
Definition: timecode.h:33
AV_PIX_FMT_CUDA
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
Definition: pixfmt.h:225
td
#define td
Definition: regdef.h:70
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
H264SliceContext::ref_cache
int8_t ref_cache[2][5 *8]
Definition: h264dec.h:312
status
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
ff_h264_free_tables
void ff_h264_free_tables(H264Context *h)
Definition: h264dec.c:138
H264SEIDisplayOrientation::hflip
int hflip
Definition: h264_sei.h:147
AV_STEREO3D_VIEW_LEFT
@ AV_STEREO3D_VIEW_LEFT
Frame contains only the left view.
Definition: stereo3d.h:156
av_clip
#define av_clip
Definition: common.h:96
h264_init_ps
static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
Definition: h264_slice.c:1047
H264SEIFilmGrainCharacteristics::blending_mode_id
int blending_mode_id
Definition: h264_sei.h:178
H264SliceContext::max_pic_num
int max_pic_num
Definition: h264dec.h:344
H264SliceContext::nb_mmco
int nb_mmco
Definition: h264dec.h:335
get_bits_left
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:850
CHROMA422
#define CHROMA422(h)
Definition: h264dec.h:100
FF_BUG_TRUNCATED
#define FF_BUG_TRUNCATED
Definition: avcodec.h:1265
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
cabac.h
AV_STEREO3D_SIDEBYSIDE_QUINCUNX
@ AV_STEREO3D_SIDEBYSIDE_QUINCUNX
Views are next to each other, but when upscaling apply a checkerboard pattern.
Definition: stereo3d.h:117
H264_NAL_IDR_SLICE
@ H264_NAL_IDR_SLICE
Definition: h264.h:39
H264Picture::poc
int poc
frame POC
Definition: h264dec.h:153
h264_export_frame_props
static int h264_export_frame_props(H264Context *h)
Definition: h264_slice.c:1166
H264Picture::f
AVFrame * f
Definition: h264dec.h:131
ff_thread_ref_frame
int ff_thread_ref_frame(ThreadFrame *dst, const ThreadFrame *src)
Definition: utils.c:885
out
FILE * out
Definition: movenc.c:54
cb
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:215
av_frame_new_side_data
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, size_t size)
Add a new side data to a frame.
Definition: frame.c:605
av_clip_int8
#define av_clip_int8
Definition: common.h:105
zigzag_scan8x8_cavlc
static const uint8_t zigzag_scan8x8_cavlc[64+1]
Definition: h264_slice.c:97
ff_h264_replace_picture
int ff_h264_replace_picture(H264Context *h, H264Picture *dst, const H264Picture *src)
Definition: h264_picture.c:155
ff_thread_can_start_frame
int ff_thread_can_start_frame(AVCodecContext *avctx)
Definition: pthread_frame.c:935
H264Context::slice_ctx
H264SliceContext * slice_ctx
Definition: h264dec.h:364
AVFilmGrainH274Params::color_space
enum AVColorSpace color_space
Definition: film_grain_params.h:152
AVBufferRef::data
uint8_t * data
The data buffer.
Definition: buffer.h:90
AV_FRAME_DATA_A53_CC
@ AV_FRAME_DATA_A53_CC
ATSC A53 Part 4 Closed Captions.
Definition: frame.h:58
H264Picture::ref_index
int8_t * ref_index[2]
Definition: h264dec.h:150
HWACCEL_MAX
#define HWACCEL_MAX
ff_h264_slice_context_init
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264dec.c:222
AVFrame::coded_picture_number
int coded_picture_number
picture number in bitstream order
Definition: frame.h:437
MB_MBAFF
#define MB_MBAFF(h)
Definition: h264dec.h:73
H264SliceContext::mvd_table
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:325
ff_h264_set_erpic
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src)
Definition: h264_picture.c:208
get_bits_count
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:220
H264_SEI_PIC_STRUCT_TOP_BOTTOM
@ H264_SEI_PIC_STRUCT_TOP_BOTTOM
3: top field, bottom field, in that order
Definition: h264_sei.h:34
AVFilmGrainH274Params::blending_mode_id
int blending_mode_id
Specifies the blending mode used to blend the simulated film grain with the decoded images.
Definition: film_grain_params.h:160
H264Picture::pps
const PPS * pps
Definition: h264dec.h:172
AV_FRAME_DATA_S12M_TIMECODE
@ AV_FRAME_DATA_S12M_TIMECODE
Timecode which conforms to SMPTE ST 12-1.
Definition: frame.h:151
av_mod_uintp2
#define av_mod_uintp2
Definition: common.h:123
GetBitContext::size_in_bits
int size_in_bits
Definition: get_bits.h:69
H2645NAL::ref_idc
int ref_idc
H.264 only, nal_ref_idc.
Definition: h2645_parse.h:72
predict_field_decoding_flag
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
Definition: h264_slice.c:2623
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:310
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:26
AVFrame::width
int width
Definition: frame.h:382
w
uint8_t w
Definition: llviddspenc.c:38
AVCOL_RANGE_JPEG
@ AVCOL_RANGE_JPEG
Full range content.
Definition: pixfmt.h:597
get_ue_golomb
static int get_ue_golomb(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to 8190.
Definition: golomb.h:55
av_display_matrix_flip
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
Definition: display.c:65
internal.h
ff_h264_update_thread_context
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:307
alloc_scratch_buffers
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
Definition: h264_slice.c:129
AVCOL_TRC_UNSPECIFIED
@ AVCOL_TRC_UNSPECIFIED
Definition: pixfmt.h:497
FRAME_RECOVERED_IDR
#define FRAME_RECOVERED_IDR
We have seen an IDR, so all the following frames in coded order are correctly decodable.
Definition: h264dec.h:537
H264SliceContext::mmco
MMCO mmco[MAX_MMCO_COUNT]
Definition: h264dec.h:334
decode_finish_row
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2636
H264SliceContext::ref_count
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264dec.h:279
H264SEIFilmGrainCharacteristics::color_primaries
int color_primaries
Definition: h264_sei.h:175
AV_PIX_FMT_YUV420P10
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:404
ff_er_frame_start
void ff_er_frame_start(ERContext *s)
Definition: error_resilience.c:793
H264_SEI_FPA_TYPE_CHECKERBOARD
@ H264_SEI_FPA_TYPE_CHECKERBOARD
Definition: h264_sei.h:46
H264Picture::qscale_table
int8_t * qscale_table
Definition: h264dec.h:138
H264SliceContext::h264
struct H264Context * h264
Definition: h264dec.h:190
H264SliceContext::left_mb_xy
int left_mb_xy[LEFT_MBS]
Definition: h264dec.h:223
AV_PIX_FMT_D3D11VA_VLD
@ AV_PIX_FMT_D3D11VA_VLD
HW decoding through Direct3D11 via old API, Picture.data[3] contains a ID3D11VideoDecoderOutputView p...
Definition: pixfmt.h:219
ERContext
Definition: error_resilience.h:53
H264PredWeightTable::use_weight_chroma
int use_weight_chroma
Definition: h264_parse.h:32
AV_LOG_VERBOSE
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:196
PICT_BOTTOM_FIELD
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:37
AVCOL_SPC_RGB
@ AVCOL_SPC_RGB
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB), YZX and ST 428-1
Definition: pixfmt.h:524
AV_WN32A
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
ff_h264_update_thread_context_for_user
int ff_h264_update_thread_context_for_user(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:475
AVFilmGrainH274Params::color_range
enum AVColorRange color_range
Definition: film_grain_params.h:149
ff_er_add_slice
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
Definition: error_resilience.c:826
av_display_rotation_set
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure counterclockwise rotation by the specified angle...
Definition: display.c:50
AV_FRAME_DATA_DISPLAYMATRIX
@ AV_FRAME_DATA_DISPLAYMATRIX
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
Definition: frame.h:84
H264Picture::ref_index_buf
AVBufferRef * ref_index_buf[2]
Definition: h264dec.h:149
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
av_buffer_ref
AVBufferRef * av_buffer_ref(const AVBufferRef *buf)
Create a new reference to an AVBuffer.
Definition: buffer.c:103
ff_h264_pred_weight_table
int ff_h264_pred_weight_table(GetBitContext *gb, const SPS *sps, const int *ref_count, int slice_type_nos, H264PredWeightTable *pwt, int picture_structure, void *logctx)
Definition: h264_parse.c:27
FRAME_RECOVERED_SEI
#define FRAME_RECOVERED_SEI
Sufficient number of frames have been decoded since a SEI recovery point, so all the following frames...
Definition: h264dec.h:542
H264SliceContext::is_complex
int is_complex
Definition: h264dec.h:250
ER_DC_END
#define ER_DC_END
Definition: error_resilience.h:35
ff_h264_decode_ref_pic_list_reordering
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx)
Definition: h264_refs.c:423
mpegutils.h
AVFrame::buf
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:506
H264Picture::invalid_gap
int invalid_gap
Definition: h264dec.h:167
av_timecode_get_smpte
uint32_t av_timecode_get_smpte(AVRational rate, int drop, int hh, int mm, int ss, int ff)
Convert sei info to SMPTE 12M binary representation.
Definition: timecode.c:68
AV_STEREO3D_VIEW_RIGHT
@ AV_STEREO3D_VIEW_RIGHT
Frame contains only the right view.
Definition: stereo3d.h:161
H264Picture::pps_buf
AVBufferRef * pps_buf
Definition: h264dec.h:171
thread.h
ff_thread_await_progress
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_thread_report_progress() has been called on them. This includes draw_edges(). Porting codecs to frame threading
ThreadFrame::f
AVFrame * f
Definition: thread.h:35
AVFilmGrainParams::seed
uint64_t seed
Seed to use for the synthesis process, if the codec allows for it.
Definition: film_grain_params.h:228
FF_DEBUG_PICT_INFO
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:1303
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:331
H264SliceContext::mb_x
int mb_x
Definition: h264dec.h:242
h264_mvpred.h
H264Picture::frame_num
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264dec.h:154
H264SliceContext::next_slice_idx
int next_slice_idx
Definition: h264dec.h:248
H264SliceContext
Definition: h264dec.h:189
fill_filter_caches_inter
static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:2327
golomb.h
exp golomb vlc stuff
MB_FIELD
#define MB_FIELD(sl)
Definition: h264dec.h:74
AV_STEREO3D_SIDEBYSIDE
@ AV_STEREO3D_SIDEBYSIDE
Views are next to each other.
Definition: stereo3d.h:67
get_bits
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:380
ff_h264_filter_mb
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
Definition: h264_loopfilter.c:719
H264SliceContext::mv_cache
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264dec.h:311
AV_CODEC_FLAG_OUTPUT_CORRUPT
#define AV_CODEC_FLAG_OUTPUT_CORRUPT
Output even those frames that might be corrupted.
Definition: avcodec.h:218
AVHWAccel
Definition: avcodec.h:2039
AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:422
finish
static void finish(void)
Definition: movenc.c:342
get_chroma_qp
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
Get the chroma qp.
Definition: h264dec.h:701
U
#define U(x)
Definition: vp56_arith.h:37
H264Picture::mmco_reset
int mmco_reset
MMCO_RESET set this 1.
Definition: h264dec.h:155
fail
#define fail()
Definition: checkasm.h:127
copy_picture_range
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:291
AV_STEREO3D_2D
@ AV_STEREO3D_2D
Video is not stereoscopic (and metadata has to be there).
Definition: stereo3d.h:55
H264SEIA53Caption
Definition: h264_sei.h:107
AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:420
timecode.h
h264_select_output_frame
static int h264_select_output_frame(H264Context *h)
Definition: h264_slice.c:1434
ff_thread_get_buffer
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in AVCodec caps_internal and use ff_thread_get_buffer() to allocate frames. The frames must then be freed with ff_thread_release_buffer(). Otherwise decode directly into the user-supplied frames. Call ff_thread_report_progress() after some part of the current picture has decoded. A good place to put this is where draw_horiz_band() is called - add this if it isn 't called anywhere
AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:402
H264SliceContext::er
ERContext er
Definition: h264dec.h:192
USES_LIST
#define USES_LIST(a, list)
Definition: mpegutils.h:98
CABACContext::bytestream
const uint8_t * bytestream
Definition: cabac.h:45
AVFrame::key_frame
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:402
av_pix_fmt_get_chroma_sub_sample
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2688
ff_videodsp_init
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
H264Picture::mb_stride
int mb_stride
Definition: h264dec.h:175
IN_RANGE
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:284
ff_h264_flush_change
void ff_h264_flush_change(H264Context *h)
Definition: h264dec.c:453
ff_h264qpel_init
av_cold void ff_h264qpel_init(H264QpelContext *c, int bit_depth)
Definition: h264qpel.c:49
ff_h264_sei_process_picture_timing
int ff_h264_sei_process_picture_timing(H264SEIPictureTiming *h, const SPS *sps, void *logctx)
Parse the contents of a picture timing message given an active SPS.
Definition: h264_sei.c:69
h264_frame_start
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:487
H264SliceContext::deblocking_filter
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264dec.h:205
H264PredWeightTable::luma_log2_weight_denom
int luma_log2_weight_denom
Definition: h264_parse.h:33
ss
#define ss(width, name, subs,...)
Definition: cbs_vp9.c:261
H264Picture::f_grain
AVFrame * f_grain
Definition: h264dec.h:134
H264SliceContext::picture_structure
int picture_structure
Definition: h264dec.h:252
ff_h264_golomb_to_pict_type
const uint8_t ff_h264_golomb_to_pict_type[5]
Definition: h264data.c:37
release_unused_pictures
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:116
H264PredWeightTable::use_weight
int use_weight
Definition: h264_parse.h:31
H264_SEI_FPA_TYPE_SIDE_BY_SIDE
@ H264_SEI_FPA_TYPE_SIDE_BY_SIDE
Definition: h264_sei.h:49
av_reduce
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
H264SliceContext::direct_spatial_mv_pred
int direct_spatial_mv_pred
Definition: h264dec.h:263
H264SliceContext::slice_num
int slice_num
Definition: h264dec.h:194
H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL
@ H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL
Definition: h264_sei.h:51
AVFilmGrainH274Params::intensity_interval_upper_bound
uint8_t intensity_interval_upper_bound[3][256]
Specifies the upper bound of each intensity interval for which the set of model values applies for th...
Definition: film_grain_params.h:194
non_j_pixfmt
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
Definition: h264_slice.c:1036
AVFilmGrainH274Params::bit_depth_luma
int bit_depth_luma
Specifies the bit depth used for the luma component.
Definition: film_grain_params.h:142
AV_PIX_FMT_YUV444P10
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:407
ff_h264_init_cabac_states
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl)
Definition: h264_cabac.c:1263
ff_h264_hl_decode_mb
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:799
avassert.h
AV_STEREO3D_FRAMESEQUENCE
@ AV_STEREO3D_FRAMESEQUENCE
Views are alternated temporally.
Definition: stereo3d.h:92
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
film_grain_params.h
FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a)
Definition: sinewin_tablegen.c:29
ff_color_frame
void ff_color_frame(AVFrame *frame, const int color[4])
Definition: utils.c:410
ff_thread_report_progress
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
Definition: pthread_frame.c:588
AV_PIX_FMT_YUVJ422P
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
av_buffer_pool_get
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:387
ff_h264_queue_decode_slice
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal)
Submit a slice for decoding.
Definition: h264_slice.c:2184
width
#define width
H264Context::DPB
H264Picture DPB[H264_MAX_PICTURE_COUNT]
Definition: h264dec.h:359
AV_STEREO3D_LINES
@ AV_STEREO3D_LINES
Views are packed per line, as if interlaced.
Definition: stereo3d.h:129
H264SEIFilmGrainCharacteristics::present
int present
Definition: h264_sei.h:169
stereo3d.h
H264_SEI_FPA_TYPE_TOP_BOTTOM
@ H264_SEI_FPA_TYPE_TOP_BOTTOM
Definition: h264_sei.h:50
AV_PIX_FMT_DXVA2_VLD
@ AV_PIX_FMT_DXVA2_VLD
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer.
Definition: pixfmt.h:127
H264SEIA53Caption::buf_ref
AVBufferRef * buf_ref
Definition: h264_sei.h:108
H264PredWeightTable::chroma_log2_weight_denom
int chroma_log2_weight_denom
Definition: h264_parse.h:34
AV_CEIL_RSHIFT
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:51
AV_ZERO32
#define AV_ZERO32(d)
Definition: intreadwrite.h:629
AV_GET_BUFFER_FLAG_REF
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:361
FIELD_PICTURE
#define FIELD_PICTURE(h)
Definition: h264dec.h:76
av_film_grain_params_create_side_data
AVFilmGrainParams * av_film_grain_params_create_side_data(AVFrame *frame)
Allocate a complete AVFilmGrainParams and add it to the frame.
Definition: film_grain_params.c:31
ff_h264_execute_ref_pic_marking
int ff_h264_execute_ref_pic_marking(H264Context *h)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:610
ff_h264_decode_ref_pic_marking
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb, const H2645NAL *nal, void *logctx)
Definition: h264_refs.c:834
from
const char * from
Definition: jacosubdec.c:66
to
const char * to
Definition: webvttdec.c:35
h264_slice_header_parse
static int h264_slice_header_parse(const H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1829
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
H264PredWeightTable::chroma_weight_flag
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264_parse.h:36
pix_fmts
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:290
h264data.h
AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:401
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:201
H264Ref::parent
H264Picture * parent
Definition: h264dec.h:186
PICT_TOP_FIELD
#define PICT_TOP_FIELD
Definition: mpegutils.h:36
field_scan8x8_cavlc
static const uint8_t field_scan8x8_cavlc[64+1]
Definition: h264_slice.c:77
H264SliceContext::slice_alpha_c0_offset
int slice_alpha_c0_offset
Definition: h264dec.h:206
H264SEIFilmGrainCharacteristics::intensity_interval_lower_bound
uint8_t intensity_interval_lower_bound[3][256]
Definition: h264_sei.h:183
IS_INTRA
#define IS_INTRA(x, y)
field
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this field
Definition: writing_filters.txt:78
AVFrame::crop_right
size_t crop_right
Definition: frame.h:660
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
AVFilmGrainH274Params::comp_model_value
int16_t comp_model_value[3][256][6]
Specifies the model values for the component for each intensity interval.
Definition: film_grain_params.h:205
H264SliceContext::slice_type
int slice_type
Definition: h264dec.h:195
H264SliceContext::resync_mb_x
int resync_mb_x
Definition: h264dec.h:244
H264Picture::sei_recovery_frame_cnt
int sei_recovery_frame_cnt
Definition: h264dec.h:168
AVCOL_PRI_UNSPECIFIED
@ AVCOL_PRI_UNSPECIFIED
Definition: pixfmt.h:472
AVDISCARD_BIDIR
@ AVDISCARD_BIDIR
discard all bidirectional frames
Definition: defs.h:51
get_se_golomb
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:241
H2645NAL::type
int type
NAL unit type.
Definition: h2645_parse.h:54
AV_PIX_FMT_YUVJ444P
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
H264Context::enable_er
int enable_er
Definition: h264dec.h:565
ff_h264_draw_horiz_band
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height)
Definition: h264dec.c:103
H264SliceContext::curr_pic_num
int curr_pic_num
Definition: h264dec.h:343
FF_CODEC_PROPERTY_FILM_GRAIN
#define FF_CODEC_PROPERTY_FILM_GRAIN
Definition: avcodec.h:1825
arg
const char * arg
Definition: jacosubdec.c:67
AVStereo3D::flags
int flags
Additional information about the frame packing.
Definition: stereo3d.h:185
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:65
if
if(ret)
Definition: filter_design.txt:179
AVFilmGrainH274Params::model_id
int model_id
Specifies the film grain simulation mode.
Definition: film_grain_params.h:137
AVDISCARD_ALL
@ AVDISCARD_ALL
discard all
Definition: defs.h:54
GetBitContext::buffer
const uint8_t * buffer
Definition: get_bits.h:63
alloc_picture
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:188
H264Picture::motion_val_buf
AVBufferRef * motion_val_buf[2]
Definition: h264dec.h:140
PTRDIFF_SPECIFIER
#define PTRDIFF_SPECIFIER
Definition: internal.h:192
NULL
#define NULL
Definition: coverity.c:32
AV_COPY128
#define AV_COPY128(d, s)
Definition: intreadwrite.h:609
AVERROR_PATCHWELCOME
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:64
av_buffer_unref
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it.
Definition: buffer.c:139
AV_COPY64
#define AV_COPY64(d, s)
Definition: intreadwrite.h:605
H264SliceContext::edge_emu_buffer
uint8_t * edge_emu_buffer
Definition: h264dec.h:296
H264SEIUnregistered
Definition: h264_sei.h:111
SPS
Sequence parameter set.
Definition: h264_ps.h:44
TRANSPOSE
#define TRANSPOSE(x)
AV_PIX_FMT_YUVJ420P
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
ER_MB_ERROR
#define ER_MB_ERROR
Definition: error_resilience.h:38
ff_h264_decode_mb_cabac
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cabac.c:1912
AV_PICTURE_TYPE_SI
@ AV_PICTURE_TYPE_SI
Switching Intra.
Definition: avutil.h:278
H264SliceContext::chroma_qp
int chroma_qp[2]
Definition: h264dec.h:200
AV_CODEC_FLAG2_FAST
#define AV_CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:287
get_bits1
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:499
AV_PICTURE_TYPE_I
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:274
src
#define src
Definition: vp8dsp.c:255
H264SEIFilmGrainCharacteristics::repetition_period
int repetition_period
Definition: h264_sei.h:186
av_buffer_pool_uninit
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:322
PPS
Picture parameter set.
Definition: h264_ps.h:111
av_fast_mallocz
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
Allocate and clear a buffer, reusing the given one if large enough.
Definition: mem.c:565
mathops.h
list
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
Definition: filter_design.txt:25
IS_INTERLACED
#define IS_INTERLACED(a)
Definition: mpegutils.h:82
av_frame_new_side_data_from_buf
AVFrameSideData * av_frame_new_side_data_from_buf(AVFrame *frame, enum AVFrameSideDataType type, AVBufferRef *buf)
Add a new side data to a frame from an existing AVBufferRef.
Definition: frame.c:573
H264Picture::mb_height
int mb_height
Definition: h264dec.h:174
MAX_PPS_COUNT
#define MAX_PPS_COUNT
Definition: h264_ps.h:38
AV_PIX_FMT_YUV422P10
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:405
H264SliceContext::qscale
int qscale
Definition: h264dec.h:199
get_pixel_format
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
Definition: h264_slice.c:789
fill_filter_caches
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
Definition: h264_slice.c:2411
ERContext::error_occurred
int error_occurred
Definition: error_resilience.h:65
AV_EF_EXPLODE
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:1335
fp
#define fp
Definition: regdef.h:44
AV_ZERO128
#define AV_ZERO128(d)
Definition: intreadwrite.h:637
init_scan_tables
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:755
AV_PIX_FMT_GBRP9
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:419
H264SliceContext::top_borders_allocated
int top_borders_allocated[2]
Definition: h264dec.h:300
AV_FRAME_DATA_AFD
@ AV_FRAME_DATA_AFD
Active Format Description data consisting of a single byte as specified in ETSI TS 101 154 using AVAc...
Definition: frame.h:89
AV_PICTURE_TYPE_SP
@ AV_PICTURE_TYPE_SP
Switching Predicted.
Definition: avutil.h:279
AVCOL_RANGE_UNSPECIFIED
@ AVCOL_RANGE_UNSPECIFIED
Definition: pixfmt.h:563
FIELD_OR_MBAFF_PICTURE
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264dec.h:93
H264SliceContext::mb_skip_run
int mb_skip_run
Definition: h264dec.h:249
h264_ps.h
init_dimensions
static void init_dimensions(H264Context *h)
Definition: h264_slice.c:907
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
AV_FRAME_DATA_SEI_UNREGISTERED
@ AV_FRAME_DATA_SEI_UNREGISTERED
User data unregistered metadata associated with a video frame.
Definition: frame.h:177
H264SliceContext::top_type
int top_type
Definition: h264dec.h:226
AVFrame::crop_bottom
size_t crop_bottom
Definition: frame.h:658
for
for(j=16;j >0;--j)
Definition: h264pred_template.c:469
H264SliceContext::resync_mb_y
int resync_mb_y
Definition: h264dec.h:245
H264_SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM
@ H264_SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM
6: bottom field, top field, bottom field repeated, in that order
Definition: h264_sei.h:37
ff_thread_release_buffer
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
Definition: pthread_frame.c:1057
DELAYED_PIC_REF
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output.
Definition: diracdec.c:68
H264SEIPictureTiming
Definition: h264_sei.h:66
H264SliceContext::cabac
CABACContext cabac
Cabac.
Definition: h264dec.h:330
H264SliceContext::redundant_pic_count
int redundant_pic_count
Definition: h264dec.h:256
AVFrame::crop_left
size_t crop_left
Definition: frame.h:659
AVDISCARD_NONKEY
@ AVDISCARD_NONKEY
discard all frames except keyframes
Definition: defs.h:53
ERContext::error_count
atomic_int error_count
Definition: error_resilience.h:64
AVFrame::pict_type
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:407
ff_zigzag_scan
const uint8_t ff_zigzag_scan[16+1]
Definition: mathtables.c:109
AV_STEREO3D_CHECKERBOARD
@ AV_STEREO3D_CHECKERBOARD
Views are packed in a checkerboard-like structure per pixel.
Definition: stereo3d.h:104
H264Picture::reference
int reference
Definition: h264dec.h:165
AV_CODEC_FLAG_GRAY
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:243
CABAC
#define CABAC(h)
Definition: h264_cabac.c:28
LEFT_MBS
#define LEFT_MBS
Definition: h264dec.h:77
pps
static int FUNC() pps(CodedBitstreamContext *ctx, RWContext *rw, H264RawPPS *current)
Definition: cbs_h264_syntax_template.c:404
AVFilmGrainH274Params::component_model_present
int component_model_present[3]
Indicates if the modelling of film grain for a given component is present.
Definition: film_grain_params.h:170
H264SEIFramePacking
Definition: h264_sei.h:133
rectangle.h
FF_COMPLIANCE_STRICT
#define FF_COMPLIANCE_STRICT
Strictly conform to all the things in the spec no matter what consequences.
Definition: avcodec.h:1282
H264SliceContext::mb_uvlinesize
ptrdiff_t mb_uvlinesize
Definition: h264dec.h:240
VP_START
#define VP_START
< current MB is the first after a resync marker
Definition: error_resilience.h:30
AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:409
H264SliceContext::pwt
H264PredWeightTable pwt
Definition: h264dec.h:209
MAX_DELAYED_PIC_COUNT
#define MAX_DELAYED_PIC_COUNT
Definition: h264dec.h:58
H264SEIFilmGrainCharacteristics::bit_depth_chroma
int bit_depth_chroma
Definition: h264_sei.h:173
H264Picture::tf
ThreadFrame tf
Definition: h264dec.h:132
H264Picture::mb_type
uint32_t * mb_type
Definition: h264dec.h:144
ff_h264_decode_mb_cavlc
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cavlc.c:696
H264_SEI_PIC_STRUCT_BOTTOM_TOP
@ H264_SEI_PIC_STRUCT_BOTTOM_TOP
4: bottom field, top field, in that order
Definition: h264_sei.h:35
H264Picture::recovered
int recovered
picture at IDR or recovery point + recovery count
Definition: h264dec.h:166
H2645NAL::gb
GetBitContext gb
Definition: h2645_parse.h:49
H264SliceContext::top_mb_xy
int top_mb_xy
Definition: h264dec.h:221
H264SliceContext::qp_thresh
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264dec.h:201
H2645NAL
Definition: h2645_parse.h:34
AV_PIX_FMT_YUV444P12
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:411
H264SliceContext::top_borders
uint8_t(*[2] top_borders)[(16 *3) *2]
Definition: h264dec.h:297
AVFrameSideData::data
uint8_t * data
Definition: frame.h:218
h264chroma.h
AVFilmGrainParams
This structure describes how to handle film grain synthesis in video for specific codecs.
Definition: film_grain_params.h:216
FF_THREAD_SLICE
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:1452
H264SliceContext::cbp
int cbp
Definition: h264dec.h:267
AVFrame::format
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
Definition: frame.h:397
H264SliceContext::left_type
int left_type[LEFT_MBS]
Definition: h264dec.h:228
ff_h264_direct_ref_list_init
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:121
H264SliceContext::mb_y
int mb_y
Definition: h264dec.h:242
H264PredWeightTable::implicit_weight
int implicit_weight[48][48][2]
Definition: h264_parse.h:40
height
#define height
decode_slice
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2681
H264SliceContext::explicit_ref_marking
int explicit_ref_marking
Definition: h264dec.h:336
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
av_reallocp_array
int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
Allocate, reallocate, or free an array through a pointer to a pointer.
Definition: mem.c:232
H264_SEI_FPA_TYPE_INTERLEAVE_COLUMN
@ H264_SEI_FPA_TYPE_INTERLEAVE_COLUMN
Definition: h264_sei.h:47
pt
int pt
Definition: rtp.c:35
H264SliceContext::uvlinesize
ptrdiff_t uvlinesize
Definition: h264dec.h:238
AVBufferRef::buffer
AVBuffer * buffer
Definition: buffer.h:83
AV_PIX_FMT_D3D11
@ AV_PIX_FMT_D3D11
Hardware surfaces for Direct3D11.
Definition: pixfmt.h:303
H264SEIFilmGrainCharacteristics::model_id
int model_id
Definition: h264_sei.h:170
H264SEIDisplayOrientation::anticlockwise_rotation
int anticlockwise_rotation
Definition: h264_sei.h:146
H264SliceContext::slice_type_nos
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264dec.h:196
H264SliceContext::delta_poc_bottom
int delta_poc_bottom
Definition: h264dec.h:341
AVFilmGrainParams::h274
AVFilmGrainH274Params h274
Definition: film_grain_params.h:237
AV_STEREO3D_FLAG_INVERT
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
Definition: stereo3d.h:167
AV_PIX_FMT_VAAPI
@ AV_PIX_FMT_VAAPI
Hardware acceleration through VA-API, data[3] contains a VASurfaceID.
Definition: pixfmt.h:119
H264SEIFilmGrainCharacteristics::intensity_interval_upper_bound
uint8_t intensity_interval_upper_bound[3][256]
Definition: h264_sei.h:184
FRAME_MBAFF
#define FRAME_MBAFF(h)
Definition: h264dec.h:75
IS_DIRECT
#define IS_DIRECT(a)
Definition: mpegutils.h:83
H264_SEI_PIC_STRUCT_FRAME
@ H264_SEI_PIC_STRUCT_FRAME
0: frame
Definition: h264_sei.h:31
pack16to32
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
Definition: h264dec.h:680
get_cabac_terminate
static int av_unused get_cabac_terminate(CABACContext *c)
Definition: cabac_functions.h:185
H264_SEI_PIC_STRUCT_FRAME_TRIPLING
@ H264_SEI_PIC_STRUCT_FRAME_TRIPLING
8: frame tripling
Definition: h264_sei.h:39
field_scan
static const uint8_t field_scan[16+1]
Definition: h264_slice.c:51
loop_filter
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
Definition: h264_slice.c:2553
ff_init_cabac_decoder
int ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:165
H264SliceContext::mb_mbaff
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264dec.h:254
field_scan8x8
static const uint8_t field_scan8x8[64+1]
Definition: h264_slice.c:58
AV_PIX_FMT_VDPAU
@ AV_PIX_FMT_VDPAU
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:187
av_get_picture_type_char
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:83
AV_PIX_FMT_VIDEOTOOLBOX
@ AV_PIX_FMT_VIDEOTOOLBOX
hardware decoding through Videotoolbox
Definition: pixfmt.h:272
LIST_NOT_USED
#define LIST_NOT_USED
Definition: h264dec.h:409
H264Picture::field_picture
int field_picture
whether or not picture was encoded in separate fields
Definition: h264dec.h:163
h264dec.h
H264SliceContext::poc_lsb
int poc_lsb
Definition: h264dec.h:340
H264SEIFilmGrainCharacteristics
Definition: h264_sei.h:168
H264SliceContext::first_mb_addr
unsigned int first_mb_addr
Definition: h264dec.h:246
ff_h264_direct_dist_scale_factor
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:62
H264Picture::needs_fg
int needs_fg
whether picture needs film grain synthesis (see f_grain)
Definition: h264dec.h:169
AVBuffer
A reference counted buffer type.
Definition: buffer_internal.h:39
H264Context
H264Context.
Definition: h264dec.h:350
AVDISCARD_NONINTRA
@ AVDISCARD_NONINTRA
discard all non intra frames
Definition: defs.h:52
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:271
av_timecode_make_smpte_tc_string2
char * av_timecode_make_smpte_tc_string2(char *buf, AVRational rate, uint32_t tcsmpte, int prevent_df, int skip_field)
Get the timecode string from the SMPTE timecode format.
Definition: timecode.c:136
AV_CODEC_FLAG2_SHOW_ALL
#define AV_CODEC_FLAG2_SHOW_ALL
Show all frames before the first keyframe.
Definition: avcodec.h:315
AV_FRAME_FLAG_CORRUPT
#define AV_FRAME_FLAG_CORRUPT
The frame data may be corrupted, e.g.
Definition: frame.h:540
H264_SEI_PIC_STRUCT_FRAME_DOUBLING
@ H264_SEI_PIC_STRUCT_FRAME_DOUBLING
7: frame doubling
Definition: h264_sei.h:38
ff_h264chroma_init
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
H264SliceContext::frame_num
int frame_num
Definition: h264dec.h:338
AVFilmGrainH274Params::num_intensity_intervals
uint16_t num_intensity_intervals[3]
Specifies the number of intensity intervals for which a specific set of model values has been estimat...
Definition: film_grain_params.h:176
AV_PIX_FMT_GBRP12
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:421
display.h
AV_STEREO3D_TOPBOTTOM
@ AV_STEREO3D_TOPBOTTOM
Views are on top of each other.
Definition: stereo3d.h:79
ff_h264_execute_decode_slices
int ff_h264_execute_decode_slices(H264Context *h)
Call decode_slice() for each context.
Definition: h264_slice.c:2893
H264SliceContext::mb_linesize
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264dec.h:239
av_assert1
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
H264SEIFilmGrainCharacteristics::matrix_coeffs
int matrix_coeffs
Definition: h264_sei.h:177
av_always_inline
#define av_always_inline
Definition: attributes.h:49
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
cabac_functions.h
H264Picture::hwaccel_priv_buf
AVBufferRef * hwaccel_priv_buf
Definition: h264dec.h:146
tb
#define tb
Definition: regdef.h:68
AV_COPY32
#define AV_COPY32(d, s)
Definition: intreadwrite.h:601
av_buffer_replace
int av_buffer_replace(AVBufferRef **pdst, const AVBufferRef *src)
Ensure dst refers to the same data as src.
Definition: buffer.c:233
ff_h264_parse_ref_count
int ff_h264_parse_ref_count(int *plist_count, int ref_count[2], GetBitContext *gb, const PPS *pps, int slice_type_nos, int picture_structure, void *logctx)
Definition: h264_parse.c:219
AVCOL_SPC_UNSPECIFIED
@ AVCOL_SPC_UNSPECIFIED
Definition: pixfmt.h:526
AVFilmGrainH274Params::color_primaries
enum AVColorPrimaries color_primaries
Definition: film_grain_params.h:150
H264_SEI_FPA_TYPE_INTERLEAVE_ROW
@ H264_SEI_FPA_TYPE_INTERLEAVE_ROW
Definition: h264_sei.h:48
ff_h264_alloc_tables
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264dec.c:181
AVCOL_RANGE_MPEG
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
Definition: pixfmt.h:580
AVFilmGrainH274Params::intensity_interval_lower_bound
uint8_t intensity_interval_lower_bound[3][256]
Specifies the lower ounds of each intensity interval for whichthe set of model values applies for the...
Definition: film_grain_params.h:188
AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:403
H264SliceContext::list_count
unsigned int list_count
Definition: h264dec.h:280
avcodec.h
av_cmp_q
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:89
ff_h264dsp_init
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:66
ff_zigzag_direct
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
av_buffer_allocz
AVBufferRef * av_buffer_allocz(size_t size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:93
ff_h264_ref_picture
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:100
ret
ret
Definition: filter_design.txt:187
ff_h264_init_poc
int ff_h264_init_poc(int pic_field_poc[2], int *pic_poc, const SPS *sps, H264POCContext *pc, int picture_structure, int nal_ref_idc)
Definition: h264_parse.c:277
ff_h264_get_profile
int ff_h264_get_profile(const SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264_parse.c:529
H264SEIFilmGrainCharacteristics::transfer_characteristics
int transfer_characteristics
Definition: h264_sei.h:176
AV_STEREO3D_COLUMNS
@ AV_STEREO3D_COLUMNS
Views are packed per column.
Definition: stereo3d.h:141
h264_field_start
static int h264_field_start(H264Context *h, const H264SliceContext *sl, const H2645NAL *nal, int first_slice)
Definition: h264_slice.c:1537
AVStereo3D::type
enum AVStereo3DType type
How views are packed within the video.
Definition: stereo3d.h:180
H264SliceContext::last_qscale_diff
int last_qscale_diff
Definition: h264dec.h:202
H264SEIFilmGrainCharacteristics::bit_depth_luma
int bit_depth_luma
Definition: h264_sei.h:172
sps
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
Definition: cbs_h264_syntax_template.c:260
align_get_bits
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:694
AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:408
AV_PIX_FMT_YUV422P14
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:413
ff_set_sar
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:101
H264SEIFilmGrainCharacteristics::full_range
int full_range
Definition: h264_sei.h:174
H264SliceContext::pps_id
unsigned int pps_id
Definition: h264dec.h:290
H264SliceContext::linesize
ptrdiff_t linesize
Definition: h264dec.h:238
H264SliceContext::slice_beta_offset
int slice_beta_offset
Definition: h264dec.h:207
AVCodecContext
main external API structure.
Definition: avcodec.h:383
AVFrame::height
int height
Definition: frame.h:382
get_ue_golomb_31
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:122
MAX_SLICES
#define MAX_SLICES
Definition: dxva2_hevc.c:29
backup_mb_border
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:589
ff_h264_build_ref_list
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:299
AVCodecContext::execute
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:1491
H264SEIFilmGrainCharacteristics::comp_model_present_flag
int comp_model_present_flag[3]
Definition: h264_sei.h:180
AV_FILM_GRAIN_PARAMS_H274
@ AV_FILM_GRAIN_PARAMS_H274
The union is valid when interpreted as AVFilmGrainH274Params (codec.h274)
Definition: film_grain_params.h:35
H264SliceContext::bipred_scratchpad
uint8_t * bipred_scratchpad
Definition: h264dec.h:295
ff_h264_pred_init
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:413
H264Picture::field_poc
int field_poc[2]
top/bottom POC
Definition: h264dec.h:152
AV_PICTURE_TYPE_B
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
Definition: avutil.h:276
error_resilience.h
AV_PIX_FMT_NONE
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
AVHWAccel::frame_priv_data_size
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:2149
H264Picture::mb_width
int mb_width
Definition: h264dec.h:174
fill_rectangle
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:826
H264Picture
Definition: h264dec.h:130
find_unused_picture
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:272
ff_thread_get_format
FF_DISABLE_DEPRECATION_WARNINGS enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
Definition: pthread_frame.c:1021
AVFilmGrainH274Params::log2_scale_factor
int log2_scale_factor
Specifies a scale factor used in the film grain characterization equations.
Definition: film_grain_params.h:165
scan8
static const uint8_t scan8[16 *3+3]
Definition: h264dec.h:664
ref
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
h264_slice_init
static int h264_slice_init(H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:2048
H264SEIDisplayOrientation::vflip
int vflip
Definition: h264_sei.h:147
H264SEIDisplayOrientation
Definition: h264_sei.h:144
H264Picture::tf_grain
ThreadFrame tf_grain
Definition: h264dec.h:135
FF_CODEC_PROPERTY_CLOSED_CAPTIONS
#define FF_CODEC_PROPERTY_CLOSED_CAPTIONS
Definition: avcodec.h:1824
ff_h264_field_end
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup)
Definition: h264_picture.c:231
CABACContext::bytestream_end
const uint8_t * bytestream_end
Definition: cabac.h:46
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
AVFilmGrainH274Params::num_model_values
uint8_t num_model_values[3]
Specifies the number of model values present for each intensity interval in which the film grain has ...
Definition: film_grain_params.h:182
init_table_pools
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:161
H264Picture::mb_type_buf
AVBufferRef * mb_type_buf
Definition: h264dec.h:143
H264SEIUnregistered::buf_ref
AVBufferRef ** buf_ref
Definition: h264_sei.h:113
H264SliceContext::ref_list
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264dec.h:281
LBOT
#define LBOT
Definition: h264dec.h:79
AV_EF_AGGRESSIVE
#define AV_EF_AGGRESSIVE
consider things that a sane encoder should not do as an error
Definition: avcodec.h:1340
H264SliceContext::non_zero_count_cache
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264dec.h:306
AV_PIX_FMT_GBRP
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:158
H264SEIFilmGrainCharacteristics::num_intensity_intervals
uint16_t num_intensity_intervals[3]
Definition: h264_sei.h:181
AV_PICTURE_TYPE_P
@ AV_PICTURE_TYPE_P
Predicted.
Definition: avutil.h:275
IS_INTER
#define IS_INTER(a)
Definition: mpegutils.h:78
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
H264SEIFilmGrainCharacteristics::comp_model_value
int16_t comp_model_value[3][256][6]
Definition: h264_sei.h:185
H264SEIFilmGrainCharacteristics::num_model_values
uint8_t num_model_values[3]
Definition: h264_sei.h:182
get_ue_golomb_long
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:106
H264Context::nal_length_size
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
Definition: h264dec.h:470
av_stereo3d_create_side_data
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
Definition: stereo3d.c:33
avpriv_request_sample
#define avpriv_request_sample(...)
Definition: tableprint_vlc.h:37
ER_MB_END
#define ER_MB_END
Definition: error_resilience.h:39
AVFilmGrainH274Params::color_trc
enum AVColorTransferCharacteristic color_trc
Definition: film_grain_params.h:151
AVFrameSideData
Structure to hold side data for an AVFrame.
Definition: frame.h:216
H264_SEI_PIC_STRUCT_BOTTOM_FIELD
@ H264_SEI_PIC_STRUCT_BOTTOM_FIELD
2: bottom field
Definition: h264_sei.h:33
H264Picture::hwaccel_picture_private
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264dec.h:147
ER_MV_END
#define ER_MV_END
Definition: error_resilience.h:36
H264SEIFilmGrainCharacteristics::log2_scale_factor
int log2_scale_factor
Definition: h264_sei.h:179
H264SliceContext::idr_pic_id
int idr_pic_id
Definition: h264dec.h:339
AVStereo3D::view
enum AVStereo3DView view
Determines which views are packed.
Definition: stereo3d.h:190
H264_SEI_FPA_TYPE_2D
@ H264_SEI_FPA_TYPE_2D
Definition: h264_sei.h:52
ff_tlog
#define ff_tlog(ctx,...)
Definition: internal.h:205
FFALIGN
#define FFALIGN(x, a)
Definition: macros.h:78
AVFilmGrainParams::codec
union AVFilmGrainParams::@294 codec
Additional fields may be added both here and in any structure included.
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:410
cr
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:216
AVFrame::crop_top
size_t crop_top
Definition: frame.h:657
H264SliceContext::gb
GetBitContext gb
Definition: h264dec.h:191
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
av_dict_set
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
Definition: dict.c:70
av_fast_malloc
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:560
H264SliceContext::intra4x4_pred_mode
int8_t * intra4x4_pred_mode
Definition: h264dec.h:218
FFMAX3
#define FFMAX3(a, b, c)
Definition: macros.h:48
LTOP
#define LTOP
Definition: h264dec.h:78
int32_t
int32_t
Definition: audioconvert.c:56
h264.h
imgutils.h
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
Definition: frame.h:355
H264SliceContext::edge_emu_buffer_allocated
int edge_emu_buffer_allocated
Definition: h264dec.h:299
REBASE_PICTURE
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:286
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:28
CHROMA444
#define CHROMA444(h)
Definition: h264dec.h:101
AVFilmGrainH274Params::bit_depth_chroma
int bit_depth_chroma
Specifies the bit depth used for the chroma components.
Definition: film_grain_params.h:147
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:61
ff_h264_get_slice_type
int ff_h264_get_slice_type(const H264SliceContext *sl)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:2309
h
h
Definition: vp9dsp_template.c:2038
H264SliceContext::cabac_init_idc
int cabac_init_idc
Definition: h264dec.h:332
AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:414
H264PredWeightTable::luma_weight_flag
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264_parse.h:35
H264_MAX_PICTURE_COUNT
#define H264_MAX_PICTURE_COUNT
Definition: h264dec.h:54
ER_AC_END
#define ER_AC_END
Definition: error_resilience.h:34
AVStereo3D
Stereo 3D type: this structure describes how two videos are packed within a single video surface,...
Definition: stereo3d.h:176
H264SliceContext::bipred_scratchpad_allocated
int bipred_scratchpad_allocated
Definition: h264dec.h:298
AVDISCARD_NONREF
@ AVDISCARD_NONREF
discard all non reference
Definition: defs.h:50
H264SliceContext::slice_type_fixed
int slice_type_fixed
Definition: h264dec.h:197
H264Ref::poc
int poc
Definition: h264dec.h:183
AVFilmGrainParams::type
enum AVFilmGrainParamsType type
Specifies the codec for which this structure is valid.
Definition: film_grain_params.h:220
IS_8x8DCT
#define IS_8x8DCT(a)
Definition: h264dec.h:106
H264Picture::qscale_table_buf
AVBufferRef * qscale_table_buf
Definition: h264dec.h:137
H264_SEI_PIC_STRUCT_TOP_FIELD
@ H264_SEI_PIC_STRUCT_TOP_FIELD
1: top field
Definition: h264_sei.h:32
H264SliceContext::delta_poc
int delta_poc[2]
Definition: h264dec.h:342
av_color_transfer_name
const char * av_color_transfer_name(enum AVColorTransferCharacteristic transfer)
Definition: pixdesc.c:3027
H264Picture::long_ref
int long_ref
1->long term reference 0->short term reference
Definition: h264dec.h:159
H264Ref::reference
int reference
Definition: h264dec.h:182
H264Picture::motion_val
int16_t(*[2] motion_val)[2]
Definition: h264dec.h:141
AV_CODEC_EXPORT_DATA_FILM_GRAIN
#define AV_CODEC_EXPORT_DATA_FILM_GRAIN
Decoding only.
Definition: avcodec.h:356
AV_PIX_FMT_YUV420P14
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:412
H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP
@ H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP
5: top field, bottom field, top field repeated, in that order
Definition: h264_sei.h:36
H264SEIFilmGrainCharacteristics::separate_colour_description_present_flag
int separate_colour_description_present_flag
Definition: h264_sei.h:171
av_get_pix_fmt_name
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2580
H264SliceContext::mb_field_decoding_flag
int mb_field_decoding_flag
Definition: h264dec.h:253
H264Context::is_avc
int is_avc
Used to parse AVC variant of H.264.
Definition: h264dec.h:469