FFmpeg
aacdec_mips.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012
3  * MIPS Technologies, Inc., California.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
14  * contributors may be used to endorse or promote products derived from
15  * this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Authors: Darko Laus (darko@mips.com)
30  * Djordje Pesut (djordje@mips.com)
31  * Mirjana Vulin (mvulin@mips.com)
32  *
33  * This file is part of FFmpeg.
34  *
35  * FFmpeg is free software; you can redistribute it and/or
36  * modify it under the terms of the GNU Lesser General Public
37  * License as published by the Free Software Foundation; either
38  * version 2.1 of the License, or (at your option) any later version.
39  *
40  * FFmpeg is distributed in the hope that it will be useful,
41  * but WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
43  * Lesser General Public License for more details.
44  *
45  * You should have received a copy of the GNU Lesser General Public
46  * License along with FFmpeg; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
48  */
49 
50 /**
51  * @file
52  * Reference: libavcodec/aacdec.c
53  */
54 
55 #include "libavcodec/aac.h"
56 #include "aacdec_mips.h"
57 #include "libavcodec/aactab.h"
58 #include "libavcodec/sinewin.h"
59 #include "libavutil/mips/asmdefs.h"
60 
61 #if HAVE_INLINE_ASM
62 #if HAVE_MIPSFPU
63 static av_always_inline void float_copy(float *dst, const float *src, int count)
64 {
65  // Copy 'count' floats from src to dst
66  const float *loop_end = src + count;
67  int temp[8];
68 
69  // count must be a multiple of 8
70  av_assert2(count % 8 == 0);
71 
72  // loop unrolled 8 times
73  __asm__ volatile (
74  ".set push \n\t"
75  ".set noreorder \n\t"
76  "1: \n\t"
77  "lw %[temp0], 0(%[src]) \n\t"
78  "lw %[temp1], 4(%[src]) \n\t"
79  "lw %[temp2], 8(%[src]) \n\t"
80  "lw %[temp3], 12(%[src]) \n\t"
81  "lw %[temp4], 16(%[src]) \n\t"
82  "lw %[temp5], 20(%[src]) \n\t"
83  "lw %[temp6], 24(%[src]) \n\t"
84  "lw %[temp7], 28(%[src]) \n\t"
85  PTR_ADDIU "%[src], %[src], 32 \n\t"
86  "sw %[temp0], 0(%[dst]) \n\t"
87  "sw %[temp1], 4(%[dst]) \n\t"
88  "sw %[temp2], 8(%[dst]) \n\t"
89  "sw %[temp3], 12(%[dst]) \n\t"
90  "sw %[temp4], 16(%[dst]) \n\t"
91  "sw %[temp5], 20(%[dst]) \n\t"
92  "sw %[temp6], 24(%[dst]) \n\t"
93  "sw %[temp7], 28(%[dst]) \n\t"
94  "bne %[src], %[loop_end], 1b \n\t"
95  PTR_ADDIU "%[dst], %[dst], 32 \n\t"
96  ".set pop \n\t"
97 
98  : [temp0]"=&r"(temp[0]), [temp1]"=&r"(temp[1]),
99  [temp2]"=&r"(temp[2]), [temp3]"=&r"(temp[3]),
100  [temp4]"=&r"(temp[4]), [temp5]"=&r"(temp[5]),
101  [temp6]"=&r"(temp[6]), [temp7]"=&r"(temp[7]),
102  [src]"+r"(src), [dst]"+r"(dst)
103  : [loop_end]"r"(loop_end)
104  : "memory"
105  );
106 }
107 
108 static av_always_inline int lcg_random(unsigned previous_val)
109 {
110  union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 };
111  return v.s;
112 }
113 
114 static void imdct_and_windowing_mips(AACContext *ac, SingleChannelElement *sce)
115 {
116  IndividualChannelStream *ics = &sce->ics;
117  float *in = sce->coeffs;
118  float *out = sce->ret;
119  float *saved = sce->saved;
120  const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
121  const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
122  const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
123  float *buf = ac->buf_mdct;
124  int i;
125 
126  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
127  for (i = 0; i < 1024; i += 128)
128  ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
129  } else
130  ac->mdct.imdct_half(&ac->mdct, buf, in);
131 
132  /* window overlapping
133  * NOTE: To simplify the overlapping code, all 'meaningless' short to long
134  * and long to short transitions are considered to be short to short
135  * transitions. This leaves just two cases (long to long and short to short)
136  * with a little special sauce for EIGHT_SHORT_SEQUENCE.
137  */
138  if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
140  ac->fdsp->vector_fmul_window( out, saved, buf, lwindow_prev, 512);
141  } else {
142  float_copy(out, saved, 448);
143 
144  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
145  {
146  float wi;
147  float wj;
148  int i;
149  float temp0, temp1, temp2, temp3;
150  float *dst0 = out + 448 + 0*128;
151  float *dst1 = dst0 + 64 + 63;
152  float *dst2 = saved + 63;
153  float *win0 = (float*)swindow;
154  float *win1 = win0 + 64 + 63;
155  float *win0_prev = (float*)swindow_prev;
156  float *win1_prev = win0_prev + 64 + 63;
157  float *src0_prev = saved + 448;
158  float *src1_prev = buf + 0*128 + 63;
159  float *src0 = buf + 0*128 + 64;
160  float *src1 = buf + 1*128 + 63;
161 
162  for(i = 0; i < 64; i++)
163  {
164  temp0 = src0_prev[0];
165  temp1 = src1_prev[0];
166  wi = *win0_prev;
167  wj = *win1_prev;
168  temp2 = src0[0];
169  temp3 = src1[0];
170  dst0[0] = temp0 * wj - temp1 * wi;
171  dst1[0] = temp0 * wi + temp1 * wj;
172 
173  wi = *win0;
174  wj = *win1;
175 
176  temp0 = src0[128];
177  temp1 = src1[128];
178  dst0[128] = temp2 * wj - temp3 * wi;
179  dst1[128] = temp2 * wi + temp3 * wj;
180 
181  temp2 = src0[256];
182  temp3 = src1[256];
183  dst0[256] = temp0 * wj - temp1 * wi;
184  dst1[256] = temp0 * wi + temp1 * wj;
185  dst0[384] = temp2 * wj - temp3 * wi;
186  dst1[384] = temp2 * wi + temp3 * wj;
187 
188  temp0 = src0[384];
189  temp1 = src1[384];
190  dst0[512] = temp0 * wj - temp1 * wi;
191  dst2[0] = temp0 * wi + temp1 * wj;
192 
193  src0++;
194  src1--;
195  src0_prev++;
196  src1_prev--;
197  win0++;
198  win1--;
199  win0_prev++;
200  win1_prev--;
201  dst0++;
202  dst1--;
203  dst2--;
204  }
205  }
206  } else {
207  ac->fdsp->vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64);
208  float_copy(out + 576, buf + 64, 448);
209  }
210  }
211 
212  // buffer update
213  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
214  ac->fdsp->vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64);
215  ac->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
216  ac->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
217  float_copy(saved + 448, buf + 7*128 + 64, 64);
218  } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
219  float_copy(saved, buf + 512, 448);
220  float_copy(saved + 448, buf + 7*128 + 64, 64);
221  } else { // LONG_STOP or ONLY_LONG
222  float_copy(saved, buf + 512, 512);
223  }
224 }
225 
226 static void apply_ltp_mips(AACContext *ac, SingleChannelElement *sce)
227 {
228  const LongTermPrediction *ltp = &sce->ics.ltp;
229  const uint16_t *offsets = sce->ics.swb_offset;
230  int i, sfb;
231  int j, k;
232 
233  if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
234  float *predTime = sce->ret;
235  float *predFreq = ac->buf_mdct;
236  float *p_predTime;
237  int16_t num_samples = 2048;
238 
239  if (ltp->lag < 1024)
240  num_samples = ltp->lag + 1024;
241  j = (2048 - num_samples) >> 2;
242  k = (2048 - num_samples) & 3;
243  p_predTime = &predTime[num_samples];
244 
245  for (i = 0; i < num_samples; i++)
246  predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
247  for (i = 0; i < j; i++) {
248 
249  /* loop unrolled 4 times */
250  __asm__ volatile (
251  "sw $0, 0(%[p_predTime]) \n\t"
252  "sw $0, 4(%[p_predTime]) \n\t"
253  "sw $0, 8(%[p_predTime]) \n\t"
254  "sw $0, 12(%[p_predTime]) \n\t"
255  PTR_ADDIU "%[p_predTime], %[p_predTime], 16 \n\t"
256 
257  : [p_predTime]"+r"(p_predTime)
258  :
259  : "memory"
260  );
261  }
262  for (i = 0; i < k; i++) {
263 
264  __asm__ volatile (
265  "sw $0, 0(%[p_predTime]) \n\t"
266  PTR_ADDIU "%[p_predTime], %[p_predTime], 4 \n\t"
267 
268  : [p_predTime]"+r"(p_predTime)
269  :
270  : "memory"
271  );
272  }
273 
274  ac->windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);
275 
276  if (sce->tns.present)
277  ac->apply_tns(predFreq, &sce->tns, &sce->ics, 0);
278 
279  for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
280  if (ltp->used[sfb])
281  for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
282  sce->coeffs[i] += predFreq[i];
283  }
284 }
285 
286 static av_always_inline void fmul_and_reverse(float *dst, const float *src0, const float *src1, int count)
287 {
288  /* Multiply 'count' floats in src0 by src1 and store the results in dst in reverse */
289  /* This should be equivalent to a normal fmul, followed by reversing dst */
290 
291  // count must be a multiple of 4
292  av_assert2(count % 4 == 0);
293 
294  // move src0 and src1 to the last element of their arrays
295  src0 += count - 1;
296  src1 += count - 1;
297 
298  for (; count > 0; count -= 4){
299  float temp[12];
300 
301  /* loop unrolled 4 times */
302  __asm__ volatile (
303  "lwc1 %[temp0], 0(%[ptr2]) \n\t"
304  "lwc1 %[temp1], -4(%[ptr2]) \n\t"
305  "lwc1 %[temp2], -8(%[ptr2]) \n\t"
306  "lwc1 %[temp3], -12(%[ptr2]) \n\t"
307  "lwc1 %[temp4], 0(%[ptr3]) \n\t"
308  "lwc1 %[temp5], -4(%[ptr3]) \n\t"
309  "lwc1 %[temp6], -8(%[ptr3]) \n\t"
310  "lwc1 %[temp7], -12(%[ptr3]) \n\t"
311  "mul.s %[temp8], %[temp0], %[temp4] \n\t"
312  "mul.s %[temp9], %[temp1], %[temp5] \n\t"
313  "mul.s %[temp10], %[temp2], %[temp6] \n\t"
314  "mul.s %[temp11], %[temp3], %[temp7] \n\t"
315  "swc1 %[temp8], 0(%[ptr1]) \n\t"
316  "swc1 %[temp9], 4(%[ptr1]) \n\t"
317  "swc1 %[temp10], 8(%[ptr1]) \n\t"
318  "swc1 %[temp11], 12(%[ptr1]) \n\t"
319  PTR_ADDIU "%[ptr1], %[ptr1], 16 \n\t"
320  PTR_ADDIU "%[ptr2], %[ptr2], -16 \n\t"
321  PTR_ADDIU "%[ptr3], %[ptr3], -16 \n\t"
322 
323  : [temp0]"=&f"(temp[0]), [temp1]"=&f"(temp[1]),
324  [temp2]"=&f"(temp[2]), [temp3]"=&f"(temp[3]),
325  [temp4]"=&f"(temp[4]), [temp5]"=&f"(temp[5]),
326  [temp6]"=&f"(temp[6]), [temp7]"=&f"(temp[7]),
327  [temp8]"=&f"(temp[8]), [temp9]"=&f"(temp[9]),
328  [temp10]"=&f"(temp[10]), [temp11]"=&f"(temp[11]),
329  [ptr1]"+r"(dst), [ptr2]"+r"(src0), [ptr3]"+r"(src1)
330  :
331  : "memory"
332  );
333  }
334 }
335 
336 static void update_ltp_mips(AACContext *ac, SingleChannelElement *sce)
337 {
338  IndividualChannelStream *ics = &sce->ics;
339  float *saved = sce->saved;
340  float *saved_ltp = sce->coeffs;
341  const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
342  const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
343  uint32_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
344 
345  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
346  float *p_saved_ltp = saved_ltp + 576;
347  float *loop_end1 = p_saved_ltp + 448;
348 
349  float_copy(saved_ltp, saved, 512);
350 
351  /* loop unrolled 8 times */
352  __asm__ volatile (
353  "1: \n\t"
354  "sw $0, 0(%[p_saved_ltp]) \n\t"
355  "sw $0, 4(%[p_saved_ltp]) \n\t"
356  "sw $0, 8(%[p_saved_ltp]) \n\t"
357  "sw $0, 12(%[p_saved_ltp]) \n\t"
358  "sw $0, 16(%[p_saved_ltp]) \n\t"
359  "sw $0, 20(%[p_saved_ltp]) \n\t"
360  "sw $0, 24(%[p_saved_ltp]) \n\t"
361  "sw $0, 28(%[p_saved_ltp]) \n\t"
362  PTR_ADDIU "%[p_saved_ltp],%[p_saved_ltp], 32 \n\t"
363  "bne %[p_saved_ltp], %[loop_end1], 1b \n\t"
364 
365  : [p_saved_ltp]"+r"(p_saved_ltp)
366  : [loop_end1]"r"(loop_end1)
367  : "memory"
368  );
369 
370  ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
371  fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 960, swindow, 64);
372  } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
373  float *buff0 = saved;
374  float *buff1 = saved_ltp;
375  float *loop_end = saved + 448;
376 
377  /* loop unrolled 8 times */
378  __asm__ volatile (
379  ".set push \n\t"
380  ".set noreorder \n\t"
381  "1: \n\t"
382  "lw %[temp0], 0(%[src]) \n\t"
383  "lw %[temp1], 4(%[src]) \n\t"
384  "lw %[temp2], 8(%[src]) \n\t"
385  "lw %[temp3], 12(%[src]) \n\t"
386  "lw %[temp4], 16(%[src]) \n\t"
387  "lw %[temp5], 20(%[src]) \n\t"
388  "lw %[temp6], 24(%[src]) \n\t"
389  "lw %[temp7], 28(%[src]) \n\t"
390  PTR_ADDIU "%[src], %[src], 32 \n\t"
391  "sw %[temp0], 0(%[dst]) \n\t"
392  "sw %[temp1], 4(%[dst]) \n\t"
393  "sw %[temp2], 8(%[dst]) \n\t"
394  "sw %[temp3], 12(%[dst]) \n\t"
395  "sw %[temp4], 16(%[dst]) \n\t"
396  "sw %[temp5], 20(%[dst]) \n\t"
397  "sw %[temp6], 24(%[dst]) \n\t"
398  "sw %[temp7], 28(%[dst]) \n\t"
399  "sw $0, 2304(%[dst]) \n\t"
400  "sw $0, 2308(%[dst]) \n\t"
401  "sw $0, 2312(%[dst]) \n\t"
402  "sw $0, 2316(%[dst]) \n\t"
403  "sw $0, 2320(%[dst]) \n\t"
404  "sw $0, 2324(%[dst]) \n\t"
405  "sw $0, 2328(%[dst]) \n\t"
406  "sw $0, 2332(%[dst]) \n\t"
407  "bne %[src], %[loop_end], 1b \n\t"
408  PTR_ADDIU "%[dst], %[dst], 32 \n\t"
409  ".set pop \n\t"
410 
411  : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1),
412  [temp2]"=&r"(temp2), [temp3]"=&r"(temp3),
413  [temp4]"=&r"(temp4), [temp5]"=&r"(temp5),
414  [temp6]"=&r"(temp6), [temp7]"=&r"(temp7),
415  [src]"+r"(buff0), [dst]"+r"(buff1)
416  : [loop_end]"r"(loop_end)
417  : "memory"
418  );
419  ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
420  fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 960, swindow, 64);
421  } else { // LONG_STOP or ONLY_LONG
422  ac->fdsp->vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512);
423  fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 512, lwindow, 512);
424  }
425 
426  float_copy(sce->ltp_state, sce->ltp_state + 1024, 1024);
427  float_copy(sce->ltp_state + 1024, sce->ret, 1024);
428  float_copy(sce->ltp_state + 2048, saved_ltp, 1024);
429 }
430 #endif /* HAVE_MIPSFPU */
431 #endif /* HAVE_INLINE_ASM */
432 
434 {
435 #if HAVE_INLINE_ASM
436 #if HAVE_MIPSFPU
437  c->imdct_and_windowing = imdct_and_windowing_mips;
438  c->apply_ltp = apply_ltp_mips;
439  c->update_ltp = update_ltp_mips;
440 #endif /* HAVE_MIPSFPU */
441 #endif /* HAVE_INLINE_ASM */
442 }
AVFloatDSPContext * fdsp
Definition: aac.h:333
uint8_t use_kb_window[2]
If set, use Kaiser-Bessel window, otherwise use a sine window.
Definition: aac.h:177
INTFLOAT buf_mdct[1024]
Definition: aac.h:316
MIPS assembly defines from sys/asm.h but rewritten for use with C inline assembly (rather than from w...
else temp
Definition: vf_mcdeint.c:256
INTFLOAT * ret
PCM output.
Definition: aac.h:269
#define MAX_LTP_LONG_SFB
Definition: aac.h:51
Reference: libavcodec/aacdec.c.
static av_always_inline int lcg_random(unsigned previous_val)
linear congruential pseudorandom number generator
const uint16_t * swb_offset
table of offsets to the lowest spectral coefficient of a scalefactor band, sfb, for a particular wind...
Definition: aac.h:181
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
TemporalNoiseShaping tns
Definition: aac.h:250
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:262
#define src
Definition: vp8dsp.c:254
void(* vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, int len)
Overlap/add with window function.
Definition: float_dsp.h:119
FFTContext mdct_small
Definition: aac.h:324
float ff_aac_kbd_long_1024[1024]
Definition: aactab.c:40
void(* apply_ltp)(AACContext *ac, SingleChannelElement *sce)
Definition: aac.h:364
uint8_t max_sfb
number of scalefactor bands per group
Definition: aac.h:175
GLsizei count
Definition: opengl_enc.c:108
void(* apply_tns)(INTFLOAT coef[1024], TemporalNoiseShaping *tns, IndividualChannelStream *ics, int decode)
Definition: aac.h:365
enum WindowSequence window_sequence[2]
Definition: aac.h:176
INTFLOAT ltp_state[3072]
time signal for LTP
Definition: aac.h:265
#define FFMIN(a, b)
Definition: common.h:96
#define s(width, name)
Definition: cbs_vp9.c:257
AAC definitions and structures.
#define src1
Definition: h264pred.c:139
float ff_aac_kbd_short_128[128]
Definition: aactab.c:41
Long Term Prediction.
Definition: aac.h:163
IndividualChannelStream ics
Definition: aac.h:249
#define PTR_ADDIU
Definition: asmdefs.h:48
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31))))#define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac){}void ff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map){AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);return NULL;}return ac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;}int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){int use_generic=1;int len=in->nb_samples;int p;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define src0
Definition: h264pred.c:138
main AAC context
Definition: aac.h:293
LongTermPrediction ltp
Definition: aac.h:180
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:108
INTFLOAT coeffs[1024]
coefficients for IMDCT, maybe processed
Definition: aac.h:262
int16_t lag
Definition: aac.h:165
INTFLOAT saved[1536]
overlap
Definition: aac.h:263
Single Channel Element - used for both SCE and LFE elements.
Definition: aac.h:248
__asm__(".macro parse_r var r\n\t""\\var = -1\n\t"_IFC_REG(0) _IFC_REG(1) _IFC_REG(2) _IFC_REG(3) _IFC_REG(4) _IFC_REG(5) _IFC_REG(6) _IFC_REG(7) _IFC_REG(8) _IFC_REG(9) _IFC_REG(10) _IFC_REG(11) _IFC_REG(12) _IFC_REG(13) _IFC_REG(14) _IFC_REG(15) _IFC_REG(16) _IFC_REG(17) _IFC_REG(18) _IFC_REG(19) _IFC_REG(20) _IFC_REG(21) _IFC_REG(22) _IFC_REG(23) _IFC_REG(24) _IFC_REG(25) _IFC_REG(26) _IFC_REG(27) _IFC_REG(28) _IFC_REG(29) _IFC_REG(30) _IFC_REG(31)".iflt \\var\n\t"".error \"Unable to parse register name \\r\"\n\t"".endif\n\t"".endm")
Individual Channel Stream.
Definition: aac.h:174
INTFLOAT coef
Definition: aac.h:167
void(* update_ltp)(AACContext *ac, SingleChannelElement *sce)
Definition: aac.h:369
void(* windowing_and_mdct_ltp)(AACContext *ac, INTFLOAT *out, INTFLOAT *in, IndividualChannelStream *ics)
Definition: aac.h:367
FILE * out
Definition: movenc.c:54
FFTContext mdct
Definition: aac.h:323
#define av_always_inline
Definition: attributes.h:45
void(* imdct_and_windowing)(AACContext *ac, SingleChannelElement *sce)
Definition: aac.h:363
int8_t used[MAX_LTP_LONG_SFB]
Definition: aac.h:168
void ff_aacdec_init_mips(AACContext *c)
Definition: aacdec_mips.c:433
AAC data declarations.
for(j=16;j >0;--j)
int i
Definition: input.c:407
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:154