FFmpeg
aacps.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 Parametric Stereo decoding functions
3  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  *
21  * Note: Rounding-to-nearest used unless otherwise stated
22  *
23  */
24 
25 #include <stdint.h>
26 #include "libavutil/common.h"
27 #include "libavutil/mathematics.h"
28 #include "libavutil/mem_internal.h"
29 #include "aacps.h"
30 #if USE_FIXED
31 #include "aacps_fixed_tablegen.h"
32 #else
33 #include "libavutil/internal.h"
34 #include "aacps_tablegen.h"
35 #endif /* USE_FIXED */
36 
37 static const INTFLOAT g1_Q2[] = {
38  Q31(0.0f), Q31(0.01899487526049f), Q31(0.0f), Q31(-0.07293139167538f),
39  Q31(0.0f), Q31(0.30596630545168f), Q31(0.5f)
40 };
41 
42 static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
43 {
44  int i;
45  for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
46  opd_hist[i] = 0;
47  ipd_hist[i] = 0;
48  }
49 }
50 
51 /** Split one subband into 2 subsubbands with a symmetric real filter.
52  * The filter must have its non-center even coefficients equal to zero. */
53 static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
54  const INTFLOAT filter[7], int len, int reverse)
55 {
56  int i, j;
57  for (i = 0; i < len; i++, in++) {
58  INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase
59  INT64FLOAT re_op = 0.0f; //real out of phase
60  INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase
61  INT64FLOAT im_op = 0.0f; //imag out of phase
62  for (j = 0; j < 6; j += 2) {
63  re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
64  im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
65  }
66 
67 #if USE_FIXED
68  re_op = (re_op + 0x40000000) >> 31;
69  im_op = (im_op + 0x40000000) >> 31;
70 #endif /* USE_FIXED */
71 
72  out[ reverse][i][0] = (INTFLOAT)(re_in + re_op);
73  out[ reverse][i][1] = (INTFLOAT)(im_in + im_op);
74  out[!reverse][i][0] = (INTFLOAT)(re_in - re_op);
75  out[!reverse][i][1] = (INTFLOAT)(im_in - im_op);
76  }
77 }
78 
79 /** Split one subband into 6 subsubbands with a complex filter */
80 static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
81  TABLE_CONST INTFLOAT (*filter)[8][2], int len)
82 {
83  int i;
84  int N = 8;
85  LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]);
86 
87  for (i = 0; i < len; i++, in++) {
88  dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N);
89  out[0][i][0] = temp[6][0];
90  out[0][i][1] = temp[6][1];
91  out[1][i][0] = temp[7][0];
92  out[1][i][1] = temp[7][1];
93  out[2][i][0] = temp[0][0];
94  out[2][i][1] = temp[0][1];
95  out[3][i][0] = temp[1][0];
96  out[3][i][1] = temp[1][1];
97  out[4][i][0] = temp[2][0] + temp[5][0];
98  out[4][i][1] = temp[2][1] + temp[5][1];
99  out[5][i][0] = temp[3][0] + temp[4][0];
100  out[5][i][1] = temp[3][1] + temp[4][1];
101  }
102 }
103 
104 static void hybrid4_8_12_cx(PSDSPContext *dsp,
105  INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
106  TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len)
107 {
108  int i;
109 
110  for (i = 0; i < len; i++, in++) {
111  dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N);
112  }
113 }
114 
115 static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2],
116  INTFLOAT in[5][44][2], INTFLOAT L[2][38][64],
117  int is34, int len)
118 {
119  int i, j;
120  for (i = 0; i < 5; i++) {
121  for (j = 0; j < 38; j++) {
122  in[i][j+6][0] = L[0][j][i];
123  in[i][j+6][1] = L[1][j][i];
124  }
125  }
126  if (is34) {
127  hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len);
128  hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len);
129  hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len);
130  hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len);
131  hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len);
132  dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
133  } else {
134  hybrid6_cx(dsp, in[0], out, f20_0_8, len);
135  hybrid2_re(in[1], out+6, g1_Q2, len, 1);
136  hybrid2_re(in[2], out+8, g1_Q2, len, 0);
137  dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
138  }
139  //update in_buf
140  for (i = 0; i < 5; i++) {
141  memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
142  }
143 }
144 
145 static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64],
146  INTFLOAT in[91][32][2], int is34, int len)
147 {
148  int i, n;
149  if (is34) {
150  for (n = 0; n < len; n++) {
151  memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
152  memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
153  for (i = 0; i < 12; i++) {
154  out[0][n][0] += (UINTFLOAT)in[ i][n][0];
155  out[1][n][0] += (UINTFLOAT)in[ i][n][1];
156  }
157  for (i = 0; i < 8; i++) {
158  out[0][n][1] += (UINTFLOAT)in[12+i][n][0];
159  out[1][n][1] += (UINTFLOAT)in[12+i][n][1];
160  }
161  for (i = 0; i < 4; i++) {
162  out[0][n][2] += (UINTFLOAT)in[20+i][n][0];
163  out[1][n][2] += (UINTFLOAT)in[20+i][n][1];
164  out[0][n][3] += (UINTFLOAT)in[24+i][n][0];
165  out[1][n][3] += (UINTFLOAT)in[24+i][n][1];
166  out[0][n][4] += (UINTFLOAT)in[28+i][n][0];
167  out[1][n][4] += (UINTFLOAT)in[28+i][n][1];
168  }
169  }
170  dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
171  } else {
172  for (n = 0; n < len; n++) {
173  out[0][n][0] = (UINTFLOAT)in[0][n][0] + in[1][n][0] + in[2][n][0] +
174  (UINTFLOAT)in[3][n][0] + in[4][n][0] + in[5][n][0];
175  out[1][n][0] = (UINTFLOAT)in[0][n][1] + in[1][n][1] + in[2][n][1] +
176  (UINTFLOAT)in[3][n][1] + in[4][n][1] + in[5][n][1];
177  out[0][n][1] = (UINTFLOAT)in[6][n][0] + in[7][n][0];
178  out[1][n][1] = (UINTFLOAT)in[6][n][1] + in[7][n][1];
179  out[0][n][2] = (UINTFLOAT)in[8][n][0] + in[9][n][0];
180  out[1][n][2] = (UINTFLOAT)in[8][n][1] + in[9][n][1];
181  }
182  dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
183  }
184 }
185 
186 /// All-pass filter decay slope
187 #define DECAY_SLOPE Q30(0.05f)
188 /// Number of frequency bands that can be addressed by the parameter index, b(k)
189 static const int NR_PAR_BANDS[] = { 20, 34 };
190 static const int NR_IPDOPD_BANDS[] = { 11, 17 };
191 /// Number of frequency bands that can be addressed by the sub subband index, k
192 static const int NR_BANDS[] = { 71, 91 };
193 /// Start frequency band for the all-pass filter decay slope
194 static const int DECAY_CUTOFF[] = { 10, 32 };
195 /// Number of all-pass filer bands
196 static const int NR_ALLPASS_BANDS[] = { 30, 50 };
197 /// First stereo band using the short one sample delay
198 static const int SHORT_DELAY_BAND[] = { 42, 62 };
199 
200 /** Table 8.46 */
201 static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
202 {
203  int b;
204  if (full)
205  b = 9;
206  else {
207  b = 4;
208  par_mapped[10] = 0;
209  }
210  for (; b >= 0; b--) {
211  par_mapped[2*b+1] = par_mapped[2*b] = par[b];
212  }
213 }
214 
215 static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
216 {
217  par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
218  par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
219  par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
220  par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
221  par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
222  par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
223  par_mapped[ 6] = par[10];
224  par_mapped[ 7] = par[11];
225  par_mapped[ 8] = ( par[12] + par[13]) / 2;
226  par_mapped[ 9] = ( par[14] + par[15]) / 2;
227  par_mapped[10] = par[16];
228  if (full) {
229  par_mapped[11] = par[17];
230  par_mapped[12] = par[18];
231  par_mapped[13] = par[19];
232  par_mapped[14] = ( par[20] + par[21]) / 2;
233  par_mapped[15] = ( par[22] + par[23]) / 2;
234  par_mapped[16] = ( par[24] + par[25]) / 2;
235  par_mapped[17] = ( par[26] + par[27]) / 2;
236  par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
237  par_mapped[19] = ( par[32] + par[33]) / 2;
238  }
239 }
240 
242 {
243 #if USE_FIXED
244  par[ 0] = (int)(((int64_t)(par[ 0] + (unsigned)(par[ 1]>>1)) * 1431655765 + \
245  0x40000000) >> 31);
246  par[ 1] = (int)(((int64_t)((par[ 1]>>1) + (unsigned)par[ 2]) * 1431655765 + \
247  0x40000000) >> 31);
248  par[ 2] = (int)(((int64_t)(par[ 3] + (unsigned)(par[ 4]>>1)) * 1431655765 + \
249  0x40000000) >> 31);
250  par[ 3] = (int)(((int64_t)((par[ 4]>>1) + (unsigned)par[ 5]) * 1431655765 + \
251  0x40000000) >> 31);
252 #else
253  par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
254  par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
255  par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
256  par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
257 #endif /* USE_FIXED */
258  par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]);
259  par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]);
260  par[ 6] = par[10];
261  par[ 7] = par[11];
262  par[ 8] = AAC_HALF_SUM(par[12], par[13]);
263  par[ 9] = AAC_HALF_SUM(par[14], par[15]);
264  par[10] = par[16];
265  par[11] = par[17];
266  par[12] = par[18];
267  par[13] = par[19];
268  par[14] = AAC_HALF_SUM(par[20], par[21]);
269  par[15] = AAC_HALF_SUM(par[22], par[23]);
270  par[16] = AAC_HALF_SUM(par[24], par[25]);
271  par[17] = AAC_HALF_SUM(par[26], par[27]);
272 #if USE_FIXED
273  par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2));
274 #else
275  par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
276 #endif /* USE_FIXED */
277  par[19] = AAC_HALF_SUM(par[32], par[33]);
278 }
279 
280 static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
281 {
282  if (full) {
283  par_mapped[33] = par[9];
284  par_mapped[32] = par[9];
285  par_mapped[31] = par[9];
286  par_mapped[30] = par[9];
287  par_mapped[29] = par[9];
288  par_mapped[28] = par[9];
289  par_mapped[27] = par[8];
290  par_mapped[26] = par[8];
291  par_mapped[25] = par[8];
292  par_mapped[24] = par[8];
293  par_mapped[23] = par[7];
294  par_mapped[22] = par[7];
295  par_mapped[21] = par[7];
296  par_mapped[20] = par[7];
297  par_mapped[19] = par[6];
298  par_mapped[18] = par[6];
299  par_mapped[17] = par[5];
300  par_mapped[16] = par[5];
301  } else {
302  par_mapped[16] = 0;
303  }
304  par_mapped[15] = par[4];
305  par_mapped[14] = par[4];
306  par_mapped[13] = par[4];
307  par_mapped[12] = par[4];
308  par_mapped[11] = par[3];
309  par_mapped[10] = par[3];
310  par_mapped[ 9] = par[2];
311  par_mapped[ 8] = par[2];
312  par_mapped[ 7] = par[2];
313  par_mapped[ 6] = par[2];
314  par_mapped[ 5] = par[1];
315  par_mapped[ 4] = par[1];
316  par_mapped[ 3] = par[1];
317  par_mapped[ 2] = par[0];
318  par_mapped[ 1] = par[0];
319  par_mapped[ 0] = par[0];
320 }
321 
322 static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
323 {
324  if (full) {
325  par_mapped[33] = par[19];
326  par_mapped[32] = par[19];
327  par_mapped[31] = par[18];
328  par_mapped[30] = par[18];
329  par_mapped[29] = par[18];
330  par_mapped[28] = par[18];
331  par_mapped[27] = par[17];
332  par_mapped[26] = par[17];
333  par_mapped[25] = par[16];
334  par_mapped[24] = par[16];
335  par_mapped[23] = par[15];
336  par_mapped[22] = par[15];
337  par_mapped[21] = par[14];
338  par_mapped[20] = par[14];
339  par_mapped[19] = par[13];
340  par_mapped[18] = par[12];
341  par_mapped[17] = par[11];
342  }
343  par_mapped[16] = par[10];
344  par_mapped[15] = par[ 9];
345  par_mapped[14] = par[ 9];
346  par_mapped[13] = par[ 8];
347  par_mapped[12] = par[ 8];
348  par_mapped[11] = par[ 7];
349  par_mapped[10] = par[ 6];
350  par_mapped[ 9] = par[ 5];
351  par_mapped[ 8] = par[ 5];
352  par_mapped[ 7] = par[ 4];
353  par_mapped[ 6] = par[ 4];
354  par_mapped[ 5] = par[ 3];
355  par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
356  par_mapped[ 3] = par[ 2];
357  par_mapped[ 2] = par[ 1];
358  par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
359  par_mapped[ 0] = par[ 0];
360 }
361 
363 {
364  par[33] = par[19];
365  par[32] = par[19];
366  par[31] = par[18];
367  par[30] = par[18];
368  par[29] = par[18];
369  par[28] = par[18];
370  par[27] = par[17];
371  par[26] = par[17];
372  par[25] = par[16];
373  par[24] = par[16];
374  par[23] = par[15];
375  par[22] = par[15];
376  par[21] = par[14];
377  par[20] = par[14];
378  par[19] = par[13];
379  par[18] = par[12];
380  par[17] = par[11];
381  par[16] = par[10];
382  par[15] = par[ 9];
383  par[14] = par[ 9];
384  par[13] = par[ 8];
385  par[12] = par[ 8];
386  par[11] = par[ 7];
387  par[10] = par[ 6];
388  par[ 9] = par[ 5];
389  par[ 8] = par[ 5];
390  par[ 7] = par[ 4];
391  par[ 6] = par[ 4];
392  par[ 5] = par[ 3];
393  par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]);
394  par[ 3] = par[ 2];
395  par[ 2] = par[ 1];
396  par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]);
397 }
398 
399 static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34)
400 {
402  LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
403  INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg;
404  INTFLOAT *power_smooth = ps->power_smooth;
405  INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
406  INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
408 #if !USE_FIXED
409  const float transient_impact = 1.5f;
410  const float a_smooth = 0.25f; ///< Smoothing coefficient
411 #endif /* USE_FIXED */
412  const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20;
413  int i, k, m, n;
414  int n0 = 0, nL = 32;
415  const INTFLOAT peak_decay_factor = Q31(0.76592833836465f);
416 
417  memset(power, 0, 34 * sizeof(*power));
418 
419  if (is34 != ps->common.is34bands_old) {
420  memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
421  memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
422  memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
423  memset(ps->delay, 0, sizeof(ps->delay));
424  memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
425  }
426 
427  for (k = 0; k < NR_BANDS[is34]; k++) {
428  int i = k_to_i[k];
429  ps->dsp.add_squares(power[i], s[k], nL - n0);
430  }
431 
432  //Transient detection
433 #if USE_FIXED
434  for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
435  for (n = n0; n < nL; n++) {
436  int decayed_peak;
437  decayed_peak = (int)(((int64_t)peak_decay_factor * \
438  peak_decay_nrg[i] + 0x40000000) >> 31);
439  peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
440  power_smooth[i] += (power[i][n] + 2LL - power_smooth[i]) >> 2;
441  peak_decay_diff_smooth[i] += (peak_decay_nrg[i] + 2LL - power[i][n] - \
442  peak_decay_diff_smooth[i]) >> 2;
443 
444  if (peak_decay_diff_smooth[i]) {
445  transient_gain[i][n] = FFMIN(power_smooth[i]*43691LL / peak_decay_diff_smooth[i], 1<<16);
446  } else
447  transient_gain[i][n] = 1 << 16;
448  }
449  }
450 #else
451  for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
452  for (n = n0; n < nL; n++) {
453  float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
454  float denom;
455  peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
456  power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
457  peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
458  denom = transient_impact * peak_decay_diff_smooth[i];
459  transient_gain[i][n] = (denom > power_smooth[i]) ?
460  power_smooth[i] / denom : 1.0f;
461  }
462  }
463 
464 #endif /* USE_FIXED */
465  //Decorrelation and transient reduction
466  // PS_AP_LINKS - 1
467  // -----
468  // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
469  //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
470  // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
471  // m = 0
472  //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
473  for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
474  int b = k_to_i[k];
475 #if USE_FIXED
476  int g_decay_slope;
477 
478  if (k - DECAY_CUTOFF[is34] <= 0) {
479  g_decay_slope = 1 << 30;
480  }
481  else if (k - DECAY_CUTOFF[is34] >= 20) {
482  g_decay_slope = 0;
483  }
484  else {
485  g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
486  }
487 #else
488  float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
489  g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
490 #endif /* USE_FIXED */
491  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
492  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
493  for (m = 0; m < PS_AP_LINKS; m++) {
494  memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
495  }
496  ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
497  phi_fract[is34][k],
498  (const INTFLOAT (*)[2]) Q_fract_allpass[is34][k],
499  transient_gain[b], g_decay_slope, nL - n0);
500  }
501  for (; k < SHORT_DELAY_BAND[is34]; k++) {
502  int i = k_to_i[k];
503  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
504  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
505  //H = delay 14
506  ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
507  transient_gain[i], nL - n0);
508  }
509  for (; k < NR_BANDS[is34]; k++) {
510  int i = k_to_i[k];
511  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
512  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
513  //H = delay 1
514  ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
515  transient_gain[i], nL - n0);
516  }
517 }
518 
519 static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
520  int8_t (*par)[PS_MAX_NR_IIDICC],
521  int num_par, int num_env, int full)
522 {
523  int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
524  int e;
525  if (num_par == 20 || num_par == 11) {
526  for (e = 0; e < num_env; e++) {
527  map_idx_20_to_34(par_mapped[e], par[e], full);
528  }
529  } else if (num_par == 10 || num_par == 5) {
530  for (e = 0; e < num_env; e++) {
531  map_idx_10_to_34(par_mapped[e], par[e], full);
532  }
533  } else {
534  *p_par_mapped = par;
535  }
536 }
537 
538 static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
539  int8_t (*par)[PS_MAX_NR_IIDICC],
540  int num_par, int num_env, int full)
541 {
542  int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
543  int e;
544  if (num_par == 34 || num_par == 17) {
545  for (e = 0; e < num_env; e++) {
546  map_idx_34_to_20(par_mapped[e], par[e], full);
547  }
548  } else if (num_par == 10 || num_par == 5) {
549  for (e = 0; e < num_env; e++) {
550  map_idx_10_to_20(par_mapped[e], par[e], full);
551  }
552  } else {
553  *p_par_mapped = par;
554  }
555 }
556 
557 static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34)
558 {
559  int e, b, k;
560 
561  PSCommonContext *const ps2 = &ps->common;
562  INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
563  INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
564  INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
565  INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
566  int8_t *opd_hist = ps->opd_hist;
567  int8_t *ipd_hist = ps->ipd_hist;
568  int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
569  int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
570  int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
571  int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
572  int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
573  int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
574  int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
575  int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
576  const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20;
577  TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps2->icc_mode < 3) ? HA : HB;
578 
579  //Remapping
580  if (ps2->num_env_old) {
581  memcpy(H11[0][0], H11[0][ps2->num_env_old], sizeof(H11[0][0]));
582  memcpy(H11[1][0], H11[1][ps2->num_env_old], sizeof(H11[1][0]));
583  memcpy(H12[0][0], H12[0][ps2->num_env_old], sizeof(H12[0][0]));
584  memcpy(H12[1][0], H12[1][ps2->num_env_old], sizeof(H12[1][0]));
585  memcpy(H21[0][0], H21[0][ps2->num_env_old], sizeof(H21[0][0]));
586  memcpy(H21[1][0], H21[1][ps2->num_env_old], sizeof(H21[1][0]));
587  memcpy(H22[0][0], H22[0][ps2->num_env_old], sizeof(H22[0][0]));
588  memcpy(H22[1][0], H22[1][ps2->num_env_old], sizeof(H22[1][0]));
589  }
590 
591  if (is34) {
592  remap34(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1);
593  remap34(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1);
594  if (ps2->enable_ipdopd) {
595  remap34(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
596  remap34(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
597  }
598  if (!ps2->is34bands_old) {
599  map_val_20_to_34(H11[0][0]);
600  map_val_20_to_34(H11[1][0]);
601  map_val_20_to_34(H12[0][0]);
602  map_val_20_to_34(H12[1][0]);
603  map_val_20_to_34(H21[0][0]);
604  map_val_20_to_34(H21[1][0]);
605  map_val_20_to_34(H22[0][0]);
606  map_val_20_to_34(H22[1][0]);
607  ipdopd_reset(ipd_hist, opd_hist);
608  }
609  } else {
610  remap20(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1);
611  remap20(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1);
612  if (ps2->enable_ipdopd) {
613  remap20(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
614  remap20(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
615  }
616  if (ps2->is34bands_old) {
617  map_val_34_to_20(H11[0][0]);
618  map_val_34_to_20(H11[1][0]);
619  map_val_34_to_20(H12[0][0]);
620  map_val_34_to_20(H12[1][0]);
621  map_val_34_to_20(H21[0][0]);
622  map_val_34_to_20(H21[1][0]);
623  map_val_34_to_20(H22[0][0]);
624  map_val_34_to_20(H22[1][0]);
625  ipdopd_reset(ipd_hist, opd_hist);
626  }
627  }
628 
629  //Mixing
630  for (e = 0; e < ps2->num_env; e++) {
631  for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
632  INTFLOAT h11, h12, h21, h22;
633  h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][0];
634  h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][1];
635  h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][2];
636  h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][3];
637 
638  if (!PS_BASELINE && ps2->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) {
639  //The spec say says to only run this smoother when enable_ipdopd
640  //is set but the reference decoder appears to run it constantly
641  INTFLOAT h11i, h12i, h21i, h22i;
642  INTFLOAT ipd_adj_re, ipd_adj_im;
643  int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
644  int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
645  INTFLOAT opd_re = pd_re_smooth[opd_idx];
646  INTFLOAT opd_im = pd_im_smooth[opd_idx];
647  INTFLOAT ipd_re = pd_re_smooth[ipd_idx];
648  INTFLOAT ipd_im = pd_im_smooth[ipd_idx];
649  opd_hist[b] = opd_idx & 0x3F;
650  ipd_hist[b] = ipd_idx & 0x3F;
651 
652  ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im);
653  ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im);
654  h11i = AAC_MUL30(h11, opd_im);
655  h11 = AAC_MUL30(h11, opd_re);
656  h12i = AAC_MUL30(h12, ipd_adj_im);
657  h12 = AAC_MUL30(h12, ipd_adj_re);
658  h21i = AAC_MUL30(h21, opd_im);
659  h21 = AAC_MUL30(h21, opd_re);
660  h22i = AAC_MUL30(h22, ipd_adj_im);
661  h22 = AAC_MUL30(h22, ipd_adj_re);
662  H11[1][e+1][b] = h11i;
663  H12[1][e+1][b] = h12i;
664  H21[1][e+1][b] = h21i;
665  H22[1][e+1][b] = h22i;
666  }
667  H11[0][e+1][b] = h11;
668  H12[0][e+1][b] = h12;
669  H21[0][e+1][b] = h21;
670  H22[0][e+1][b] = h22;
671  }
672  for (k = 0; k < NR_BANDS[is34]; k++) {
673  LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]);
674  LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]);
675  int start = ps2->border_position[e];
676  int stop = ps2->border_position[e+1];
677  INTFLOAT width = Q30(1.f) / ((stop - start) ? (stop - start) : 1);
678 #if USE_FIXED
679  width = FFMIN(2U*width, INT_MAX);
680 #endif
681  b = k_to_i[k];
682  h[0][0] = H11[0][e][b];
683  h[0][1] = H12[0][e][b];
684  h[0][2] = H21[0][e][b];
685  h[0][3] = H22[0][e][b];
686  if (!PS_BASELINE && ps2->enable_ipdopd) {
687  //Is this necessary? ps_04_new seems unchanged
688  if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
689  h[1][0] = -H11[1][e][b];
690  h[1][1] = -H12[1][e][b];
691  h[1][2] = -H21[1][e][b];
692  h[1][3] = -H22[1][e][b];
693  } else {
694  h[1][0] = H11[1][e][b];
695  h[1][1] = H12[1][e][b];
696  h[1][2] = H21[1][e][b];
697  h[1][3] = H22[1][e][b];
698  }
699  }
700  //Interpolation
701  h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width);
702  h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width);
703  h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width);
704  h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width);
705  if (!PS_BASELINE && ps2->enable_ipdopd) {
706  h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width);
707  h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width);
708  h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width);
709  h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width);
710  }
711  if (stop - start)
713  l[k] + 1 + start, r[k] + 1 + start,
714  h, h_step, stop - start);
715  }
716  }
717 }
718 
719 int AAC_RENAME(ff_ps_apply)(PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
720 {
721  INTFLOAT (*Lbuf)[32][2] = ps->Lbuf;
722  INTFLOAT (*Rbuf)[32][2] = ps->Rbuf;
723  const int len = 32;
724  int is34 = ps->common.is34bands;
725 
726  top += NR_BANDS[is34] - 64;
727  memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
728  if (top < NR_ALLPASS_BANDS[is34])
729  memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
730 
731  hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
732  decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34);
733  stereo_processing(ps, Lbuf, Rbuf, is34);
734  hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
735  hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
736 
737  return 0;
738 }
739 
741  ps_tableinit();
742 }
TABLE_CONST
#define TABLE_CONST
Definition: aacps_fixed_tablegen.h:51
map_idx_34_to_20
static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
Definition: aacps.c:215
AAC_MADD30
#define AAC_MADD30(x, y, a, b)
Definition: aac_defines.h:118
INTFLOAT
#define INTFLOAT
Definition: dct32_template.c:44
r
const char * r
Definition: vf_curves.c:127
PS_MAX_NR_IIDICC
#define PS_MAX_NR_IIDICC
Definition: aacps.h:33
mem_internal.h
f34_2_4
static int f34_2_4[4][8][2]
Definition: aacps_fixed_tablegen.h:59
out
FILE * out
Definition: movenc.c:55
pd_im_smooth
static int pd_im_smooth[8 *8 *8]
Definition: aacps_fixed_tablegen.h:53
PS_MAX_NR_IPDOPD
#define PS_MAX_NR_IPDOPD
Definition: aacps.h:34
int64_t
long long int64_t
Definition: coverity.c:34
ff_ps_apply
int AAC_RENAME() ff_ps_apply(PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
Definition: aacps.c:719
PSContext::peak_decay_diff_smooth
INTFLOAT peak_decay_diff_smooth[34]
Definition: aacps.h:79
Q_fract_allpass
static TABLE_CONST int Q_fract_allpass[2][50][3][2]
Definition: aacps_fixed_tablegen.h:60
PSCommonContext
Definition: aacps.h:47
b
#define b
Definition: input.c:41
R
#define R
Definition: huffyuv.h:44
aacps_fixed_tablegen.h
PSDSPContext::decorrelate
void(* decorrelate)(INTFLOAT(*out)[2], INTFLOAT(*delay)[2], INTFLOAT(*ap_delay)[PS_QMF_TIME_SLOTS+PS_MAX_AP_DELAY][2], const INTFLOAT phi_fract[2], const INTFLOAT(*Q_fract)[2], const INTFLOAT *transient_gain, INTFLOAT g_decay_slope, int len)
Definition: aacpsdsp.h:43
f20_0_8
static int f20_0_8[8][8][2]
Definition: aacps_fixed_tablegen.h:56
ff_ps_init
av_cold void AAC_RENAME() ff_ps_init(void)
Definition: aacps.c:740
filter
void(* filter)(uint8_t *src, int stride, int qscale)
Definition: h263dsp.c:29
NR_PAR_BANDS
static const int NR_PAR_BANDS[]
Number of frequency bands that can be addressed by the parameter index, b(k)
Definition: aacps.c:189
ff_k_to_i_34
const int8_t ff_k_to_i_34[]
Table 8.49.
Definition: aacpsdata.c:107
PS_QMF_TIME_SLOTS
#define PS_QMF_TIME_SLOTS
Definition: aacps.h:37
f34_0_12
static int f34_0_12[12][8][2]
Definition: aacps_fixed_tablegen.h:57
mathematics.h
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
PSCommonContext::border_position
int border_position[PS_MAX_NUM_ENV+1]
Definition: aacps.h:61
PSContext::ipd_hist
int8_t ipd_hist[PS_MAX_NR_IIDICC]
Definition: aacps.h:87
PSCommonContext::opd_par
int8_t opd_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Overall Phase Difference Parameters.
Definition: aacps.h:66
aacps.h
pd_re_smooth
static int pd_re_smooth[8 *8 *8]
Definition: aacps_fixed_tablegen.h:52
DECAY_SLOPE
#define DECAY_SLOPE
All-pass filter decay slope.
Definition: aacps.c:187
PSDSPContext::add_squares
void(* add_squares)(INTFLOAT *dst, const INTFLOAT(*src)[2], int n)
Definition: aacpsdsp.h:33
PSContext::H12
INTFLOAT H12[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:81
hybrid_synthesis
static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64], INTFLOAT in[91][32][2], int is34, int len)
Definition: aacps.c:145
PSCommonContext::num_env_old
int num_env_old
Definition: aacps.h:58
map_idx_10_to_20
static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
Table 8.46.
Definition: aacps.c:201
NR_BANDS
static const int NR_BANDS[]
Number of frequency bands that can be addressed by the sub subband index, k.
Definition: aacps.c:192
PSContext::common
PSCommonContext common
Definition: aacps.h:72
av_cold
#define av_cold
Definition: attributes.h:90
AAC_MUL31
#define AAC_MUL31(x, y)
Definition: aac_defines.h:116
PSContext::dsp
PSDSPContext dsp
Definition: aacps.h:88
NR_ALLPASS_BANDS
static const int NR_ALLPASS_BANDS[]
Number of all-pass filer bands.
Definition: aacps.c:196
PSCommonContext::num_env
int num_env
Definition: aacps.h:59
aacps_tablegen.h
s
#define s(width, name)
Definition: cbs_vp9.c:198
PS_AP_LINKS
#define PS_AP_LINKS
Definition: aacps.h:39
PSCommonContext::enable_ipdopd
int enable_ipdopd
Definition: aacps.h:60
AAC_MUL30
#define AAC_MUL30(x, y)
Definition: aac_defines.h:115
hybrid2_re
static void hybrid2_re(INTFLOAT(*in)[2], INTFLOAT(*out)[32][2], const INTFLOAT filter[7], int len, int reverse)
Split one subband into 2 subsubbands with a symmetric real filter.
Definition: aacps.c:53
AAC_HALF_SUM
#define AAC_HALF_SUM(x, y)
Definition: aac_defines.h:125
PSContext::delay
INTFLOAT delay[PS_MAX_SSB][PS_QMF_TIME_SLOTS+PS_MAX_DELAY][2]
Definition: aacps.h:75
hybrid6_cx
static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT(*in)[2], INTFLOAT(*out)[32][2], TABLE_CONST INTFLOAT(*filter)[8][2], int len)
Split one subband into 6 subsubbands with a complex filter.
Definition: aacps.c:80
LOCAL_ALIGNED_16
#define LOCAL_ALIGNED_16(t, v,...)
Definition: mem_internal.h:124
PSCommonContext::nr_ipdopd_par
int nr_ipdopd_par
Definition: aacps.h:52
AAC_MSUB30
#define AAC_MSUB30(x, y, a, b)
Definition: aac_defines.h:121
map_val_20_to_34
static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC])
Definition: aacps.c:362
SHORT_DELAY_BAND
static const int SHORT_DELAY_BAND[]
First stereo band using the short one sample delay.
Definition: aacps.c:198
map_val_34_to_20
static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC])
Definition: aacps.c:241
HA
static int HA[46][8][4]
Definition: aacps_fixed_tablegen.h:54
PSContext::ap_delay
INTFLOAT ap_delay[PS_MAX_AP_BANDS][PS_AP_LINKS][PS_QMF_TIME_SLOTS+PS_MAX_AP_DELAY][2]
Definition: aacps.h:76
NR_IPDOPD_BANDS
static const int NR_IPDOPD_BANDS[]
Definition: aacps.c:190
map_idx_10_to_34
static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
Definition: aacps.c:280
PS_MAX_DELAY
#define PS_MAX_DELAY
Definition: aacps.h:38
PSContext::power_smooth
INTFLOAT power_smooth[34]
Definition: aacps.h:78
PSDSPContext::hybrid_synthesis_deint
void(* hybrid_synthesis_deint)(INTFLOAT out[2][38][64], INTFLOAT(*in)[32][2], int i, int len)
Definition: aacpsdsp.h:41
f34_1_8
static int f34_1_8[8][8][2]
Definition: aacps_fixed_tablegen.h:58
av_clipf
av_clipf
Definition: af_crystalizer.c:122
g1_Q2
static const INTFLOAT g1_Q2[]
Definition: aacps.c:37
PS_MAX_AP_DELAY
#define PS_MAX_AP_DELAY
Definition: aacps.h:40
PSDSPContext::mul_pair_single
void(* mul_pair_single)(INTFLOAT(*dst)[2], INTFLOAT(*src0)[2], INTFLOAT *src1, int n)
Definition: aacpsdsp.h:34
PSDSPContext::hybrid_analysis_ileave
void(* hybrid_analysis_ileave)(INTFLOAT(*out)[32][2], INTFLOAT L[2][38][64], int i, int len)
Definition: aacpsdsp.h:39
PSCommonContext::nr_icc_par
int nr_icc_par
Definition: aacps.h:55
HB
static int HB[46][8][4]
Definition: aacps_fixed_tablegen.h:55
f
f
Definition: af_crystalizer.c:122
map_idx_20_to_34
static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
Definition: aacps.c:322
DECAY_CUTOFF
static const int DECAY_CUTOFF[]
Start frequency band for the all-pass filter decay slope.
Definition: aacps.c:194
PSCommonContext::nr_iid_par
int nr_iid_par
Definition: aacps.h:51
ff_k_to_i_20
const int8_t ff_k_to_i_20[]
Table 8.48.
Definition: aacpsdata.c:100
INT64FLOAT
float INT64FLOAT
Definition: aac_defines.h:103
N
#define N
Definition: af_mcompand.c:54
PSContext::H22
INTFLOAT H22[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:83
AAC_MSUB31_V3
#define AAC_MSUB31_V3(x, y, z)
Definition: aac_defines.h:124
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
internal.h
PSContext
Definition: aacps.h:71
PSCommonContext::is34bands_old
int is34bands_old
Definition: aacps.h:68
common.h
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
PSContext::opd_hist
int8_t opd_hist[PS_MAX_NR_IIDICC]
Definition: aacps.h:86
AAC_RENAME
#define AAC_RENAME(x)
Definition: aac_defines.h:99
len
int len
Definition: vorbis_enc_data.h:426
UINTFLOAT
float UINTFLOAT
Definition: aac_defines.h:102
hybrid_analysis
static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2], INTFLOAT in[5][44][2], INTFLOAT L[2][38][64], int is34, int len)
Definition: aacps.c:115
PSCommonContext::ipd_par
int8_t ipd_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Inter-channel Phase Difference Parameters.
Definition: aacps.h:65
hybrid4_8_12_cx
static void hybrid4_8_12_cx(PSDSPContext *dsp, INTFLOAT(*in)[2], INTFLOAT(*out)[32][2], TABLE_CONST INTFLOAT(*filter)[8][2], int N, int len)
Definition: aacps.c:104
U
#define U(x)
Definition: vpx_arith.h:37
PSDSPContext::stereo_interpolate
void(* stereo_interpolate[2])(INTFLOAT(*l)[2], INTFLOAT(*r)[2], INTFLOAT h[2][4], INTFLOAT h_step[2][4], int len)
Definition: aacpsdsp.h:49
PS_MAX_NUM_ENV
#define PS_MAX_NUM_ENV
Definition: aacps.h:32
power
static float power(float r, float g, float b, float max)
Definition: preserve_color.h:45
phi_fract
static int phi_fract[2][50][2]
Definition: aacps_fixed_tablegen.h:61
PSDSPContext
Definition: aacpsdsp.h:32
ps_tableinit
static void ps_tableinit(void)
Definition: aacps_fixed_tablegen.h:140
temp
else temp
Definition: vf_mcdeint.c:263
L
#define L(x)
Definition: vpx_arith.h:36
Q31
#define Q31(x)
Definition: aac_defines.h:111
PSCommonContext::iid_par
int8_t iid_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Inter-channel Intensity Difference Parameters.
Definition: aacps.h:62
remap20
static void remap20(int8_t(**p_par_mapped)[PS_MAX_NR_IIDICC], int8_t(*par)[PS_MAX_NR_IIDICC], int num_par, int num_env, int full)
Definition: aacps.c:538
ipdopd_reset
static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
Definition: aacps.c:42
h
h
Definition: vp9dsp_template.c:2070
PSContext::H11
INTFLOAT H11[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:80
PSCommonContext::icc_mode
int icc_mode
Definition: aacps.h:54
PS_BASELINE
#define PS_BASELINE
Operate in Baseline PS mode.
Definition: aacps.h:41
width
#define width
Definition: dsp.h:85
PSDSPContext::hybrid_analysis
void(* hybrid_analysis)(INTFLOAT(*out)[2], INTFLOAT(*in)[2], const INTFLOAT(*filter)[8][2], ptrdiff_t stride, int n)
Definition: aacpsdsp.h:36
PSCommonContext::iid_quant
int iid_quant
Definition: aacps.h:50
stereo_processing
static void stereo_processing(PSContext *ps, INTFLOAT(*l)[32][2], INTFLOAT(*r)[32][2], int is34)
Definition: aacps.c:557
PSCommonContext::icc_par
int8_t icc_par[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]
Inter-Channel Coherence Parameters.
Definition: aacps.h:63
PSContext::peak_decay_nrg
INTFLOAT peak_decay_nrg[34]
Definition: aacps.h:77
INTFLOAT
float INTFLOAT
Definition: aac_defines.h:101
numQMFSlots
#define numQMFSlots
Definition: aacps.h:45
Q30
#define Q30(x)
Definition: aac_defines.h:110
remap34
static void remap34(int8_t(**p_par_mapped)[PS_MAX_NR_IIDICC], int8_t(*par)[PS_MAX_NR_IIDICC], int num_par, int num_env, int full)
Definition: aacps.c:519
decorrelation
static void decorrelation(PSContext *ps, INTFLOAT(*out)[32][2], const INTFLOAT(*s)[32][2], int is34)
Definition: aacps.c:399
PSContext::H21
INTFLOAT H21[2][PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC]
Definition: aacps.h:82