42 #define LANCZOS_RESOLUTION 256 77 const char *make, *
model, *lens_model;
95 #define OFFSET(x) offsetof(LensfunContext, x) 96 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM 109 {
"focal_length",
"focal length of video (zoom; constant for the duration of the use of this filter)",
OFFSET(focal_length),
AV_OPT_TYPE_FLOAT, {.dbl=18}, 0.0, DBL_MAX, FLAGS },
110 {
"aperture",
"aperture (constant for the duration of the use of this filter)",
OFFSET(aperture),
AV_OPT_TYPE_FLOAT, {.dbl=3.5}, 0.0, DBL_MAX, FLAGS },
111 {
"focus_distance",
"focus distance (constant for the duration of the use of this filter)",
OFFSET(focus_distance),
AV_OPT_TYPE_FLOAT, {.dbl=1000.0f}, 0.0, DBL_MAX, FLAGS },
112 {
"scale",
"scale factor applied after corrections (0.0 means automatic scaling)",
OFFSET(scale),
AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, DBL_MAX, FLAGS },
113 {
"target_geometry",
"target geometry of the lens correction (only when geometry correction is enabled)",
OFFSET(target_geometry),
AV_OPT_TYPE_INT, {.i64=LF_RECTILINEAR}, 0, INT_MAX,
FLAGS,
"lens_geometry" },
114 {
"rectilinear",
"rectilinear lens (default)", 0,
AV_OPT_TYPE_CONST, {.i64=LF_RECTILINEAR}, 0, 0,
FLAGS,
"lens_geometry" },
116 {
"panoramic",
"panoramic (cylindrical)", 0,
AV_OPT_TYPE_CONST, {.i64=LF_PANORAMIC}, 0, 0,
FLAGS,
"lens_geometry" },
117 {
"equirectangular",
"equirectangular", 0,
AV_OPT_TYPE_CONST, {.i64=LF_EQUIRECTANGULAR}, 0, 0,
FLAGS,
"lens_geometry" },
118 {
"fisheye_orthographic",
"orthographic fisheye", 0,
AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_ORTHOGRAPHIC}, 0, 0,
FLAGS,
"lens_geometry" },
119 {
"fisheye_stereographic",
"stereographic fisheye", 0,
AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_STEREOGRAPHIC}, 0, 0,
FLAGS,
"lens_geometry" },
120 {
"fisheye_equisolid",
"equisolid fisheye", 0,
AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_EQUISOLID}, 0, 0,
FLAGS,
"lens_geometry" },
121 {
"fisheye_thoby",
"fisheye as measured by thoby", 0,
AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_THOBY}, 0, 0,
FLAGS,
"lens_geometry" },
136 const lfCamera **cameras;
137 const lfLens **lenses;
140 if (lf_db_load(db) != LF_NO_ERROR) {
147 const lfCamera *
const *cameras = lf_db_get_cameras(db);
151 for (
int i = 0; cameras && cameras[
i];
i++)
156 const lfLens *
const *lenses = lf_db_get_lenses(db);
160 for (
int i = 0; lenses && lenses[
i];
i++)
166 lensfun->
lens = lf_lens_create();
167 lensfun->
camera = lf_camera_create();
169 cameras = lf_db_find_cameras(db, lensfun->
make, lensfun->
model);
170 if (cameras && *cameras) {
171 lf_camera_copy(lensfun->
camera, *cameras);
182 if (lenses && *lenses) {
183 lf_lens_copy(lensfun->
lens, *lenses);
209 }
else if (x > -2.0
f && x < 2.0
f) {
227 lensfun->
camera->CropFactor,
229 inlink->
h, LF_PF_U8, lensfun->
reverse);
233 lf_modifier_enable_distortion_correction(lensfun->
modifier);
235 lf_modifier_enable_scaling(lensfun->
modifier, lensfun->
scale);
238 lf_modifier_enable_tca_correction(lensfun->
modifier);
252 lf_modifier_apply_subpixel_geometry_distortion(lensfun->
modifier,
254 inlink->
w, inlink->
h,
258 lf_modifier_apply_subpixel_distortion(lensfun->
modifier,
260 inlink->
w, inlink->
h,
268 lf_modifier_apply_geometry_distortion(lensfun->
modifier,
270 inlink->
w, inlink->
h,
284 a = sqrtf((
float)index / LANCZOS_RESOLUTION);
296 const int slice_start = thread_data->
height * jobnr / nb_jobs;
299 lf_modifier_apply_color_modification(thread_data->
modifier,
304 slice_end - slice_start,
319 const int slice_start = thread_data->
height * jobnr / nb_jobs;
322 int x, y,
i, j, rgb_index;
323 float interpolated, new_x, new_y, d, norm;
324 int new_x_int, new_y_int;
325 for (y = slice_start; y <
slice_end; ++y)
326 for (x = 0; x < thread_data->
width; ++x)
327 for (rgb_index = 0; rgb_index < 3; ++rgb_index) {
332 new_x_int = thread_data->
distortion_coords[x * 2 * 3 + y * thread_data->
width * 2 * 3 + rgb_index * 2] + 0.5f;
333 new_y_int = thread_data->
distortion_coords[x * 2 * 3 + y * thread_data->
width * 2 * 3 + rgb_index * 2 + 1] + 0.5f;
334 if (new_x_int < 0 || new_x_int >= thread_data->
width || new_y_int < 0 || new_y_int >= thread_data->
height) {
346 if (new_x_int < 0 || new_x_int + 1 >= thread_data->
width || new_y_int < 0 || new_y_int + 1 >= thread_data->
height) {
350 thread_data->
data_in[ new_x_int * 3 + rgb_index + new_y_int * thread_data->
linesize_in] * (new_x_int + 1 - new_x) * (new_y_int + 1 - new_y)
351 + thread_data->
data_in[(new_x_int + 1) * 3 + rgb_index + new_y_int * thread_data->
linesize_in] * (new_x - new_x_int) * (new_y_int + 1 - new_y)
352 + thread_data->
data_in[ new_x_int * 3 + rgb_index + (new_y_int + 1) * thread_data->
linesize_in] * (new_x_int + 1 - new_x) * (new_y - new_y_int)
353 + thread_data->
data_in[(new_x_int + 1) * 3 + rgb_index + (new_y_int + 1) * thread_data->
linesize_in] * (new_x - new_x_int) * (new_y - new_y_int);
363 for (j = 0; j < 4; ++j)
364 for (i = 0; i < 4; ++
i) {
365 if (new_x_int + i - 2 < 0 || new_x_int + i - 2 >= thread_data->
width || new_y_int + j - 2 < 0 || new_y_int + j - 2 >= thread_data->
height)
367 d =
square(new_x - (new_x_int + i - 2)) *
square(new_y - (new_y_int + j - 2));
372 interpolated += thread_data->
data_in[(new_x_int + i - 2) * 3 + rgb_index + (new_y_int + j - 2) * thread_data->
linesize_in] * d;
377 interpolated /= norm;
378 thread_data->
data_out[x * 3 + rgb_index + y * thread_data->
linesize_out] = interpolated < 0.0f ? 0.0f : interpolated > 255.0f ? 255.0f : interpolated;
388 if (new_x_int < 0 || new_x_int >= thread_data->
width || new_y_int < 0 || new_y_int >= thread_data->
height) {
400 if (new_x_int < 0 || new_x_int + 1 >= thread_data->
width || new_y_int < 0 || new_y_int + 1 >= thread_data->
height) {
404 thread_data->
data_in[ new_x_int * 3 + rgb_index + new_y_int * thread_data->
linesize_in] * (new_x_int + 1 - new_x) * (new_y_int + 1 - new_y)
405 + thread_data->
data_in[(new_x_int + 1) * 3 + rgb_index + new_y_int * thread_data->
linesize_in] * (new_x - new_x_int) * (new_y_int + 1 - new_y)
406 + thread_data->
data_in[ new_x_int * 3 + rgb_index + (new_y_int + 1) * thread_data->
linesize_in] * (new_x_int + 1 - new_x) * (new_y - new_y_int)
407 + thread_data->
data_in[(new_x_int + 1) * 3 + rgb_index + (new_y_int + 1) * thread_data->
linesize_in] * (new_x - new_x_int) * (new_y - new_y_int);
417 for (j = 0; j < 4; ++j)
418 for (i = 0; i < 4; ++
i) {
419 if (new_x_int + i - 2 < 0 || new_x_int + i - 2 >= thread_data->
width || new_y_int + j - 2 < 0 || new_y_int + j - 2 >= thread_data->
height)
421 d =
square(new_x - (new_x_int + i - 2)) *
square(new_y - (new_y_int + j - 2));
426 interpolated += thread_data->
data_in[(new_x_int + i - 2) * 3 + rgb_index + (new_y_int + j - 2) * thread_data->
linesize_in] * d;
431 interpolated /= norm;
432 thread_data->
data_out[x * 3 + rgb_index + y * thread_data->
linesize_out] = interpolated < 0.0f ? 0.0f : interpolated > 255.0f ? 255.0f : interpolated;
460 .data_in = in->
data[0],
468 &vignetting_thread_data,
485 .data_in = in->
data[0],
486 .data_out = out->
data[0],
490 .mode = lensfun->
mode,
496 &distortion_correction_thread_data,
512 lf_camera_destroy(lensfun->
camera);
514 lf_lens_destroy(lensfun->
lens);
516 lf_modifier_destroy(lensfun->
modifier);
541 .description =
NULL_IF_CONFIG_SMALL(
"Apply correction to an image based on info derived from the lensfun database."),
548 .priv_class = &lensfun_class,
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
This structure describes decoded (raw) audio or video data.
Main libavfilter public API header.
packed RGB 8:8:8, 24bpp, RGBRGB...
int h
agreed upon image height
static const AVFilterPad lensfun_outputs[]
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
const char * name
Pad name.
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static float lanczos_kernel(float x)
static int query_formats(AVFilterContext *ctx)
Mode
Frame type (Table 1a in 3GPP TS 26.101)
const float * distortion_coords
static uint32_t reverse(uint32_t num, int bits)
A filter pad used for either input or output.
A link between two filters.
static int distortion_correction_filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static av_cold int init(AVFilterContext *ctx)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
void * priv
private data for use by the filter
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
simple assert() macros that are a bit more flexible than ISO C assert().
static av_cold void uninit(AVFilterContext *ctx)
static float square(float x)
static const AVOption lensfun_options[]
int w
agreed upon image width
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
static int config_props(AVFilterLink *inlink)
AVFILTER_DEFINE_CLASS(lensfun)
float * distortion_coords
static const AVFilterPad outputs[]
#define AV_LOG_INFO
Standard information.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
static int vignetting_filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31))))#define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac){}void ff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map){AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);return NULL;}return ac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;}int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){int use_generic=1;int len=in->nb_samples;int p;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
#define LANCZOS_RESOLUTION
const char * name
Filter name.
static const AVFilterPad lensfun_inputs[]
AVFilterLink ** outputs
array of pointers to output links
int av_frame_make_writable(AVFrame *frame)
Ensure that the frame data is writable, avoiding data copy if possible.
#define flags(name, subs,...)
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
const float * interpolation
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
avfilter_execute_func * execute
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
AVFilterContext * dst
dest filter
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
#define av_malloc_array(a, b)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
AVPixelFormat
Pixel format.
mode
Use these values in ebur128_init (or'ed).
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.