Go to the documentation of this file.
   32 #define MEASURE_ALL       UINT_MAX 
   33 #define MEASURE_NONE      0 
   34 #define MEASURE_MEAN     (1 <<  0) 
   35 #define MEASURE_VARIANCE (1 <<  1) 
   36 #define MEASURE_CENTROID (1 <<  2) 
   37 #define MEASURE_SPREAD   (1 <<  3) 
   38 #define MEASURE_SKEWNESS (1 <<  4) 
   39 #define MEASURE_KURTOSIS (1 <<  5) 
   40 #define MEASURE_ENTROPY  (1 <<  6) 
   41 #define MEASURE_FLATNESS (1 <<  7) 
   42 #define MEASURE_CREST    (1 <<  8) 
   43 #define MEASURE_FLUX     (1 <<  9) 
   44 #define MEASURE_SLOPE    (1 << 10) 
   45 #define MEASURE_DECREASE (1 << 11) 
   46 #define MEASURE_ROLLOFF  (1 << 12) 
   83 #define OFFSET(x) offsetof(AudioSpectralStatsContext, x) 
   84 #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM 
  114     float overlap, 
scale = 1.f;
 
  119                                       sizeof(*
s->window_func_lut));
 
  120     if (!
s->window_func_lut)
 
  123     if (
s->overlap == 1.f)
 
  124         s->overlap = overlap;
 
  126     s->hop_size = 
s->win_size * (1.f - 
s->overlap);
 
  127     if (
s->hop_size <= 0)
 
  130     s->stats = 
av_calloc(
s->nb_channels, 
sizeof(*
s->stats));
 
  138     s->magnitude = 
av_calloc(
s->nb_channels, 
sizeof(*
s->magnitude));
 
  142     s->prev_magnitude = 
av_calloc(
s->nb_channels, 
sizeof(*
s->prev_magnitude));
 
  143     if (!
s->prev_magnitude)
 
  146     s->fft_in = 
av_calloc(
s->nb_channels, 
sizeof(*
s->fft_in));
 
  150     s->fft_out = 
av_calloc(
s->nb_channels, 
sizeof(*
s->fft_out));
 
  154     for (
int ch = 0; ch < 
s->nb_channels; ch++) {
 
  159         s->fft_in[ch] = 
av_calloc(
s->win_size, 
sizeof(**
s->fft_in));
 
  163         s->fft_out[ch] = 
av_calloc(
s->win_size, 
sizeof(**
s->fft_out));
 
  167         s->magnitude[ch] = 
av_calloc(
s->win_size, 
sizeof(**
s->magnitude));
 
  168         if (!
s->magnitude[ch])
 
  171         s->prev_magnitude[ch] = 
av_calloc(
s->win_size, 
sizeof(**
s->prev_magnitude));
 
  172         if (!
s->prev_magnitude[ch])
 
  184                      const char *fmt, 
float val)
 
  191         snprintf(key2, 
sizeof(key2), 
"lavfi.aspectralstats.%d.%s", chan, 
key);
 
  193         snprintf(key2, 
sizeof(key2), 
"lavfi.aspectralstats.%s", 
key);
 
  199     for (
int ch = 0; ch < 
s->nb_channels; ch++) {
 
  235     for (
int n = 0; n < 
size; n++)
 
  250     for (
int n = 0; n < 
size; n++)
 
  259     float num = 0.f, den = 0.f;
 
  261     for (
int n = 0; n < 
size; n++) {
 
  262         num += spectral[n] * n * 
scale;
 
  266     if (den <= FLT_EPSILON)
 
  274     float num = 0.f, den = 0.f;
 
  276     for (
int n = 0; n < 
size; n++) {
 
  277         num += spectral[n] * 
sqrf(n * 
scale - centroid);
 
  281     if (den <= FLT_EPSILON)
 
  283     return sqrtf(num / den);
 
  294     float num = 0.f, den = 0.f;
 
  296     for (
int n = 0; n < 
size; n++) {
 
  297         num += spectral[n] * 
cbrf(n * 
scale - centroid);
 
  302     if (den <= FLT_EPSILON)
 
  310     float num = 0.f, den = 0.f;
 
  312     for (
int n = 0; n < 
size; n++) {
 
  318     if (den <= FLT_EPSILON)
 
  325     float num = 0.f, den = 0.f;
 
  327     for (
int n = 0; n < 
size; n++) {
 
  328         num += spectral[n] * logf(spectral[n] + FLT_EPSILON);
 
  332     if (den <= FLT_EPSILON)
 
  339     float num = 0.f, den = 0.f;
 
  341     for (
int n = 0; n < 
size; n++) {
 
  342         float v = FLT_EPSILON + spectral[n];
 
  350     if (den <= FLT_EPSILON)
 
  359     for (
int n = 0; n < 
size; n++) {
 
  365     if (
mean <= FLT_EPSILON)
 
  370 static float spectral_flux(
const float *
const spectral, 
const float *
const prev_spectral,
 
  371                            int size, 
int max_freq)
 
  375     for (
int n = 0; n < 
size; n++)
 
  376         sum += 
sqrf(spectral[n] - prev_spectral[n]);
 
  383     const float mean_freq = 
size * 0.5f;
 
  384     float mean_spectral = 0.f, num = 0.f, den = 0.f;
 
  386     for (
int n = 0; n < 
size; n++)
 
  387         mean_spectral += spectral[n];
 
  388     mean_spectral /= 
size;
 
  390     for (
int n = 0; n < 
size; n++) {
 
  391         num += ((n - mean_freq) / mean_freq) * (spectral[n] - mean_spectral);
 
  392         den += 
sqrf((n - mean_freq) / mean_freq);
 
  395     if (
fabsf(den) <= FLT_EPSILON)
 
  402     float num = 0.f, den = 0.f;
 
  404     for (
int n = 1; n < 
size; n++) {
 
  405         num += (spectral[n] - spectral[0]) / n;
 
  409     if (den <= FLT_EPSILON)
 
  417     float norm = 0.f, sum = 0.f;
 
  420     for (
int n = 0; n < 
size; n++)
 
  424     for (
int n = 0; n < 
size; n++) {
 
  438     const float *window_func_lut = 
s->window_func_lut;
 
  441     const int start = (
channels * jobnr) / nb_jobs;
 
  442     const int end = (
channels * (jobnr+1)) / nb_jobs;
 
  443     const int offset = 
s->win_size - 
s->hop_size;
 
  445     for (
int ch = start; ch < end; ch++) {
 
  446         float *
window = (
float *)
s->window->extended_data[ch];
 
  450         float *magnitude = 
s->magnitude[ch];
 
  451         float *prev_magnitude = 
s->prev_magnitude[ch];
 
  452         const float scale = 1.f / 
s->win_size;
 
  458         for (
int n = 0; n < 
s->win_size; n++) {
 
  459             fft_in[n].re = 
window[n] * window_func_lut[n];
 
  463         s->tx_fn(
s->fft[ch], fft_out, fft_in, 
sizeof(*fft_in));
 
  465         for (
int n = 0; n < 
s->win_size / 2; n++) {
 
  466             fft_out[n].re *= 
scale;
 
  467             fft_out[n].im *= 
scale;
 
  470         for (
int n = 0; n < 
s->win_size / 2; n++)
 
  471             magnitude[n] = hypotf(fft_out[n].re, fft_out[n].im);
 
  500         memcpy(prev_magnitude, magnitude, 
s->win_size * 
sizeof(
float));
 
  579     for (
int ch = 0; ch < 
s->nb_channels; ch++) {
 
  588         if (
s->prev_magnitude)
 
  612     .
p.
name        = 
"aspectralstats",
 
  614     .p.priv_class  = &aspectralstats_class,
 
  
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
@ AV_SAMPLE_FMT_FLTP
float, planar
static float spectral_mean(const float *const spectral, int size, int max_freq)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define FILTER_INPUTS(array)
This structure describes decoded (raw) audio or video data.
#define WIN_FUNC_OPTION(win_func_opt_name, win_func_offset, flag, default_window_func)
const char * name
Filter name.
int nb_channels
Number of channels in this layout.
static const AVFilterPad aspectralstats_outputs[]
A link between two filters.
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags)
Initialize a transform context with the given configuration (i)MDCTs with an odd length are currently...
static float spectral_entropy(const float *const spectral, int size, int max_freq)
AVComplexFloat ** fft_out
static SDL_Window * window
void * priv
private data for use by the filter
static float spectral_variance(const float *const spectral, int size, int max_freq, float mean)
static double val(void *priv, double ch)
static __device__ float fabsf(float a)
A filter pad used for either input or output.
static float spectral_crest(const float *const spectral, int size, int max_freq)
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
void(* av_tx_fn)(AVTXContext *s, void *out, void *in, ptrdiff_t stride)
Function pointer to a function to perform the transform.
static float spectral_flatness(const float *const spectral, int size, int max_freq)
@ AV_TX_FLOAT_FFT
Standard complex to complex FFT with sample data type of AVComplexFloat, AVComplexDouble or AVComplex...
#define FILTER_OUTPUTS(array)
#define av_realloc_f(p, o, n)
static float spectral_slope(const float *const spectral, int size, int max_freq)
Describe the class of an AVClass context structure.
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
const AVFilterPad ff_audio_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_AUDIO.
static __device__ float sqrtf(float a)
static void generate_window_func(float *lut, int N, int win_func, float *overlap)
static const AVOption aspectralstats_options[]
static void stats(AVPacket *const *in, int n_in, unsigned *_max, unsigned *_sum)
#define FILTER_SINGLE_SAMPLEFMT(sample_fmt_)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_copy(AVFrame *dst, const AVFrame *src)
Copy the frame data from src to dst.
int sample_rate
Sample rate of the audio data.
float fmaxf(float, float)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
AVFilterContext * src
source filter
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
static float spectral_decrease(const float *const spectral, int size, int max_freq)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
FF_FILTER_FORWARD_WANTED(outlink, inlink)
static int activate(AVFilterContext *ctx)
static float spectral_centroid(const float *const spectral, int size, int max_freq)
av_cold void av_tx_uninit(AVTXContext **ctx)
Frees a context and sets *ctx to NULL, does nothing when *ctx == NULL.
static av_cold void uninit(AVFilterContext *ctx)
@ AV_OPT_TYPE_FLOAT
Underlying C type is float.
static float spectral_rolloff(const float *const spectral, int size, int max_freq)
int nb_samples
number of audio samples (per channel) described by this frame
uint8_t ** extended_data
pointers to the data planes/channels.
static float cbrf(float a)
static float spectral_flux(const float *const spectral, const float *const prev_spectral, int size, int max_freq)
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
const char * name
Pad name.
int ff_inlink_queued_samples(AVFilterLink *link)
void * av_calloc(size_t nmemb, size_t size)
static int config_output(AVFilterLink *outlink)
static void set_meta(AVDictionary **metadata, int chan, const char *key, const char *fmt, float val)
static float spectral_spread(const float *const spectral, int size, int max_freq, float centroid)
int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
@ AV_OPT_TYPE_INT
Underlying C type is int.
static float mean(const float *input, int size)
const FFFilter ff_af_aspectralstats
static float spectral_skewness(const float *const spectral, int size, int max_freq, float centroid, float spread)
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
AVFilter p
The public AVFilter.
AVChannelLayout ch_layout
channel layout of current buffer (see libavutil/channel_layout.h)
static void scale(int *out, const int *in, const int w, const int h, const int shift)
FF_FILTER_FORWARD_STATUS(inlink, outlink)
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
static void set_metadata(AudioSpectralStatsContext *s, AVDictionary **metadata)
static float sqrf(float a)
@ AV_OPT_TYPE_FLAGS
Underlying C type is unsigned int.
ChannelSpectralStats * stats
AVFILTER_DEFINE_CLASS(aspectralstats)
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
static float spectral_kurtosis(const float *const spectral, int size, int max_freq, float centroid, float spread)
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.