FFmpeg
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_MMAP
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return &LICENSE_PREFIX FFMPEG_LICENSE[sizeof(LICENSE_PREFIX) - 1];
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
98 static const FormatEntry format_entries[] = {
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
136  [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
137  [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
138  [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
139  [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
140  [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
141  [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
142  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
143  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
144  [AV_PIX_FMT_YUV440P] = { 1, 1 },
145  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
146  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
147  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
148  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
149  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
151  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
152  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
153  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
154  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
155  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
156  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
157  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
158  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
159  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
163  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
164  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
165  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
166  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
167  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
168  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
169  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
170  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
171  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
172  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
173  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
174  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
175  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
176  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
177  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
178  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
179  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
180  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
181  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
182  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
183  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
185  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
186  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
187  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
188  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
189  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
190  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
191  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
192  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
193  [AV_PIX_FMT_YA8] = { 1, 1 },
194  [AV_PIX_FMT_YA16BE] = { 1, 1 },
195  [AV_PIX_FMT_YA16LE] = { 1, 1 },
196  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
197  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
198  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
199  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
200  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
216  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
217  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
218  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
219  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
220  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
221  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
222  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
223  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
224  [AV_PIX_FMT_GBRP] = { 1, 1 },
225  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
228  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
229  [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
231  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
232  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
233  [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
234  [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
235  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
236  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
237  [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
238  [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
239  [AV_PIX_FMT_GBRPF32LE] = { 1, 1 },
240  [AV_PIX_FMT_GBRPF32BE] = { 1, 1 },
241  [AV_PIX_FMT_GBRAPF32LE] = { 1, 1 },
242  [AV_PIX_FMT_GBRAPF32BE] = { 1, 1 },
243  [AV_PIX_FMT_GBRAP] = { 1, 1 },
244  [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
245  [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
246  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
247  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
248  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
249  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
250  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
251  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
252  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
253  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
254  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
255  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
256  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
257  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
258  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
259  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
260  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
261  [AV_PIX_FMT_P010LE] = { 1, 1 },
262  [AV_PIX_FMT_P010BE] = { 1, 1 },
263  [AV_PIX_FMT_P016LE] = { 1, 1 },
264  [AV_PIX_FMT_P016BE] = { 1, 1 },
265  [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
266  [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
267  [AV_PIX_FMT_YUVA422P12BE] = { 1, 1 },
268  [AV_PIX_FMT_YUVA422P12LE] = { 1, 1 },
269  [AV_PIX_FMT_YUVA444P12BE] = { 1, 1 },
270  [AV_PIX_FMT_YUVA444P12LE] = { 1, 1 },
271  [AV_PIX_FMT_NV24] = { 1, 1 },
272  [AV_PIX_FMT_NV42] = { 1, 1 },
273  [AV_PIX_FMT_Y210LE] = { 1, 0 },
274  [AV_PIX_FMT_X2RGB10LE] = { 1, 1 },
275 };
276 
278 {
279  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
280  format_entries[pix_fmt].is_supported_in : 0;
281 }
282 
284 {
285  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
286  format_entries[pix_fmt].is_supported_out : 0;
287 }
288 
290 {
291  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
292  format_entries[pix_fmt].is_supported_endianness : 0;
293 }
294 
295 static double getSplineCoeff(double a, double b, double c, double d,
296  double dist)
297 {
298  if (dist <= 1.0)
299  return ((d * dist + c) * dist + b) * dist + a;
300  else
301  return getSplineCoeff(0.0,
302  b + 2.0 * c + 3.0 * d,
303  c + 3.0 * d,
304  -b - 3.0 * c - 6.0 * d,
305  dist - 1.0);
306 }
307 
308 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
309 {
310  if (pos == -1 || pos <= -513) {
311  pos = (128 << chr_subsample) - 128;
312  }
313  pos += 128; // relative to ideal left edge
314  return pos >> chr_subsample;
315 }
316 
317 typedef struct {
318  int flag; ///< flag associated to the algorithm
319  const char *description; ///< human-readable description
320  int size_factor; ///< size factor used when initing the filters
322 
324  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
325  { SWS_BICUBIC, "bicubic", 4 },
326  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
327  { SWS_BILINEAR, "bilinear", 2 },
328  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
329  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
330  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
331  { SWS_POINT, "nearest neighbor / point", -1 },
332  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
333  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
334  { SWS_X, "experimental", 8 },
335 };
336 
337 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
338  int *outFilterSize, int xInc, int srcW,
339  int dstW, int filterAlign, int one,
340  int flags, int cpu_flags,
341  SwsVector *srcFilter, SwsVector *dstFilter,
342  double param[2], int srcPos, int dstPos)
343 {
344  int i;
345  int filterSize;
346  int filter2Size;
347  int minFilterSize;
348  int64_t *filter = NULL;
349  int64_t *filter2 = NULL;
350  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
351  int ret = -1;
352 
353  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
354 
355  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
356  if (!FF_ALLOC_TYPED_ARRAY(*filterPos, dstW + 3))
357  goto nomem;
358 
359  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
360  int i;
361  filterSize = 1;
362  if (!FF_ALLOCZ_TYPED_ARRAY(filter, dstW * filterSize))
363  goto nomem;
364 
365  for (i = 0; i < dstW; i++) {
366  filter[i * filterSize] = fone;
367  (*filterPos)[i] = i;
368  }
369  } else if (flags & SWS_POINT) { // lame looking point sampling mode
370  int i;
371  int64_t xDstInSrc;
372  filterSize = 1;
373  if (!FF_ALLOC_TYPED_ARRAY(filter, dstW * filterSize))
374  goto nomem;
375 
376  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
377  for (i = 0; i < dstW; i++) {
378  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
379 
380  (*filterPos)[i] = xx;
381  filter[i] = fone;
382  xDstInSrc += xInc;
383  }
384  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
385  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
386  int i;
387  int64_t xDstInSrc;
388  filterSize = 2;
389  if (!FF_ALLOC_TYPED_ARRAY(filter, dstW * filterSize))
390  goto nomem;
391 
392  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
393  for (i = 0; i < dstW; i++) {
394  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
395  int j;
396 
397  (*filterPos)[i] = xx;
398  // bilinear upscale / linear interpolate / area averaging
399  for (j = 0; j < filterSize; j++) {
400  int64_t coeff = fone - FFABS((int64_t)xx * (1 << 16) - xDstInSrc) * (fone >> 16);
401  if (coeff < 0)
402  coeff = 0;
403  filter[i * filterSize + j] = coeff;
404  xx++;
405  }
406  xDstInSrc += xInc;
407  }
408  } else {
409  int64_t xDstInSrc;
410  int sizeFactor = -1;
411 
412  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
413  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
414  sizeFactor = scale_algorithms[i].size_factor;
415  break;
416  }
417  }
418  if (flags & SWS_LANCZOS)
419  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
420  av_assert0(sizeFactor > 0);
421 
422  if (xInc <= 1 << 16)
423  filterSize = 1 + sizeFactor; // upscale
424  else
425  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
426 
427  filterSize = FFMIN(filterSize, srcW - 2);
428  filterSize = FFMAX(filterSize, 1);
429 
430  if (!FF_ALLOC_TYPED_ARRAY(filter, dstW * filterSize))
431  goto nomem;
432  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
433  for (i = 0; i < dstW; i++) {
434  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
435  int j;
436  (*filterPos)[i] = xx;
437  for (j = 0; j < filterSize; j++) {
438  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
439  double floatd;
440  int64_t coeff;
441 
442  if (xInc > 1 << 16)
443  d = d * dstW / srcW;
444  floatd = d * (1.0 / (1 << 30));
445 
446  if (flags & SWS_BICUBIC) {
447  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
448  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
449 
450  if (d >= 1LL << 31) {
451  coeff = 0.0;
452  } else {
453  int64_t dd = (d * d) >> 30;
454  int64_t ddd = (dd * d) >> 30;
455 
456  if (d < 1LL << 30)
457  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
458  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
459  (6 * (1 << 24) - 2 * B) * (1 << 30);
460  else
461  coeff = (-B - 6 * C) * ddd +
462  (6 * B + 30 * C) * dd +
463  (-12 * B - 48 * C) * d +
464  (8 * B + 24 * C) * (1 << 30);
465  }
466  coeff /= (1LL<<54)/fone;
467  } else if (flags & SWS_X) {
468  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
469  double c;
470 
471  if (floatd < 1.0)
472  c = cos(floatd * M_PI);
473  else
474  c = -1.0;
475  if (c < 0.0)
476  c = -pow(-c, A);
477  else
478  c = pow(c, A);
479  coeff = (c * 0.5 + 0.5) * fone;
480  } else if (flags & SWS_AREA) {
481  int64_t d2 = d - (1 << 29);
482  if (d2 * xInc < -(1LL << (29 + 16)))
483  coeff = 1.0 * (1LL << (30 + 16));
484  else if (d2 * xInc < (1LL << (29 + 16)))
485  coeff = -d2 * xInc + (1LL << (29 + 16));
486  else
487  coeff = 0.0;
488  coeff *= fone >> (30 + 16);
489  } else if (flags & SWS_GAUSS) {
490  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
491  coeff = exp2(-p * floatd * floatd) * fone;
492  } else if (flags & SWS_SINC) {
493  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
494  } else if (flags & SWS_LANCZOS) {
495  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
496  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
497  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
498  if (floatd > p)
499  coeff = 0;
500  } else if (flags & SWS_BILINEAR) {
501  coeff = (1 << 30) - d;
502  if (coeff < 0)
503  coeff = 0;
504  coeff *= fone >> 30;
505  } else if (flags & SWS_SPLINE) {
506  double p = -2.196152422706632;
507  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
508  } else {
509  av_assert0(0);
510  }
511 
512  filter[i * filterSize + j] = coeff;
513  xx++;
514  }
515  xDstInSrc += 2 * xInc;
516  }
517  }
518 
519  /* apply src & dst Filter to filter -> filter2
520  * av_free(filter);
521  */
522  av_assert0(filterSize > 0);
523  filter2Size = filterSize;
524  if (srcFilter)
525  filter2Size += srcFilter->length - 1;
526  if (dstFilter)
527  filter2Size += dstFilter->length - 1;
528  av_assert0(filter2Size > 0);
529  if (!FF_ALLOCZ_TYPED_ARRAY(filter2, dstW * filter2Size))
530  goto nomem;
531  for (i = 0; i < dstW; i++) {
532  int j, k;
533 
534  if (srcFilter) {
535  for (k = 0; k < srcFilter->length; k++) {
536  for (j = 0; j < filterSize; j++)
537  filter2[i * filter2Size + k + j] +=
538  srcFilter->coeff[k] * filter[i * filterSize + j];
539  }
540  } else {
541  for (j = 0; j < filterSize; j++)
542  filter2[i * filter2Size + j] = filter[i * filterSize + j];
543  }
544  // FIXME dstFilter
545 
546  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
547  }
548  av_freep(&filter);
549 
550  /* try to reduce the filter-size (step1 find size and shift left) */
551  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
552  minFilterSize = 0;
553  for (i = dstW - 1; i >= 0; i--) {
554  int min = filter2Size;
555  int j;
556  int64_t cutOff = 0.0;
557 
558  /* get rid of near zero elements on the left by shifting left */
559  for (j = 0; j < filter2Size; j++) {
560  int k;
561  cutOff += FFABS(filter2[i * filter2Size]);
562 
563  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
564  break;
565 
566  /* preserve monotonicity because the core can't handle the
567  * filter otherwise */
568  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
569  break;
570 
571  // move filter coefficients left
572  for (k = 1; k < filter2Size; k++)
573  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
574  filter2[i * filter2Size + k - 1] = 0;
575  (*filterPos)[i]++;
576  }
577 
578  cutOff = 0;
579  /* count near zeros on the right */
580  for (j = filter2Size - 1; j > 0; j--) {
581  cutOff += FFABS(filter2[i * filter2Size + j]);
582 
583  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
584  break;
585  min--;
586  }
587 
588  if (min > minFilterSize)
589  minFilterSize = min;
590  }
591 
592  if (PPC_ALTIVEC(cpu_flags)) {
593  // we can handle the special case 4, so we don't want to go the full 8
594  if (minFilterSize < 5)
595  filterAlign = 4;
596 
597  /* We really don't want to waste our time doing useless computation, so
598  * fall back on the scalar C code for very small filters.
599  * Vectorizing is worth it only if you have a decent-sized vector. */
600  if (minFilterSize < 3)
601  filterAlign = 1;
602  }
603 
604  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
605  // special case for unscaled vertical filtering
606  if (minFilterSize == 1 && filterAlign == 2)
607  filterAlign = 1;
608  }
609 
610  av_assert0(minFilterSize > 0);
611  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
612  av_assert0(filterSize > 0);
613  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
614  if (!filter)
615  goto nomem;
616  if (filterSize >= MAX_FILTER_SIZE * 16 /
617  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
618  ret = RETCODE_USE_CASCADE;
619  goto fail;
620  }
621  *outFilterSize = filterSize;
622 
623  if (flags & SWS_PRINT_INFO)
625  "SwScaler: reducing / aligning filtersize %d -> %d\n",
626  filter2Size, filterSize);
627  /* try to reduce the filter-size (step2 reduce it) */
628  for (i = 0; i < dstW; i++) {
629  int j;
630 
631  for (j = 0; j < filterSize; j++) {
632  if (j >= filter2Size)
633  filter[i * filterSize + j] = 0;
634  else
635  filter[i * filterSize + j] = filter2[i * filter2Size + j];
636  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
637  filter[i * filterSize + j] = 0;
638  }
639  }
640 
641  // FIXME try to align filterPos if possible
642 
643  // fix borders
644  for (i = 0; i < dstW; i++) {
645  int j;
646  if ((*filterPos)[i] < 0) {
647  // move filter coefficients left to compensate for filterPos
648  for (j = 1; j < filterSize; j++) {
649  int left = FFMAX(j + (*filterPos)[i], 0);
650  filter[i * filterSize + left] += filter[i * filterSize + j];
651  filter[i * filterSize + j] = 0;
652  }
653  (*filterPos)[i]= 0;
654  }
655 
656  if ((*filterPos)[i] + filterSize > srcW) {
657  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
658  int64_t acc = 0;
659 
660  for (j = filterSize - 1; j >= 0; j--) {
661  if ((*filterPos)[i] + j >= srcW) {
662  acc += filter[i * filterSize + j];
663  filter[i * filterSize + j] = 0;
664  }
665  }
666  for (j = filterSize - 1; j >= 0; j--) {
667  if (j < shift) {
668  filter[i * filterSize + j] = 0;
669  } else {
670  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
671  }
672  }
673 
674  (*filterPos)[i]-= shift;
675  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
676  }
677  av_assert0((*filterPos)[i] >= 0);
678  av_assert0((*filterPos)[i] < srcW);
679  if ((*filterPos)[i] + filterSize > srcW) {
680  for (j = 0; j < filterSize; j++) {
681  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
682  }
683  }
684  }
685 
686  // Note the +1 is for the MMX scaler which reads over the end
687  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
688  if (!FF_ALLOCZ_TYPED_ARRAY(*outFilter, *outFilterSize * (dstW + 3)))
689  goto nomem;
690 
691  /* normalize & store in outFilter */
692  for (i = 0; i < dstW; i++) {
693  int j;
694  int64_t error = 0;
695  int64_t sum = 0;
696 
697  for (j = 0; j < filterSize; j++) {
698  sum += filter[i * filterSize + j];
699  }
700  sum = (sum + one / 2) / one;
701  if (!sum) {
702  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
703  sum = 1;
704  }
705  for (j = 0; j < *outFilterSize; j++) {
706  int64_t v = filter[i * filterSize + j] + error;
707  int intV = ROUNDED_DIV(v, sum);
708  (*outFilter)[i * (*outFilterSize) + j] = intV;
709  error = v - intV * sum;
710  }
711  }
712 
713  (*filterPos)[dstW + 0] =
714  (*filterPos)[dstW + 1] =
715  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
716  * read over the end */
717  for (i = 0; i < *outFilterSize; i++) {
718  int k = (dstW - 1) * (*outFilterSize) + i;
719  (*outFilter)[k + 1 * (*outFilterSize)] =
720  (*outFilter)[k + 2 * (*outFilterSize)] =
721  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
722  }
723 
724  ret = 0;
725  goto done;
726 nomem:
727  ret = AVERROR(ENOMEM);
728 fail:
729  if(ret < 0)
730  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
731 done:
732  av_free(filter);
733  av_free(filter2);
734  return ret;
735 }
736 
737 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
738 {
739  int64_t W, V, Z, Cy, Cu, Cv;
740  int64_t vr = table[0];
741  int64_t ub = table[1];
742  int64_t ug = -table[2];
743  int64_t vg = -table[3];
744  int64_t ONE = 65536;
745  int64_t cy = ONE;
747  int i;
748  static const int8_t map[] = {
749  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
750  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
751  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
752  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
753  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
754  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
755  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
756  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
757  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
758  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
759  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
760  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
763  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
764  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
767  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
768  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
771  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
772  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
773  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
774  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
775  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
776  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
777  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
778  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
779  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
780  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
781  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
782  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
783  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
784  };
785 
786  dstRange = 0; //FIXME range = 1 is handled elsewhere
787 
788  if (!dstRange) {
789  cy = cy * 255 / 219;
790  } else {
791  vr = vr * 224 / 255;
792  ub = ub * 224 / 255;
793  ug = ug * 224 / 255;
794  vg = vg * 224 / 255;
795  }
796  W = ROUNDED_DIV(ONE*ONE*ug, ub);
797  V = ROUNDED_DIV(ONE*ONE*vg, vr);
798  Z = ONE*ONE-W-V;
799 
800  Cy = ROUNDED_DIV(cy*Z, ONE);
801  Cu = ROUNDED_DIV(ub*Z, ONE);
802  Cv = ROUNDED_DIV(vr*Z, ONE);
803 
804  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
805  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
806  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
807 
808  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
809  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
810  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
811 
812  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
813  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
814  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
815 
816  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
817  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
818  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
819  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
820  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
821  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
822  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
823  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
824  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
825  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
826  }
827  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
828  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
829 }
830 
831 static void fill_xyztables(struct SwsContext *c)
832 {
833  int i;
834  double xyzgamma = XYZ_GAMMA;
835  double rgbgamma = 1.0 / RGB_GAMMA;
836  double xyzgammainv = 1.0 / XYZ_GAMMA;
837  double rgbgammainv = RGB_GAMMA;
838  static const int16_t xyz2rgb_matrix[3][4] = {
839  {13270, -6295, -2041},
840  {-3969, 7682, 170},
841  { 228, -835, 4329} };
842  static const int16_t rgb2xyz_matrix[3][4] = {
843  {1689, 1464, 739},
844  { 871, 2929, 296},
845  { 79, 488, 3891} };
846  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
847 
848  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
849  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
850  c->xyzgamma = xyzgamma_tab;
851  c->rgbgamma = rgbgamma_tab;
852  c->xyzgammainv = xyzgammainv_tab;
853  c->rgbgammainv = rgbgammainv_tab;
854 
855  if (rgbgamma_tab[4095])
856  return;
857 
858  /* set gamma vectors */
859  for (i = 0; i < 4096; i++) {
860  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
861  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
862  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
863  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
864  }
865 }
866 
868 {
869  return !isYUV(format) && !isGray(format);
870 }
871 
872 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
873  int srcRange, const int table[4], int dstRange,
874  int brightness, int contrast, int saturation)
875 {
876  const AVPixFmtDescriptor *desc_dst;
877  const AVPixFmtDescriptor *desc_src;
878  int need_reinit = 0;
879 
880  handle_formats(c);
881  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
882  desc_src = av_pix_fmt_desc_get(c->srcFormat);
883 
885  dstRange = 0;
887  srcRange = 0;
888 
889  if (c->srcRange != srcRange ||
890  c->dstRange != dstRange ||
891  c->brightness != brightness ||
892  c->contrast != contrast ||
893  c->saturation != saturation ||
894  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
895  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
896  )
897  need_reinit = 1;
898 
899  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
900  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
901 
902 
903 
904  c->brightness = brightness;
905  c->contrast = contrast;
906  c->saturation = saturation;
907  c->srcRange = srcRange;
908  c->dstRange = dstRange;
909 
910  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
911  //and what we have in ticket 2939 looks better with this check
912  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
914 
915  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
916  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
917 
919  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
920 
921  if (!need_reinit)
922  return 0;
923 
924  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
925  if (!c->cascaded_context[0] &&
926  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
927  c->srcW && c->srcH && c->dstW && c->dstH) {
928  enum AVPixelFormat tmp_format;
929  int tmp_width, tmp_height;
930  int srcW = c->srcW;
931  int srcH = c->srcH;
932  int dstW = c->dstW;
933  int dstH = c->dstH;
934  int ret;
935  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
936 
937  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
938  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
939  tmp_format = AV_PIX_FMT_BGRA64;
940  } else {
941  tmp_format = AV_PIX_FMT_BGR48;
942  }
943  } else {
944  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
945  tmp_format = AV_PIX_FMT_BGRA;
946  } else {
947  tmp_format = AV_PIX_FMT_BGR24;
948  }
949  }
950 
951  if (srcW*srcH > dstW*dstH) {
952  tmp_width = dstW;
953  tmp_height = dstH;
954  } else {
955  tmp_width = srcW;
956  tmp_height = srcH;
957  }
958 
960  tmp_width, tmp_height, tmp_format, 64);
961  if (ret < 0)
962  return ret;
963 
964  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
965  tmp_width, tmp_height, tmp_format,
966  c->flags, c->param);
967  if (!c->cascaded_context[0])
968  return -1;
969 
971  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
972  if (ret < 0)
973  return ret;
974  //we set both src and dst depending on that the RGB side will be ignored
976  srcRange, table, dstRange,
977  brightness, contrast, saturation);
978 
979  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
980  dstW, dstH, c->dstFormat,
981  c->flags, NULL, NULL, c->param);
982  if (!c->cascaded_context[1])
983  return -1;
985  srcRange, table, dstRange,
986  0, 1 << 16, 1 << 16);
987  return 0;
988  }
989  return -1;
990  }
991 
992  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
993  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
994  contrast, saturation);
995  // FIXME factorize
996 
997  if (ARCH_PPC)
998  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
999  contrast, saturation);
1000  }
1001 
1002  fill_rgb2yuv_table(c, table, dstRange);
1003 
1004  return 0;
1005 }
1006 
1007 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
1008  int *srcRange, int **table, int *dstRange,
1009  int *brightness, int *contrast, int *saturation)
1010 {
1011  if (!c )
1012  return -1;
1013 
1014  *inv_table = c->srcColorspaceTable;
1015  *table = c->dstColorspaceTable;
1016  *srcRange = range_override_needed(c->srcFormat) ? 1 : c->srcRange;
1017  *dstRange = range_override_needed(c->dstFormat) ? 1 : c->dstRange;
1018  *brightness = c->brightness;
1019  *contrast = c->contrast;
1020  *saturation = c->saturation;
1021 
1022  return 0;
1023 }
1024 
1026 {
1027  switch (*format) {
1028  case AV_PIX_FMT_YUVJ420P:
1029  *format = AV_PIX_FMT_YUV420P;
1030  return 1;
1031  case AV_PIX_FMT_YUVJ411P:
1032  *format = AV_PIX_FMT_YUV411P;
1033  return 1;
1034  case AV_PIX_FMT_YUVJ422P:
1035  *format = AV_PIX_FMT_YUV422P;
1036  return 1;
1037  case AV_PIX_FMT_YUVJ444P:
1038  *format = AV_PIX_FMT_YUV444P;
1039  return 1;
1040  case AV_PIX_FMT_YUVJ440P:
1041  *format = AV_PIX_FMT_YUV440P;
1042  return 1;
1043  case AV_PIX_FMT_GRAY8:
1044  case AV_PIX_FMT_YA8:
1045  case AV_PIX_FMT_GRAY9LE:
1046  case AV_PIX_FMT_GRAY9BE:
1047  case AV_PIX_FMT_GRAY10LE:
1048  case AV_PIX_FMT_GRAY10BE:
1049  case AV_PIX_FMT_GRAY12LE:
1050  case AV_PIX_FMT_GRAY12BE:
1051  case AV_PIX_FMT_GRAY14LE:
1052  case AV_PIX_FMT_GRAY14BE:
1053  case AV_PIX_FMT_GRAY16LE:
1054  case AV_PIX_FMT_GRAY16BE:
1055  case AV_PIX_FMT_YA16BE:
1056  case AV_PIX_FMT_YA16LE:
1057  return 1;
1058  default:
1059  return 0;
1060  }
1061 }
1062 
1064 {
1065  switch (*format) {
1066  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1067  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1068  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1069  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1070  default: return 0;
1071  }
1072 }
1073 
1075 {
1076  switch (*format) {
1077  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1078  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1079  default: return 0;
1080  }
1081 }
1082 
1084 {
1085  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1086  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1087  c->srcXYZ |= handle_xyz(&c->srcFormat);
1088  c->dstXYZ |= handle_xyz(&c->dstFormat);
1089  if (c->srcXYZ || c->dstXYZ)
1090  fill_xyztables(c);
1091 }
1092 
1094 {
1095  SwsContext *c = av_mallocz(sizeof(SwsContext));
1096 
1097  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1098 
1099  if (c) {
1102  }
1103 
1104  return c;
1105 }
1106 
1107 static uint16_t * alloc_gamma_tbl(double e)
1108 {
1109  int i = 0;
1110  uint16_t * tbl;
1111  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1112  if (!tbl)
1113  return NULL;
1114 
1115  for (i = 0; i < 65536; ++i) {
1116  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1117  }
1118  return tbl;
1119 }
1120 
1122 {
1123  switch(fmt) {
1124  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1125  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1126  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1127  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1128  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1129 
1133 
1134  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1135 
1138 
1141 
1144 
1149 
1150  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1151  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1152 
1171 
1172 // case AV_PIX_FMT_AYUV64LE:
1173 // case AV_PIX_FMT_AYUV64BE:
1174 // case AV_PIX_FMT_PAL8:
1175  default: return AV_PIX_FMT_NONE;
1176  }
1177 }
1178 
1180  SwsFilter *dstFilter)
1181 {
1182  int i;
1183  int usesVFilter, usesHFilter;
1184  int unscaled;
1185  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1186  int srcW = c->srcW;
1187  int srcH = c->srcH;
1188  int dstW = c->dstW;
1189  int dstH = c->dstH;
1190  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1191  int flags, cpu_flags;
1192  enum AVPixelFormat srcFormat = c->srcFormat;
1193  enum AVPixelFormat dstFormat = c->dstFormat;
1194  const AVPixFmtDescriptor *desc_src;
1195  const AVPixFmtDescriptor *desc_dst;
1196  int ret = 0;
1197  enum AVPixelFormat tmpFmt;
1198  static const float float_mult = 1.0f / 255.0f;
1199 
1200  cpu_flags = av_get_cpu_flags();
1201  flags = c->flags;
1202  emms_c();
1203  if (!rgb15to16)
1205 
1206  unscaled = (srcW == dstW && srcH == dstH);
1207 
1208  c->srcRange |= handle_jpeg(&c->srcFormat);
1209  c->dstRange |= handle_jpeg(&c->dstFormat);
1210 
1211  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1212  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1213 
1214  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1215  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1216  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1217  c->dstRange, 0, 1 << 16, 1 << 16);
1218 
1219  handle_formats(c);
1220  srcFormat = c->srcFormat;
1221  dstFormat = c->dstFormat;
1222  desc_src = av_pix_fmt_desc_get(srcFormat);
1223  desc_dst = av_pix_fmt_desc_get(dstFormat);
1224 
1225  // If the source has no alpha then disable alpha blendaway
1226  if (c->src0Alpha)
1228 
1229  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1230  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1231  if (!sws_isSupportedInput(srcFormat)) {
1232  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1233  av_get_pix_fmt_name(srcFormat));
1234  return AVERROR(EINVAL);
1235  }
1236  if (!sws_isSupportedOutput(dstFormat)) {
1237  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1238  av_get_pix_fmt_name(dstFormat));
1239  return AVERROR(EINVAL);
1240  }
1241  }
1242  av_assert2(desc_src && desc_dst);
1243 
1244  i = flags & (SWS_POINT |
1245  SWS_AREA |
1246  SWS_BILINEAR |
1248  SWS_BICUBIC |
1249  SWS_X |
1250  SWS_GAUSS |
1251  SWS_LANCZOS |
1252  SWS_SINC |
1253  SWS_SPLINE |
1254  SWS_BICUBLIN);
1255 
1256  /* provide a default scaler if not set by caller */
1257  if (!i) {
1258  if (dstW < srcW && dstH < srcH)
1259  flags |= SWS_BICUBIC;
1260  else if (dstW > srcW && dstH > srcH)
1261  flags |= SWS_BICUBIC;
1262  else
1263  flags |= SWS_BICUBIC;
1264  c->flags = flags;
1265  } else if (i & (i - 1)) {
1266  av_log(c, AV_LOG_ERROR,
1267  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1268  return AVERROR(EINVAL);
1269  }
1270  /* sanity check */
1271  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1272  /* FIXME check if these are enough and try to lower them after
1273  * fixing the relevant parts of the code */
1274  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1275  srcW, srcH, dstW, dstH);
1276  return AVERROR(EINVAL);
1277  }
1278  if (flags & SWS_FAST_BILINEAR) {
1279  if (srcW < 8 || dstW < 8) {
1280  flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1281  c->flags = flags;
1282  }
1283  }
1284 
1285  if (!dstFilter)
1286  dstFilter = &dummyFilter;
1287  if (!srcFilter)
1288  srcFilter = &dummyFilter;
1289 
1290  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1291  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1292  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1293  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1294  c->vRounder = 4 * 0x0001000100010001ULL;
1295 
1296  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1297  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1298  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1299  (dstFilter->chrV && dstFilter->chrV->length > 1);
1300  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1301  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1302  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1303  (dstFilter->chrH && dstFilter->chrH->length > 1);
1304 
1307 
1308  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1309  if (dstW&1) {
1310  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1311  flags |= SWS_FULL_CHR_H_INT;
1312  c->flags = flags;
1313  }
1314 
1315  if ( c->chrSrcHSubSample == 0
1316  && c->chrSrcVSubSample == 0
1317  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1318  && !(c->flags & SWS_FAST_BILINEAR)
1319  ) {
1320  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1321  flags |= SWS_FULL_CHR_H_INT;
1322  c->flags = flags;
1323  }
1324  }
1325 
1326  if (c->dither == SWS_DITHER_AUTO) {
1327  if (flags & SWS_ERROR_DIFFUSION)
1328  c->dither = SWS_DITHER_ED;
1329  }
1330 
1331  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1332  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1333  dstFormat == AV_PIX_FMT_BGR8 ||
1334  dstFormat == AV_PIX_FMT_RGB8) {
1335  if (c->dither == SWS_DITHER_AUTO)
1337  if (!(flags & SWS_FULL_CHR_H_INT)) {
1339  av_log(c, AV_LOG_DEBUG,
1340  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1341  av_get_pix_fmt_name(dstFormat));
1342  flags |= SWS_FULL_CHR_H_INT;
1343  c->flags = flags;
1344  }
1345  }
1346  if (flags & SWS_FULL_CHR_H_INT) {
1347  if (c->dither == SWS_DITHER_BAYER) {
1348  av_log(c, AV_LOG_DEBUG,
1349  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1350  av_get_pix_fmt_name(dstFormat));
1351  c->dither = SWS_DITHER_ED;
1352  }
1353  }
1354  }
1355  if (isPlanarRGB(dstFormat)) {
1356  if (!(flags & SWS_FULL_CHR_H_INT)) {
1357  av_log(c, AV_LOG_DEBUG,
1358  "%s output is not supported with half chroma resolution, switching to full\n",
1359  av_get_pix_fmt_name(dstFormat));
1360  flags |= SWS_FULL_CHR_H_INT;
1361  c->flags = flags;
1362  }
1363  }
1364 
1365  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1366  * chroma interpolation */
1367  if (flags & SWS_FULL_CHR_H_INT &&
1368  isAnyRGB(dstFormat) &&
1369  !isPlanarRGB(dstFormat) &&
1370  dstFormat != AV_PIX_FMT_RGBA64LE &&
1371  dstFormat != AV_PIX_FMT_RGBA64BE &&
1372  dstFormat != AV_PIX_FMT_BGRA64LE &&
1373  dstFormat != AV_PIX_FMT_BGRA64BE &&
1374  dstFormat != AV_PIX_FMT_RGB48LE &&
1375  dstFormat != AV_PIX_FMT_RGB48BE &&
1376  dstFormat != AV_PIX_FMT_BGR48LE &&
1377  dstFormat != AV_PIX_FMT_BGR48BE &&
1378  dstFormat != AV_PIX_FMT_RGBA &&
1379  dstFormat != AV_PIX_FMT_ARGB &&
1380  dstFormat != AV_PIX_FMT_BGRA &&
1381  dstFormat != AV_PIX_FMT_ABGR &&
1382  dstFormat != AV_PIX_FMT_RGB24 &&
1383  dstFormat != AV_PIX_FMT_BGR24 &&
1384  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1385  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1386  dstFormat != AV_PIX_FMT_BGR8 &&
1387  dstFormat != AV_PIX_FMT_RGB8
1388  ) {
1390  "full chroma interpolation for destination format '%s' not yet implemented\n",
1391  av_get_pix_fmt_name(dstFormat));
1392  flags &= ~SWS_FULL_CHR_H_INT;
1393  c->flags = flags;
1394  }
1395  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1396  c->chrDstHSubSample = 1;
1397 
1398  // drop some chroma lines if the user wants it
1399  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1401  c->chrSrcVSubSample += c->vChrDrop;
1402 
1403  /* drop every other pixel for chroma calculation unless user
1404  * wants full chroma */
1405  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1406  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1407  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1408  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1409  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1410  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1411  srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
1412  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1413  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1414  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1415  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1416  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1417  srcFormat != AV_PIX_FMT_GBRPF32BE && srcFormat != AV_PIX_FMT_GBRPF32LE &&
1418  srcFormat != AV_PIX_FMT_GBRAPF32BE && srcFormat != AV_PIX_FMT_GBRAPF32LE &&
1419  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1420  (flags & SWS_FAST_BILINEAR)))
1421  c->chrSrcHSubSample = 1;
1422 
1423  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1424  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1425  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1426  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1427  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1428 
1429  if (!FF_ALLOCZ_TYPED_ARRAY(c->formatConvBuffer, FFALIGN(srcW * 2 + 78, 16) * 2))
1430  goto nomem;
1431 
1432  c->srcBpc = desc_src->comp[0].depth;
1433  if (c->srcBpc < 8)
1434  c->srcBpc = 8;
1435  c->dstBpc = desc_dst->comp[0].depth;
1436  if (c->dstBpc < 8)
1437  c->dstBpc = 8;
1438  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1439  c->srcBpc = 16;
1440  if (c->dstBpc == 16)
1441  dst_stride <<= 1;
1442 
1443  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1444  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1445  c->chrDstW >= c->chrSrcW &&
1446  (srcW & 15) == 0;
1447  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1448 
1449  && (flags & SWS_FAST_BILINEAR)) {
1450  if (flags & SWS_PRINT_INFO)
1451  av_log(c, AV_LOG_INFO,
1452  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1453  }
1454  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1455  c->canMMXEXTBeUsed = 0;
1456  } else
1457  c->canMMXEXTBeUsed = 0;
1458 
1459  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1460  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1461 
1462  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1463  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1464  * correct scaling.
1465  * n-2 is the last chrominance sample available.
1466  * This is not perfect, but no one should notice the difference, the more
1467  * correct variant would be like the vertical one, but that would require
1468  * some special code for the first and last pixel */
1469  if (flags & SWS_FAST_BILINEAR) {
1470  if (c->canMMXEXTBeUsed) {
1471  c->lumXInc += 20;
1472  c->chrXInc += 20;
1473  }
1474  // we don't use the x86 asm scaler if MMX is available
1475  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1476  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1477  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1478  }
1479  }
1480 
1481  // hardcoded for now
1482  c->gamma_value = 2.2;
1483  tmpFmt = AV_PIX_FMT_RGBA64LE;
1484 
1485 
1486  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1487  SwsContext *c2;
1488  c->cascaded_context[0] = NULL;
1489 
1491  srcW, srcH, tmpFmt, 64);
1492  if (ret < 0)
1493  return ret;
1494 
1495  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1496  srcW, srcH, tmpFmt,
1497  flags, NULL, NULL, c->param);
1498  if (!c->cascaded_context[0]) {
1499  return AVERROR(ENOMEM);
1500  }
1501 
1502  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1503  dstW, dstH, tmpFmt,
1504  flags, srcFilter, dstFilter, c->param);
1505 
1506  if (!c->cascaded_context[1])
1507  return AVERROR(ENOMEM);
1508 
1509  c2 = c->cascaded_context[1];
1510  c2->is_internal_gamma = 1;
1511  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1512  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1513  if (!c2->gamma || !c2->inv_gamma)
1514  return AVERROR(ENOMEM);
1515 
1516  // is_internal_flag is set after creating the context
1517  // to properly create the gamma convert FilterDescriptor
1518  // we have to re-initialize it
1519  ff_free_filters(c2);
1520  if ((ret = ff_init_filters(c2)) < 0) {
1521  sws_freeContext(c2);
1522  c->cascaded_context[1] = NULL;
1523  return ret;
1524  }
1525 
1526  c->cascaded_context[2] = NULL;
1527  if (dstFormat != tmpFmt) {
1529  dstW, dstH, tmpFmt, 64);
1530  if (ret < 0)
1531  return ret;
1532 
1533  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1534  dstW, dstH, dstFormat,
1535  flags, NULL, NULL, c->param);
1536  if (!c->cascaded_context[2])
1537  return AVERROR(ENOMEM);
1538  }
1539  return 0;
1540  }
1541 
1542  if (isBayer(srcFormat)) {
1543  if (!unscaled ||
1544  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P &&
1545  dstFormat != AV_PIX_FMT_RGB48)) {
1546  enum AVPixelFormat tmpFormat = isBayer16BPS(srcFormat) ? AV_PIX_FMT_RGB48 : AV_PIX_FMT_RGB24;
1547 
1549  srcW, srcH, tmpFormat, 64);
1550  if (ret < 0)
1551  return ret;
1552 
1553  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1554  srcW, srcH, tmpFormat,
1555  flags, srcFilter, NULL, c->param);
1556  if (!c->cascaded_context[0])
1557  return AVERROR(ENOMEM);
1558 
1559  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1560  dstW, dstH, dstFormat,
1561  flags, NULL, dstFilter, c->param);
1562  if (!c->cascaded_context[1])
1563  return AVERROR(ENOMEM);
1564  return 0;
1565  }
1566  }
1567 
1568  if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
1569  for (i = 0; i < 256; ++i){
1570  c->uint2float_lut[i] = (float)i * float_mult;
1571  }
1572  }
1573 
1574  // float will be converted to uint16_t
1575  if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
1576  (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
1577  dstFormat != AV_PIX_FMT_GRAY8))){
1578  c->srcBpc = 16;
1579  }
1580 
1581  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1582  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1583 
1584  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE) {
1585  if (!unscaled ||
1586  dstFormat != tmpFormat ||
1587  usesHFilter || usesVFilter ||
1588  c->srcRange != c->dstRange
1589  ) {
1590  c->cascaded_mainindex = 1;
1592  srcW, srcH, tmpFormat, 64);
1593  if (ret < 0)
1594  return ret;
1595 
1596  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1597  srcW, srcH, tmpFormat,
1598  flags, c->param);
1599  if (!c->cascaded_context[0])
1600  return AVERROR(EINVAL);
1602  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1603  if (ret < 0)
1604  return ret;
1605 
1606  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1607  dstW, dstH, dstFormat,
1608  flags, c->param);
1609  if (!c->cascaded_context[1])
1610  return AVERROR(EINVAL);
1611 
1612  c->cascaded_context[1]->srcRange = c->srcRange;
1613  c->cascaded_context[1]->dstRange = c->dstRange;
1614  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1615  if (ret < 0)
1616  return ret;
1617 
1618  return 0;
1619  }
1620  }
1621  }
1622 
1623 #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
1624 #define USE_MMAP 1
1625 #else
1626 #define USE_MMAP 0
1627 #endif
1628 
1629  /* precalculate horizontal scaler filter coefficients */
1630  {
1631 #if HAVE_MMXEXT_INLINE
1632 // can't downscale !!!
1633  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1635  NULL, NULL, 8);
1637  NULL, NULL, NULL, 4);
1638 
1639 #if USE_MMAP
1640  c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
1641  PROT_READ | PROT_WRITE,
1642  MAP_PRIVATE | MAP_ANONYMOUS,
1643  -1, 0);
1644  c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
1645  PROT_READ | PROT_WRITE,
1646  MAP_PRIVATE | MAP_ANONYMOUS,
1647  -1, 0);
1648 #elif HAVE_VIRTUALALLOC
1649  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1651  MEM_COMMIT,
1652  PAGE_EXECUTE_READWRITE);
1653  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1655  MEM_COMMIT,
1656  PAGE_EXECUTE_READWRITE);
1657 #else
1660 #endif
1661 
1662 #ifdef MAP_ANONYMOUS
1663  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1664 #else
1666 #endif
1667  {
1668  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1669  return AVERROR(ENOMEM);
1670  }
1671 
1672  if (!FF_ALLOCZ_TYPED_ARRAY(c->hLumFilter, dstW / 8 + 8) ||
1673  !FF_ALLOCZ_TYPED_ARRAY(c->hChrFilter, c->chrDstW / 4 + 8) ||
1674  !FF_ALLOCZ_TYPED_ARRAY(c->hLumFilterPos, dstW / 2 / 8 + 8) ||
1675  !FF_ALLOCZ_TYPED_ARRAY(c->hChrFilterPos, c->chrDstW / 2 / 4 + 8))
1676  goto nomem;
1677 
1679  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1681  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1682 
1683 #if USE_MMAP
1684  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1685  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1686  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1687  ret = AVERROR(EINVAL);
1688  goto fail;
1689  }
1690 #endif
1691  } else
1692 #endif /* HAVE_MMXEXT_INLINE */
1693  {
1694  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1695  PPC_ALTIVEC(cpu_flags) ? 8 :
1696  have_neon(cpu_flags) ? 8 : 1;
1697 
1698  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1699  &c->hLumFilterSize, c->lumXInc,
1700  srcW, dstW, filterAlign, 1 << 14,
1701  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1702  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1703  c->param,
1704  get_local_pos(c, 0, 0, 0),
1705  get_local_pos(c, 0, 0, 0))) < 0)
1706  goto fail;
1707  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1708  &c->hChrFilterSize, c->chrXInc,
1709  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1710  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1711  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1712  c->param,
1714  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1715  goto fail;
1716  }
1717  } // initialize horizontal stuff
1718 
1719  /* precalculate vertical scaler filter coefficients */
1720  {
1721  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1722  PPC_ALTIVEC(cpu_flags) ? 8 :
1723  have_neon(cpu_flags) ? 2 : 1;
1724 
1725  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1726  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1727  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1728  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1729  c->param,
1730  get_local_pos(c, 0, 0, 1),
1731  get_local_pos(c, 0, 0, 1))) < 0)
1732  goto fail;
1733  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1734  c->chrYInc, c->chrSrcH, c->chrDstH,
1735  filterAlign, (1 << 12),
1736  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1737  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1738  c->param,
1740  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1741 
1742  goto fail;
1743 
1744 #if HAVE_ALTIVEC
1745  if (!FF_ALLOC_TYPED_ARRAY(c->vYCoeffsBank, c->vLumFilterSize * c->dstH) ||
1746  !FF_ALLOC_TYPED_ARRAY(c->vCCoeffsBank, c->vChrFilterSize * c->chrDstH))
1747  goto nomem;
1748 
1749  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1750  int j;
1751  short *p = (short *)&c->vYCoeffsBank[i];
1752  for (j = 0; j < 8; j++)
1753  p[j] = c->vLumFilter[i];
1754  }
1755 
1756  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1757  int j;
1758  short *p = (short *)&c->vCCoeffsBank[i];
1759  for (j = 0; j < 8; j++)
1760  p[j] = c->vChrFilter[i];
1761  }
1762 #endif
1763  }
1764 
1765  for (i = 0; i < 4; i++)
1766  if (!FF_ALLOCZ_TYPED_ARRAY(c->dither_error[i], c->dstW + 2))
1767  goto nomem;
1768 
1769  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1770 
1771  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1772  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1773  c->uv_offx2 = dst_stride + 16;
1774 
1775  av_assert0(c->chrDstH <= dstH);
1776 
1777  if (flags & SWS_PRINT_INFO) {
1778  const char *scaler = NULL, *cpucaps;
1779 
1780  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1781  if (flags & scale_algorithms[i].flag) {
1782  scaler = scale_algorithms[i].description;
1783  break;
1784  }
1785  }
1786  if (!scaler)
1787  scaler = "ehh flags invalid?!";
1788  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1789  scaler,
1790  av_get_pix_fmt_name(srcFormat),
1791 #ifdef DITHER1XBPP
1792  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1793  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1794  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1795  "dithered " : "",
1796 #else
1797  "",
1798 #endif
1799  av_get_pix_fmt_name(dstFormat));
1800 
1801  if (INLINE_MMXEXT(cpu_flags))
1802  cpucaps = "MMXEXT";
1803  else if (INLINE_AMD3DNOW(cpu_flags))
1804  cpucaps = "3DNOW";
1805  else if (INLINE_MMX(cpu_flags))
1806  cpucaps = "MMX";
1807  else if (PPC_ALTIVEC(cpu_flags))
1808  cpucaps = "AltiVec";
1809  else
1810  cpucaps = "C";
1811 
1812  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1813 
1814  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1815  av_log(c, AV_LOG_DEBUG,
1816  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1817  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1818  av_log(c, AV_LOG_DEBUG,
1819  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1820  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1821  c->chrXInc, c->chrYInc);
1822  }
1823 
1824  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1825  if (unscaled && !usesHFilter && !usesVFilter &&
1827  isALPHA(srcFormat) &&
1828  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1829  alphaless_fmt(srcFormat) == dstFormat
1830  ) {
1832 
1833  if (flags & SWS_PRINT_INFO)
1834  av_log(c, AV_LOG_INFO,
1835  "using alpha blendaway %s -> %s special converter\n",
1836  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1837  return 0;
1838  }
1839 
1840  /* unscaled special cases */
1841  if (unscaled && !usesHFilter && !usesVFilter &&
1842  (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
1843  isFloat(srcFormat) || isFloat(dstFormat))){
1845 
1846  if (c->swscale) {
1847  if (flags & SWS_PRINT_INFO)
1848  av_log(c, AV_LOG_INFO,
1849  "using unscaled %s -> %s special converter\n",
1850  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1851  return 0;
1852  }
1853  }
1854 
1855  c->swscale = ff_getSwsFunc(c);
1856  return ff_init_filters(c);
1857 nomem:
1858  ret = AVERROR(ENOMEM);
1859 fail: // FIXME replace things by appropriate error codes
1860  if (ret == RETCODE_USE_CASCADE) {
1861  int tmpW = sqrt(srcW * (int64_t)dstW);
1862  int tmpH = sqrt(srcH * (int64_t)dstH);
1863  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1864 
1865  if (isALPHA(srcFormat))
1866  tmpFormat = AV_PIX_FMT_YUVA420P;
1867 
1868  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1869  return AVERROR(EINVAL);
1870 
1872  tmpW, tmpH, tmpFormat, 64);
1873  if (ret < 0)
1874  return ret;
1875 
1876  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1877  tmpW, tmpH, tmpFormat,
1878  flags, srcFilter, NULL, c->param);
1879  if (!c->cascaded_context[0])
1880  return AVERROR(ENOMEM);
1881 
1882  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1883  dstW, dstH, dstFormat,
1884  flags, NULL, dstFilter, c->param);
1885  if (!c->cascaded_context[1])
1886  return AVERROR(ENOMEM);
1887  return 0;
1888  }
1889  return ret;
1890 }
1891 
1892 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1893  int dstW, int dstH, enum AVPixelFormat dstFormat,
1894  int flags, const double *param)
1895 {
1896  SwsContext *c;
1897 
1898  if (!(c = sws_alloc_context()))
1899  return NULL;
1900 
1901  c->flags = flags;
1902  c->srcW = srcW;
1903  c->srcH = srcH;
1904  c->dstW = dstW;
1905  c->dstH = dstH;
1906  c->srcFormat = srcFormat;
1907  c->dstFormat = dstFormat;
1908 
1909  if (param) {
1910  c->param[0] = param[0];
1911  c->param[1] = param[1];
1912  }
1913 
1914  return c;
1915 }
1916 
1917 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1918  int dstW, int dstH, enum AVPixelFormat dstFormat,
1919  int flags, SwsFilter *srcFilter,
1920  SwsFilter *dstFilter, const double *param)
1921 {
1922  SwsContext *c;
1923 
1924  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1925  dstW, dstH, dstFormat,
1926  flags, param);
1927  if (!c)
1928  return NULL;
1929 
1930  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1931  sws_freeContext(c);
1932  return NULL;
1933  }
1934 
1935  return c;
1936 }
1937 
1938 static int isnan_vec(SwsVector *a)
1939 {
1940  int i;
1941  for (i=0; i<a->length; i++)
1942  if (isnan(a->coeff[i]))
1943  return 1;
1944  return 0;
1945 }
1946 
1947 static void makenan_vec(SwsVector *a)
1948 {
1949  int i;
1950  for (i=0; i<a->length; i++)
1951  a->coeff[i] = NAN;
1952 }
1953 
1954 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1955  float lumaSharpen, float chromaSharpen,
1956  float chromaHShift, float chromaVShift,
1957  int verbose)
1958 {
1959  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1960  if (!filter)
1961  return NULL;
1962 
1963  if (lumaGBlur != 0.0) {
1964  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1965  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1966  } else {
1967  filter->lumH = sws_getIdentityVec();
1968  filter->lumV = sws_getIdentityVec();
1969  }
1970 
1971  if (chromaGBlur != 0.0) {
1972  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1973  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1974  } else {
1975  filter->chrH = sws_getIdentityVec();
1976  filter->chrV = sws_getIdentityVec();
1977  }
1978 
1979  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1980  goto fail;
1981 
1982  if (chromaSharpen != 0.0) {
1983  SwsVector *id = sws_getIdentityVec();
1984  if (!id)
1985  goto fail;
1986  sws_scaleVec(filter->chrH, -chromaSharpen);
1987  sws_scaleVec(filter->chrV, -chromaSharpen);
1988  sws_addVec(filter->chrH, id);
1989  sws_addVec(filter->chrV, id);
1990  sws_freeVec(id);
1991  }
1992 
1993  if (lumaSharpen != 0.0) {
1994  SwsVector *id = sws_getIdentityVec();
1995  if (!id)
1996  goto fail;
1997  sws_scaleVec(filter->lumH, -lumaSharpen);
1998  sws_scaleVec(filter->lumV, -lumaSharpen);
1999  sws_addVec(filter->lumH, id);
2000  sws_addVec(filter->lumV, id);
2001  sws_freeVec(id);
2002  }
2003 
2004  if (chromaHShift != 0.0)
2005  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
2006 
2007  if (chromaVShift != 0.0)
2008  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
2009 
2010  sws_normalizeVec(filter->chrH, 1.0);
2011  sws_normalizeVec(filter->chrV, 1.0);
2012  sws_normalizeVec(filter->lumH, 1.0);
2013  sws_normalizeVec(filter->lumV, 1.0);
2014 
2015  if (isnan_vec(filter->chrH) ||
2016  isnan_vec(filter->chrV) ||
2017  isnan_vec(filter->lumH) ||
2018  isnan_vec(filter->lumV))
2019  goto fail;
2020 
2021  if (verbose)
2022  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
2023  if (verbose)
2024  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
2025 
2026  return filter;
2027 
2028 fail:
2029  sws_freeVec(filter->lumH);
2030  sws_freeVec(filter->lumV);
2031  sws_freeVec(filter->chrH);
2032  sws_freeVec(filter->chrV);
2033  av_freep(&filter);
2034  return NULL;
2035 }
2036 
2038 {
2039  SwsVector *vec;
2040 
2041  if(length <= 0 || length > INT_MAX/ sizeof(double))
2042  return NULL;
2043 
2044  vec = av_malloc(sizeof(SwsVector));
2045  if (!vec)
2046  return NULL;
2047  vec->length = length;
2048  vec->coeff = av_malloc(sizeof(double) * length);
2049  if (!vec->coeff)
2050  av_freep(&vec);
2051  return vec;
2052 }
2053 
2054 SwsVector *sws_getGaussianVec(double variance, double quality)
2055 {
2056  const int length = (int)(variance * quality + 0.5) | 1;
2057  int i;
2058  double middle = (length - 1) * 0.5;
2059  SwsVector *vec;
2060 
2061  if(variance < 0 || quality < 0)
2062  return NULL;
2063 
2064  vec = sws_allocVec(length);
2065 
2066  if (!vec)
2067  return NULL;
2068 
2069  for (i = 0; i < length; i++) {
2070  double dist = i - middle;
2071  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2072  sqrt(2 * variance * M_PI);
2073  }
2074 
2075  sws_normalizeVec(vec, 1.0);
2076 
2077  return vec;
2078 }
2079 
2080 /**
2081  * Allocate and return a vector with length coefficients, all
2082  * with the same value c.
2083  */
2084 #if !FF_API_SWS_VECTOR
2085 static
2086 #endif
2088 {
2089  int i;
2090  SwsVector *vec = sws_allocVec(length);
2091 
2092  if (!vec)
2093  return NULL;
2094 
2095  for (i = 0; i < length; i++)
2096  vec->coeff[i] = c;
2097 
2098  return vec;
2099 }
2100 
2101 /**
2102  * Allocate and return a vector with just one coefficient, with
2103  * value 1.0.
2104  */
2105 #if !FF_API_SWS_VECTOR
2106 static
2107 #endif
2109 {
2110  return sws_getConstVec(1.0, 1);
2111 }
2112 
2113 static double sws_dcVec(SwsVector *a)
2114 {
2115  int i;
2116  double sum = 0;
2117 
2118  for (i = 0; i < a->length; i++)
2119  sum += a->coeff[i];
2120 
2121  return sum;
2122 }
2123 
2124 void sws_scaleVec(SwsVector *a, double scalar)
2125 {
2126  int i;
2127 
2128  for (i = 0; i < a->length; i++)
2129  a->coeff[i] *= scalar;
2130 }
2131 
2133 {
2134  sws_scaleVec(a, height / sws_dcVec(a));
2135 }
2136 
2137 #if FF_API_SWS_VECTOR
2139 {
2140  int length = a->length + b->length - 1;
2141  int i, j;
2142  SwsVector *vec = sws_getConstVec(0.0, length);
2143 
2144  if (!vec)
2145  return NULL;
2146 
2147  for (i = 0; i < a->length; i++) {
2148  for (j = 0; j < b->length; j++) {
2149  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2150  }
2151  }
2152 
2153  return vec;
2154 }
2155 #endif
2156 
2158 {
2159  int length = FFMAX(a->length, b->length);
2160  int i;
2161  SwsVector *vec = sws_getConstVec(0.0, length);
2162 
2163  if (!vec)
2164  return NULL;
2165 
2166  for (i = 0; i < a->length; i++)
2167  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2168  for (i = 0; i < b->length; i++)
2169  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2170 
2171  return vec;
2172 }
2173 
2174 #if FF_API_SWS_VECTOR
2176 {
2177  int length = FFMAX(a->length, b->length);
2178  int i;
2179  SwsVector *vec = sws_getConstVec(0.0, length);
2180 
2181  if (!vec)
2182  return NULL;
2183 
2184  for (i = 0; i < a->length; i++)
2185  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2186  for (i = 0; i < b->length; i++)
2187  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2188 
2189  return vec;
2190 }
2191 #endif
2192 
2193 /* shift left / or right if "shift" is negative */
2195 {
2196  int length = a->length + FFABS(shift) * 2;
2197  int i;
2198  SwsVector *vec = sws_getConstVec(0.0, length);
2199 
2200  if (!vec)
2201  return NULL;
2202 
2203  for (i = 0; i < a->length; i++) {
2204  vec->coeff[i + (length - 1) / 2 -
2205  (a->length - 1) / 2 - shift] = a->coeff[i];
2206  }
2207 
2208  return vec;
2209 }
2210 
2211 #if !FF_API_SWS_VECTOR
2212 static
2213 #endif
2215 {
2216  SwsVector *shifted = sws_getShiftedVec(a, shift);
2217  if (!shifted) {
2218  makenan_vec(a);
2219  return;
2220  }
2221  av_free(a->coeff);
2222  a->coeff = shifted->coeff;
2223  a->length = shifted->length;
2224  av_free(shifted);
2225 }
2226 
2227 #if !FF_API_SWS_VECTOR
2228 static
2229 #endif
2231 {
2232  SwsVector *sum = sws_sumVec(a, b);
2233  if (!sum) {
2234  makenan_vec(a);
2235  return;
2236  }
2237  av_free(a->coeff);
2238  a->coeff = sum->coeff;
2239  a->length = sum->length;
2240  av_free(sum);
2241 }
2242 
2243 #if FF_API_SWS_VECTOR
2245 {
2246  SwsVector *diff = sws_diffVec(a, b);
2247  if (!diff) {
2248  makenan_vec(a);
2249  return;
2250  }
2251  av_free(a->coeff);
2252  a->coeff = diff->coeff;
2253  a->length = diff->length;
2254  av_free(diff);
2255 }
2256 
2258 {
2259  SwsVector *conv = sws_getConvVec(a, b);
2260  if (!conv) {
2261  makenan_vec(a);
2262  return;
2263  }
2264  av_free(a->coeff);
2265  a->coeff = conv->coeff;
2266  a->length = conv->length;
2267  av_free(conv);
2268 }
2269 
2271 {
2272  SwsVector *vec = sws_allocVec(a->length);
2273 
2274  if (!vec)
2275  return NULL;
2276 
2277  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2278 
2279  return vec;
2280 }
2281 #endif
2282 
2283 /**
2284  * Print with av_log() a textual representation of the vector a
2285  * if log_level <= av_log_level.
2286  */
2287 #if !FF_API_SWS_VECTOR
2288 static
2289 #endif
2290 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2291 {
2292  int i;
2293  double max = 0;
2294  double min = 0;
2295  double range;
2296 
2297  for (i = 0; i < a->length; i++)
2298  if (a->coeff[i] > max)
2299  max = a->coeff[i];
2300 
2301  for (i = 0; i < a->length; i++)
2302  if (a->coeff[i] < min)
2303  min = a->coeff[i];
2304 
2305  range = max - min;
2306 
2307  for (i = 0; i < a->length; i++) {
2308  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2309  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2310  for (; x > 0; x--)
2311  av_log(log_ctx, log_level, " ");
2312  av_log(log_ctx, log_level, "|\n");
2313  }
2314 }
2315 
2317 {
2318  if (!a)
2319  return;
2320  av_freep(&a->coeff);
2321  a->length = 0;
2322  av_free(a);
2323 }
2324 
2326 {
2327  if (!filter)
2328  return;
2329 
2330  sws_freeVec(filter->lumH);
2331  sws_freeVec(filter->lumV);
2332  sws_freeVec(filter->chrH);
2333  sws_freeVec(filter->chrV);
2334  av_free(filter);
2335 }
2336 
2338 {
2339  int i;
2340  if (!c)
2341  return;
2342 
2343  for (i = 0; i < 4; i++)
2344  av_freep(&c->dither_error[i]);
2345 
2346  av_freep(&c->vLumFilter);
2347  av_freep(&c->vChrFilter);
2348  av_freep(&c->hLumFilter);
2349  av_freep(&c->hChrFilter);
2350 #if HAVE_ALTIVEC
2351  av_freep(&c->vYCoeffsBank);
2352  av_freep(&c->vCCoeffsBank);
2353 #endif
2354 
2355  av_freep(&c->vLumFilterPos);
2356  av_freep(&c->vChrFilterPos);
2357  av_freep(&c->hLumFilterPos);
2358  av_freep(&c->hChrFilterPos);
2359 
2360 #if HAVE_MMX_INLINE
2361 #if USE_MMAP
2362  if (c->lumMmxextFilterCode)
2364  if (c->chrMmxextFilterCode)
2366 #elif HAVE_VIRTUALALLOC
2367  if (c->lumMmxextFilterCode)
2368  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2369  if (c->chrMmxextFilterCode)
2370  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2371 #else
2374 #endif
2377 #endif /* HAVE_MMX_INLINE */
2378 
2379  av_freep(&c->yuvTable);
2381 
2385  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2386  av_freep(&c->cascaded_tmp[0]);
2387  av_freep(&c->cascaded1_tmp[0]);
2388 
2389  av_freep(&c->gamma);
2390  av_freep(&c->inv_gamma);
2391 
2392  ff_free_filters(c);
2393 
2394  av_free(c);
2395 }
2396 
2398  int srcH, enum AVPixelFormat srcFormat,
2399  int dstW, int dstH,
2400  enum AVPixelFormat dstFormat, int flags,
2401  SwsFilter *srcFilter,
2402  SwsFilter *dstFilter,
2403  const double *param)
2404 {
2405  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2407  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2408  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2409 
2410  if (!param)
2411  param = default_param;
2412 
2413  if (context &&
2414  (context->srcW != srcW ||
2415  context->srcH != srcH ||
2416  context->srcFormat != srcFormat ||
2417  context->dstW != dstW ||
2418  context->dstH != dstH ||
2419  context->dstFormat != dstFormat ||
2420  context->flags != flags ||
2421  context->param[0] != param[0] ||
2422  context->param[1] != param[1])) {
2423 
2424  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2425  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2426  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2427  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2428  sws_freeContext(context);
2429  context = NULL;
2430  }
2431 
2432  if (!context) {
2433  if (!(context = sws_alloc_context()))
2434  return NULL;
2435  context->srcW = srcW;
2436  context->srcH = srcH;
2437  context->srcFormat = srcFormat;
2438  context->dstW = dstW;
2439  context->dstH = dstH;
2440  context->dstFormat = dstFormat;
2441  context->flags = flags;
2442  context->param[0] = param[0];
2443  context->param[1] = param[1];
2444 
2445  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2446  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2447  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2448  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2449 
2450  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2451  sws_freeContext(context);
2452  return NULL;
2453  }
2454  }
2455  return context;
2456 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:81
SwsVector * chrV
Definition: swscale.h:119
IEEE-754 single precision Y, 32bpp, big-endian.
Definition: pixfmt.h:340
packed YUV 4:2:2 like YUYV422, 20bpp, data in the high bits, little-endian
Definition: pixfmt.h:359
uint8_t is_supported_out
Definition: utils.c:94
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:291
#define NULL
Definition: coverity.c:32
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:283
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:166
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:275
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:252
static enum AVPixelFormat pix_fmt
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2157
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
static const FormatEntry format_entries[]
Definition: utils.c:98
static int shift(int a, int b)
Definition: sonic.c:82
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1063
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:245
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:70
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2573
int chrSrcH
Height of source chroma planes.
#define SWS_X
Definition: swscale.h:61
int ff_free_filters(SwsContext *c)
Definition: slice.c:383
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
#define RV_IDX
#define SWS_BICUBIC
Definition: swscale.h:60
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:737
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:249
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:159
#define BV_IDX
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:131
8 bits gray, 8 bits alpha
Definition: pixfmt.h:143
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:208
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
SwsVector * lumV
Definition: swscale.h:117
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, little-endian ...
Definition: pixfmt.h:346
int16_t * rgbgamma
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:84
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:308
SwsAlphaBlend alphablend
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:1007
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:216
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:162
int acc
Definition: yuv2rgb.c:555
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2525
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:2054
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:250
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples
Definition: pixfmt.h:262
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1357
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples
Definition: pixfmt.h:263
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:774
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:207
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:108
#define SWS_BICUBLIN
Definition: swscale.h:64
int16_t * rgbgammainv
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:295
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:415
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:270
#define GV_IDX
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
int av_log2(unsigned v)
Definition: intmath.c:26
#define FF_ALLOC_TYPED_ARRAY(p, nelem)
Definition: internal.h:140
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:394
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:189
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:36
Convenience header that includes libavutil&#39;s core.
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:1025
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:289
static int isnan_vec(SwsVector *a)
Definition: utils.c:1938
int16_t * xyzgammainv
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:111
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:71
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:255
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:156
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:140
static atomic_int cpu_flags
Definition: cpu.c:50
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples
Definition: pixfmt.h:260
static void error(const char *err)
#define RGB_GAMMA
#define SWS_PRINT_INFO
Definition: swscale.h:75
Y , 12bpp, little-endian.
Definition: pixfmt.h:296
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2669
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate.The lists are not just lists
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:254
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:131
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:87
Macro definitions for various function/variable attributes.
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:106
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:85
#define SWS_BILINEAR
Definition: swscale.h:59
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:179
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2257
#define RU_IDX
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:216
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:190
static av_always_inline int isBayer16BPS(enum AVPixelFormat pix_fmt)
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1107
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, little-endian ...
Definition: pixfmt.h:344
ptrdiff_t uv_off
offset (in pixels) between u and v planes
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:88
#define av_malloc(s)
int length
number of coefficients in the vector
Definition: swscale.h:111
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1179
#define SWS_LANCZOS
Definition: swscale.h:67
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:77
AVOptions.
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:103
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2270
int vChrFilterSize
Vertical filter size for chroma pixels.
#define f(width, name)
Definition: cbs_vp9.c:255
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:268
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:269
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:205
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:139
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:251
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:79
int cascaded_tmpStride[4]
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:105
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:191
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:2087
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:276
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:174
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
Definition: pixfmt.h:100
Y , 9bpp, little-endian.
Definition: pixfmt.h:316
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1917
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:194
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:390
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:210
int16_t rgb2xyz_matrix[3][4]
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:412
Y , 10bpp, little-endian.
Definition: pixfmt.h:298
#define max(a, b)
Definition: cuda_runtime.h:33
external API header
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale.c:51
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:278
uint16_t * inv_gamma
#define A(x)
Definition: vp56_arith.h:28
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:264
#define FFALIGN(x, a)
Definition: macros.h:48
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
#define av_log(a,...)
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
float uint2float_lut[256]
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2194
static const uint16_t table[]
Definition: prosumer.c:206
uint64_t vRounder
#define ROUNDED_DIV(a, b)
Definition: common.h:56
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
int * dither_error[4]
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:157
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1954
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:170
#define INLINE_MMX(flags)
Definition: cpu.h:86
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:165
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:176
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
16 bits gray, 16 bits alpha (big-endian)
Definition: pixfmt.h:212
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
like NV12, with 16bpp per component, big-endian
Definition: pixfmt.h:301
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:136
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:583
const char * description
human-readable description
Definition: utils.c:319
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2601
#define B
Definition: huffyuvdsp.h:32
#define PPC_ALTIVEC(flags)
Definition: cpu.h:25
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:87
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2244
unsigned int pos
Definition: spdifenc.c:410
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2290
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:182
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:161
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:586
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:89
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:385
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:248
GLsizei GLsizei * length
Definition: opengl_enc.c:114
like NV12, with 16bpp per component, little-endian
Definition: pixfmt.h:300
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:134
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:402
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
Definition: pixfmt.h:285
#define SWS_CS_DEFAULT
Definition: swscale.h:95
#define X86_MMX(flags)
Definition: cpu.h:30
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:183
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2124
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:116
#define fail()
Definition: checkasm.h:123
int8_t exp
Definition: eval.c:72
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:149
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
uint8_t * cascaded1_tmp[4]
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2132
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:184
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2397
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define RETCODE_USE_CASCADE
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1121
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2325
int hChrFilterSize
Horizontal filter size for chroma pixels.
int16_t * xyzgamma
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:2037
planar YUV 4:4:4, 24bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:348
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:397
as above, but U and V bytes are swapped
Definition: pixfmt.h:90
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:287
#define RGB2YUV_SHIFT
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
#define b
Definition: input.c:41
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:290
#define APCK_SIZE
#define have_neon(flags)
Definition: cpu.h:26
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:418
IEEE-754 single precision planar GBR 4:4:4, 96bpp, little-endian.
Definition: pixfmt.h:319
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:383
#define NAN
Definition: mathematics.h:64
#define FFMIN(a, b)
Definition: common.h:96
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:88
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
#define SWS_GAUSS
Definition: swscale.h:65
SwsVector * chrH
Definition: swscale.h:118
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:84
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:137
int32_t
#define RY_IDX
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2214
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about quality
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2337
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:188
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:210
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:180
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:243
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:200
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:158
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:526
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1892
unsigned swscale_version(void)
Definition: utils.c:75
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
Definition: pixfmt.h:284
double gamma_value
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:872
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:398
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:167
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:148
#define DITHER1XBPP
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:110
uint8_t * cascaded_tmp[4]
packed RGB 10:10:10, 30bpp, (msb)2X 10R 10G 10B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:361
#define FF_ARRAY_ELEMS(a)
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:323
static int range_override_needed(enum AVPixelFormat format)
Definition: utils.c:867
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
int cascaded1_tmpStride[4]
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:288
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:410
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define isGray(x)
Definition: swscale.c:40
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:392
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:912
#define MAX_FILTER_SIZE
Definition: af_dynaudnorm.c:33
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:83
double * coeff
pointer to the list of coefficients
Definition: swscale.h:110
int flag
flag associated to the algorithm
Definition: utils.c:318
#define AV_LOG_INFO
Standard information.
Definition: log.h:205
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:132
int dstColorspaceTable[4]
#define AV_PIX_FMT_GRAYF32
Definition: pixfmt.h:431
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:337
const AVClass * av_class
info on struct for av_log
int16_t xyz2rgb_matrix[3][4]
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
#define DITHER32_INT
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:267
void sws_freeVec(SwsVector *a)
Definition: utils.c:2316
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:172
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:31
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:271
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:192
int chrDstH
Height of destination chroma planes.
#define ub(width, name)
Definition: cbs_h2645.c:264
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:67
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2]...the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so...,+,-,+,-,+,+,-,+,-,+,...hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32-hcoeff[1]-hcoeff[2]-...a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2}an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||.........intra?||||:Block01:yes no||||:Block02:.................||||:Block03::y DC::ref index:||||:Block04::cb DC::motion x:||||.........:cr DC::motion y:||||.................|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------------------------------|||Y subbands||Cb subbands||Cr subbands||||------||------||------|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||------||------||------||||------||------||------|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||------||------||------||||------||------||------|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||------||------||------||||------||------||------|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------------------------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction------------|\Dequantization-------------------\||Reference frames|\IDWT|--------------|Motion\|||Frame 0||Frame 1||Compensation.OBMC v-------|--------------|--------------.\------> Frame n output Frame Frame<----------------------------------/|...|-------------------Range Coder:============Binary Range Coder:-------------------The implemented range coder is an adapted version based upon"Range encoding: an algorithm for removing redundancy from a digitised message."by G.N.N.Martin.The symbols encoded by the Snow range coder are bits(0|1).The associated probabilities are not fix but change depending on the symbol mix seen so far.bit seen|new state---------+-----------------------------------------------0|256-state_transition_table[256-old_state];1|state_transition_table[old_state];state_transition_table={0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:-------------------------FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1.the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:206
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:277
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:257
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:85
Replacements for frequently missing libm functions.
#define SWS_AREA
Definition: swscale.h:63
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:399
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:193
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2175
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:67
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:195
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
Y , 16bpp, big-endian.
Definition: pixfmt.h:97
as above, but U and V bytes are swapped
Definition: pixfmt.h:349
IEEE-754 single precision planar GBR 4:4:4, 96bpp, big-endian.
Definition: pixfmt.h:318
#define isnan(x)
Definition: libm.h:340
int verbose
Definition: checkasm.c:275
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:83
byte swapping routines
static void handle_formats(SwsContext *c)
Definition: utils.c:1083
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:244
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, big-endian ...
Definition: pixfmt.h:345
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
Y , 9bpp, big-endian.
Definition: pixfmt.h:315
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:256
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:178
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:396
const VDPAUPixFmtMap * map
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:113
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:95
#define SWS_POINT
Definition: swscale.h:62
int ff_init_filters(SwsContext *c)
Definition: slice.c:252
Y , 14bpp, little-endian.
Definition: pixfmt.h:338
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:265
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1093
#define GY_IDX
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:391
#define SWS_SPLINE
Definition: swscale.h:68
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:416
#define SWS_SINC
Definition: swscale.h:66
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:187
#define flags(name, subs,...)
Definition: cbs_av1.c:560
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:400
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:107
#define SWS_BITEXACT
Definition: swscale.h:84
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:266
Y , 10bpp, big-endian.
Definition: pixfmt.h:297
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:142
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:163
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:135
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1074
Definition: vc1_parser.c:48
SwsDither dither
uint8_t is_supported_in
Definition: utils.c:93
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:76
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2230
#define INLINE_MMXEXT(flags)
Definition: cpu.h:87
int
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2113
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:247
Y , 8bpp.
Definition: pixfmt.h:74
double param[2]
Input parameters for scaling algorithms that need them.
#define exp2(x)
Definition: libm.h:288
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:75
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, little-endian.
Definition: pixfmt.h:321
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:171
#define flag(name)
Definition: cbs_av1.c:552
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:102
#define AV_WL16(p, v)
Definition: intreadwrite.h:412
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:133
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples
Definition: pixfmt.h:261
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:86
static const uint64_t c2
Definition: murmur3.c:50
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:73
#define XYZ_GAMMA
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:185
struct SwsContext * cascaded_context[3]
#define SWS_PARAM_DEFAULT
Definition: swscale.h:73
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:81
uint16_t * gamma
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, big-endian.
Definition: pixfmt.h:320
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
static av_always_inline int diff(const uint32_t a, const uint32_t b)
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:199
#define av_free(p)
int size_factor
size factor used when initing the filters
Definition: utils.c:320
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:253
int srcFormatBpp
Number of bits per pixel of the source pixel format.
Y , 14bpp, big-endian.
Definition: pixfmt.h:337
const AVClass ff_sws_context_class
Definition: options.c:87
Y , 16bpp, little-endian.
Definition: pixfmt.h:98
uint8_t is_supported_endianness
Definition: utils.c:95
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:258
#define lrint
Definition: tablegen.h:53
16 bits gray, 16 bits alpha (little-endian)
Definition: pixfmt.h:213
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:277
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2108
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:186
Y , 12bpp, big-endian.
Definition: pixfmt.h:295
static int height
Definition: utils.c:158
int32_t input_rgb2yuv_table[16+40 *4]
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:112
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
#define av_freep(p)
#define GU_IDX
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:99
Definition: vf_addroi.c:26
#define M_PI
Definition: mathematics.h:52
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:175
static void makenan_vec(SwsVector *a)
Definition: utils.c:1947
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define av_malloc_array(a, b)
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:141
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
Definition: internal.h:141
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2489
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:181
#define BY_IDX
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without and describe what they for example set the foo of the bar offset is the offset of the field in your local context
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
int depth
Number of bits in the component.
Definition: pixdesc.h:58
IEEE-754 single precision Y, 32bpp, little-endian.
Definition: pixfmt.h:341
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:217
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:82
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:831
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:242
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:411
#define BU_IDX
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:164
for(j=16;j >0;--j)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:246
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
int i
Definition: input.c:407
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:173
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2138
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:206
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:279
#define V
Definition: avdct.c:30
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, big-endian ...
Definition: pixfmt.h:343
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:160
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86