FFmpeg
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_MMAP
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return &LICENSE_PREFIX FFMPEG_LICENSE[sizeof(LICENSE_PREFIX) - 1];
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
98 static const FormatEntry format_entries[] = {
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
136  [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
137  [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
138  [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
139  [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
140  [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
141  [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
142  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
143  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
144  [AV_PIX_FMT_YUV440P] = { 1, 1 },
145  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
146  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
147  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
148  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
149  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
151  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
152  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
153  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
154  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
155  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
156  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
157  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
158  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
159  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
163  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
164  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
165  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
166  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
167  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
168  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
169  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
170  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
171  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
172  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
173  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
174  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
175  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
176  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
177  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
178  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
179  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
180  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
181  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
182  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
183  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
185  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
186  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
187  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
188  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
189  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
190  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
191  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
192  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
193  [AV_PIX_FMT_YA8] = { 1, 1 },
194  [AV_PIX_FMT_YA16BE] = { 1, 1 },
195  [AV_PIX_FMT_YA16LE] = { 1, 1 },
196  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
197  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
198  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
199  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
200  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
216  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
217  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
218  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
219  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
220  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
221  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
222  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
223  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
224  [AV_PIX_FMT_GBRP] = { 1, 1 },
225  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
228  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
229  [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
231  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
232  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
233  [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
234  [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
235  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
236  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
237  [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
238  [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
239  [AV_PIX_FMT_GBRPF32LE] = { 1, 1 },
240  [AV_PIX_FMT_GBRPF32BE] = { 1, 1 },
241  [AV_PIX_FMT_GBRAPF32LE] = { 1, 1 },
242  [AV_PIX_FMT_GBRAPF32BE] = { 1, 1 },
243  [AV_PIX_FMT_GBRAP] = { 1, 1 },
244  [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
245  [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
246  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
247  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
248  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
249  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
250  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
251  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
252  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
253  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
254  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
255  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
256  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
257  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
258  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
259  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
260  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
261  [AV_PIX_FMT_P010LE] = { 1, 1 },
262  [AV_PIX_FMT_P010BE] = { 1, 1 },
263  [AV_PIX_FMT_P016LE] = { 1, 1 },
264  [AV_PIX_FMT_P016BE] = { 1, 1 },
265  [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
266  [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
267  [AV_PIX_FMT_YUVA422P12BE] = { 1, 1 },
268  [AV_PIX_FMT_YUVA422P12LE] = { 1, 1 },
269  [AV_PIX_FMT_YUVA444P12BE] = { 1, 1 },
270  [AV_PIX_FMT_YUVA444P12LE] = { 1, 1 },
271  [AV_PIX_FMT_NV24] = { 1, 1 },
272  [AV_PIX_FMT_NV42] = { 1, 1 },
273  [AV_PIX_FMT_Y210LE] = { 1, 0 },
274 };
275 
277 {
278  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
279  format_entries[pix_fmt].is_supported_in : 0;
280 }
281 
283 {
284  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
285  format_entries[pix_fmt].is_supported_out : 0;
286 }
287 
289 {
290  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
291  format_entries[pix_fmt].is_supported_endianness : 0;
292 }
293 
294 static double getSplineCoeff(double a, double b, double c, double d,
295  double dist)
296 {
297  if (dist <= 1.0)
298  return ((d * dist + c) * dist + b) * dist + a;
299  else
300  return getSplineCoeff(0.0,
301  b + 2.0 * c + 3.0 * d,
302  c + 3.0 * d,
303  -b - 3.0 * c - 6.0 * d,
304  dist - 1.0);
305 }
306 
307 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
308 {
309  if (pos == -1 || pos <= -513) {
310  pos = (128 << chr_subsample) - 128;
311  }
312  pos += 128; // relative to ideal left edge
313  return pos >> chr_subsample;
314 }
315 
316 typedef struct {
317  int flag; ///< flag associated to the algorithm
318  const char *description; ///< human-readable description
319  int size_factor; ///< size factor used when initing the filters
321 
323  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
324  { SWS_BICUBIC, "bicubic", 4 },
325  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
326  { SWS_BILINEAR, "bilinear", 2 },
327  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
328  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
329  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
330  { SWS_POINT, "nearest neighbor / point", -1 },
331  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
332  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
333  { SWS_X, "experimental", 8 },
334 };
335 
336 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
337  int *outFilterSize, int xInc, int srcW,
338  int dstW, int filterAlign, int one,
339  int flags, int cpu_flags,
340  SwsVector *srcFilter, SwsVector *dstFilter,
341  double param[2], int srcPos, int dstPos)
342 {
343  int i;
344  int filterSize;
345  int filter2Size;
346  int minFilterSize;
347  int64_t *filter = NULL;
348  int64_t *filter2 = NULL;
349  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
350  int ret = -1;
351 
352  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
353 
354  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
355  FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
356 
357  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
358  int i;
359  filterSize = 1;
361  dstW, sizeof(*filter) * filterSize, fail);
362 
363  for (i = 0; i < dstW; i++) {
364  filter[i * filterSize] = fone;
365  (*filterPos)[i] = i;
366  }
367  } else if (flags & SWS_POINT) { // lame looking point sampling mode
368  int i;
369  int64_t xDstInSrc;
370  filterSize = 1;
372  dstW, sizeof(*filter) * filterSize, fail);
373 
374  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
375  for (i = 0; i < dstW; i++) {
376  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
377 
378  (*filterPos)[i] = xx;
379  filter[i] = fone;
380  xDstInSrc += xInc;
381  }
382  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
383  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
384  int i;
385  int64_t xDstInSrc;
386  filterSize = 2;
388  dstW, sizeof(*filter) * filterSize, fail);
389 
390  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
391  for (i = 0; i < dstW; i++) {
392  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
393  int j;
394 
395  (*filterPos)[i] = xx;
396  // bilinear upscale / linear interpolate / area averaging
397  for (j = 0; j < filterSize; j++) {
398  int64_t coeff = fone - FFABS((int64_t)xx * (1 << 16) - xDstInSrc) * (fone >> 16);
399  if (coeff < 0)
400  coeff = 0;
401  filter[i * filterSize + j] = coeff;
402  xx++;
403  }
404  xDstInSrc += xInc;
405  }
406  } else {
407  int64_t xDstInSrc;
408  int sizeFactor = -1;
409 
410  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
411  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
412  sizeFactor = scale_algorithms[i].size_factor;
413  break;
414  }
415  }
416  if (flags & SWS_LANCZOS)
417  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
418  av_assert0(sizeFactor > 0);
419 
420  if (xInc <= 1 << 16)
421  filterSize = 1 + sizeFactor; // upscale
422  else
423  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
424 
425  filterSize = FFMIN(filterSize, srcW - 2);
426  filterSize = FFMAX(filterSize, 1);
427 
429  dstW, sizeof(*filter) * filterSize, fail);
430 
431  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
432  for (i = 0; i < dstW; i++) {
433  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
434  int j;
435  (*filterPos)[i] = xx;
436  for (j = 0; j < filterSize; j++) {
437  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
438  double floatd;
439  int64_t coeff;
440 
441  if (xInc > 1 << 16)
442  d = d * dstW / srcW;
443  floatd = d * (1.0 / (1 << 30));
444 
445  if (flags & SWS_BICUBIC) {
446  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
447  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
448 
449  if (d >= 1LL << 31) {
450  coeff = 0.0;
451  } else {
452  int64_t dd = (d * d) >> 30;
453  int64_t ddd = (dd * d) >> 30;
454 
455  if (d < 1LL << 30)
456  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
457  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
458  (6 * (1 << 24) - 2 * B) * (1 << 30);
459  else
460  coeff = (-B - 6 * C) * ddd +
461  (6 * B + 30 * C) * dd +
462  (-12 * B - 48 * C) * d +
463  (8 * B + 24 * C) * (1 << 30);
464  }
465  coeff /= (1LL<<54)/fone;
466  } else if (flags & SWS_X) {
467  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
468  double c;
469 
470  if (floatd < 1.0)
471  c = cos(floatd * M_PI);
472  else
473  c = -1.0;
474  if (c < 0.0)
475  c = -pow(-c, A);
476  else
477  c = pow(c, A);
478  coeff = (c * 0.5 + 0.5) * fone;
479  } else if (flags & SWS_AREA) {
480  int64_t d2 = d - (1 << 29);
481  if (d2 * xInc < -(1LL << (29 + 16)))
482  coeff = 1.0 * (1LL << (30 + 16));
483  else if (d2 * xInc < (1LL << (29 + 16)))
484  coeff = -d2 * xInc + (1LL << (29 + 16));
485  else
486  coeff = 0.0;
487  coeff *= fone >> (30 + 16);
488  } else if (flags & SWS_GAUSS) {
489  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
490  coeff = exp2(-p * floatd * floatd) * fone;
491  } else if (flags & SWS_SINC) {
492  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
493  } else if (flags & SWS_LANCZOS) {
494  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
495  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
496  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
497  if (floatd > p)
498  coeff = 0;
499  } else if (flags & SWS_BILINEAR) {
500  coeff = (1 << 30) - d;
501  if (coeff < 0)
502  coeff = 0;
503  coeff *= fone >> 30;
504  } else if (flags & SWS_SPLINE) {
505  double p = -2.196152422706632;
506  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
507  } else {
508  av_assert0(0);
509  }
510 
511  filter[i * filterSize + j] = coeff;
512  xx++;
513  }
514  xDstInSrc += 2 * xInc;
515  }
516  }
517 
518  /* apply src & dst Filter to filter -> filter2
519  * av_free(filter);
520  */
521  av_assert0(filterSize > 0);
522  filter2Size = filterSize;
523  if (srcFilter)
524  filter2Size += srcFilter->length - 1;
525  if (dstFilter)
526  filter2Size += dstFilter->length - 1;
527  av_assert0(filter2Size > 0);
528  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
529 
530  for (i = 0; i < dstW; i++) {
531  int j, k;
532 
533  if (srcFilter) {
534  for (k = 0; k < srcFilter->length; k++) {
535  for (j = 0; j < filterSize; j++)
536  filter2[i * filter2Size + k + j] +=
537  srcFilter->coeff[k] * filter[i * filterSize + j];
538  }
539  } else {
540  for (j = 0; j < filterSize; j++)
541  filter2[i * filter2Size + j] = filter[i * filterSize + j];
542  }
543  // FIXME dstFilter
544 
545  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
546  }
547  av_freep(&filter);
548 
549  /* try to reduce the filter-size (step1 find size and shift left) */
550  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
551  minFilterSize = 0;
552  for (i = dstW - 1; i >= 0; i--) {
553  int min = filter2Size;
554  int j;
555  int64_t cutOff = 0.0;
556 
557  /* get rid of near zero elements on the left by shifting left */
558  for (j = 0; j < filter2Size; j++) {
559  int k;
560  cutOff += FFABS(filter2[i * filter2Size]);
561 
562  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
563  break;
564 
565  /* preserve monotonicity because the core can't handle the
566  * filter otherwise */
567  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
568  break;
569 
570  // move filter coefficients left
571  for (k = 1; k < filter2Size; k++)
572  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
573  filter2[i * filter2Size + k - 1] = 0;
574  (*filterPos)[i]++;
575  }
576 
577  cutOff = 0;
578  /* count near zeros on the right */
579  for (j = filter2Size - 1; j > 0; j--) {
580  cutOff += FFABS(filter2[i * filter2Size + j]);
581 
582  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
583  break;
584  min--;
585  }
586 
587  if (min > minFilterSize)
588  minFilterSize = min;
589  }
590 
591  if (PPC_ALTIVEC(cpu_flags)) {
592  // we can handle the special case 4, so we don't want to go the full 8
593  if (minFilterSize < 5)
594  filterAlign = 4;
595 
596  /* We really don't want to waste our time doing useless computation, so
597  * fall back on the scalar C code for very small filters.
598  * Vectorizing is worth it only if you have a decent-sized vector. */
599  if (minFilterSize < 3)
600  filterAlign = 1;
601  }
602 
603  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
604  // special case for unscaled vertical filtering
605  if (minFilterSize == 1 && filterAlign == 2)
606  filterAlign = 1;
607  }
608 
609  av_assert0(minFilterSize > 0);
610  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
611  av_assert0(filterSize > 0);
612  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
613  if (!filter)
614  goto fail;
615  if (filterSize >= MAX_FILTER_SIZE * 16 /
616  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
617  ret = RETCODE_USE_CASCADE;
618  goto fail;
619  }
620  *outFilterSize = filterSize;
621 
622  if (flags & SWS_PRINT_INFO)
624  "SwScaler: reducing / aligning filtersize %d -> %d\n",
625  filter2Size, filterSize);
626  /* try to reduce the filter-size (step2 reduce it) */
627  for (i = 0; i < dstW; i++) {
628  int j;
629 
630  for (j = 0; j < filterSize; j++) {
631  if (j >= filter2Size)
632  filter[i * filterSize + j] = 0;
633  else
634  filter[i * filterSize + j] = filter2[i * filter2Size + j];
635  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
636  filter[i * filterSize + j] = 0;
637  }
638  }
639 
640  // FIXME try to align filterPos if possible
641 
642  // fix borders
643  for (i = 0; i < dstW; i++) {
644  int j;
645  if ((*filterPos)[i] < 0) {
646  // move filter coefficients left to compensate for filterPos
647  for (j = 1; j < filterSize; j++) {
648  int left = FFMAX(j + (*filterPos)[i], 0);
649  filter[i * filterSize + left] += filter[i * filterSize + j];
650  filter[i * filterSize + j] = 0;
651  }
652  (*filterPos)[i]= 0;
653  }
654 
655  if ((*filterPos)[i] + filterSize > srcW) {
656  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
657  int64_t acc = 0;
658 
659  for (j = filterSize - 1; j >= 0; j--) {
660  if ((*filterPos)[i] + j >= srcW) {
661  acc += filter[i * filterSize + j];
662  filter[i * filterSize + j] = 0;
663  }
664  }
665  for (j = filterSize - 1; j >= 0; j--) {
666  if (j < shift) {
667  filter[i * filterSize + j] = 0;
668  } else {
669  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
670  }
671  }
672 
673  (*filterPos)[i]-= shift;
674  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
675  }
676  av_assert0((*filterPos)[i] >= 0);
677  av_assert0((*filterPos)[i] < srcW);
678  if ((*filterPos)[i] + filterSize > srcW) {
679  for (j = 0; j < filterSize; j++) {
680  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
681  }
682  }
683  }
684 
685  // Note the +1 is for the MMX scaler which reads over the end
686  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
687  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
688  (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
689 
690  /* normalize & store in outFilter */
691  for (i = 0; i < dstW; i++) {
692  int j;
693  int64_t error = 0;
694  int64_t sum = 0;
695 
696  for (j = 0; j < filterSize; j++) {
697  sum += filter[i * filterSize + j];
698  }
699  sum = (sum + one / 2) / one;
700  if (!sum) {
701  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
702  sum = 1;
703  }
704  for (j = 0; j < *outFilterSize; j++) {
705  int64_t v = filter[i * filterSize + j] + error;
706  int intV = ROUNDED_DIV(v, sum);
707  (*outFilter)[i * (*outFilterSize) + j] = intV;
708  error = v - intV * sum;
709  }
710  }
711 
712  (*filterPos)[dstW + 0] =
713  (*filterPos)[dstW + 1] =
714  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
715  * read over the end */
716  for (i = 0; i < *outFilterSize; i++) {
717  int k = (dstW - 1) * (*outFilterSize) + i;
718  (*outFilter)[k + 1 * (*outFilterSize)] =
719  (*outFilter)[k + 2 * (*outFilterSize)] =
720  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
721  }
722 
723  ret = 0;
724 
725 fail:
726  if(ret < 0)
727  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
728  av_free(filter);
729  av_free(filter2);
730  return ret;
731 }
732 
733 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
734 {
735  int64_t W, V, Z, Cy, Cu, Cv;
736  int64_t vr = table[0];
737  int64_t ub = table[1];
738  int64_t ug = -table[2];
739  int64_t vg = -table[3];
740  int64_t ONE = 65536;
741  int64_t cy = ONE;
743  int i;
744  static const int8_t map[] = {
745  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
746  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
747  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
748  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
749  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
750  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
751  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
752  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
753  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
754  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
755  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
756  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
759  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
760  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
763  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
764  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
767  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
768  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
769  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
770  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
771  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
772  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
773  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
774  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
775  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
776  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
777  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
778  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
779  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
780  };
781 
782  dstRange = 0; //FIXME range = 1 is handled elsewhere
783 
784  if (!dstRange) {
785  cy = cy * 255 / 219;
786  } else {
787  vr = vr * 224 / 255;
788  ub = ub * 224 / 255;
789  ug = ug * 224 / 255;
790  vg = vg * 224 / 255;
791  }
792  W = ROUNDED_DIV(ONE*ONE*ug, ub);
793  V = ROUNDED_DIV(ONE*ONE*vg, vr);
794  Z = ONE*ONE-W-V;
795 
796  Cy = ROUNDED_DIV(cy*Z, ONE);
797  Cu = ROUNDED_DIV(ub*Z, ONE);
798  Cv = ROUNDED_DIV(vr*Z, ONE);
799 
800  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
801  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
802  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
803 
804  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
805  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
806  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
807 
808  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
809  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
810  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
811 
812  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
813  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
814  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
815  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
816  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
817  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
818  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
819  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
820  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
821  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
822  }
823  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
824  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
825 }
826 
827 static void fill_xyztables(struct SwsContext *c)
828 {
829  int i;
830  double xyzgamma = XYZ_GAMMA;
831  double rgbgamma = 1.0 / RGB_GAMMA;
832  double xyzgammainv = 1.0 / XYZ_GAMMA;
833  double rgbgammainv = RGB_GAMMA;
834  static const int16_t xyz2rgb_matrix[3][4] = {
835  {13270, -6295, -2041},
836  {-3969, 7682, 170},
837  { 228, -835, 4329} };
838  static const int16_t rgb2xyz_matrix[3][4] = {
839  {1689, 1464, 739},
840  { 871, 2929, 296},
841  { 79, 488, 3891} };
842  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
843 
844  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
845  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
846  c->xyzgamma = xyzgamma_tab;
847  c->rgbgamma = rgbgamma_tab;
848  c->xyzgammainv = xyzgammainv_tab;
849  c->rgbgammainv = rgbgammainv_tab;
850 
851  if (rgbgamma_tab[4095])
852  return;
853 
854  /* set gamma vectors */
855  for (i = 0; i < 4096; i++) {
856  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
857  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
858  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
859  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
860  }
861 }
862 
863 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
864  int srcRange, const int table[4], int dstRange,
865  int brightness, int contrast, int saturation)
866 {
867  const AVPixFmtDescriptor *desc_dst;
868  const AVPixFmtDescriptor *desc_src;
869  int need_reinit = 0;
870 
871  handle_formats(c);
872  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
873  desc_src = av_pix_fmt_desc_get(c->srcFormat);
874 
875  if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
876  dstRange = 0;
877  if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
878  srcRange = 0;
879 
880  if (c->srcRange != srcRange ||
881  c->dstRange != dstRange ||
882  c->brightness != brightness ||
883  c->contrast != contrast ||
884  c->saturation != saturation ||
885  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
886  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
887  )
888  need_reinit = 1;
889 
890  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
891  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
892 
893 
894 
895  c->brightness = brightness;
896  c->contrast = contrast;
897  c->saturation = saturation;
898  c->srcRange = srcRange;
899  c->dstRange = dstRange;
900 
901  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
902  //and what we have in ticket 2939 looks better with this check
903  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
905 
906  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
907  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
908 
910  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
911 
912  if (!need_reinit)
913  return 0;
914 
915  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
916  if (!c->cascaded_context[0] &&
917  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
918  c->srcW && c->srcH && c->dstW && c->dstH) {
919  enum AVPixelFormat tmp_format;
920  int tmp_width, tmp_height;
921  int srcW = c->srcW;
922  int srcH = c->srcH;
923  int dstW = c->dstW;
924  int dstH = c->dstH;
925  int ret;
926  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
927 
928  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
929  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
930  tmp_format = AV_PIX_FMT_BGRA64;
931  } else {
932  tmp_format = AV_PIX_FMT_BGR48;
933  }
934  } else {
935  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
936  tmp_format = AV_PIX_FMT_BGRA;
937  } else {
938  tmp_format = AV_PIX_FMT_BGR24;
939  }
940  }
941 
942  if (srcW*srcH > dstW*dstH) {
943  tmp_width = dstW;
944  tmp_height = dstH;
945  } else {
946  tmp_width = srcW;
947  tmp_height = srcH;
948  }
949 
951  tmp_width, tmp_height, tmp_format, 64);
952  if (ret < 0)
953  return ret;
954 
955  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
956  tmp_width, tmp_height, tmp_format,
957  c->flags, c->param);
958  if (!c->cascaded_context[0])
959  return -1;
960 
962  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
963  if (ret < 0)
964  return ret;
965  //we set both src and dst depending on that the RGB side will be ignored
967  srcRange, table, dstRange,
968  brightness, contrast, saturation);
969 
970  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
971  dstW, dstH, c->dstFormat,
972  c->flags, NULL, NULL, c->param);
973  if (!c->cascaded_context[1])
974  return -1;
976  srcRange, table, dstRange,
977  0, 1 << 16, 1 << 16);
978  return 0;
979  }
980  return -1;
981  }
982 
983  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
984  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
985  contrast, saturation);
986  // FIXME factorize
987 
988  if (ARCH_PPC)
989  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
990  contrast, saturation);
991  }
992 
993  fill_rgb2yuv_table(c, table, dstRange);
994 
995  return 0;
996 }
997 
998 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
999  int *srcRange, int **table, int *dstRange,
1000  int *brightness, int *contrast, int *saturation)
1001 {
1002  if (!c )
1003  return -1;
1004 
1005  *inv_table = c->srcColorspaceTable;
1006  *table = c->dstColorspaceTable;
1007  *srcRange = c->srcRange;
1008  *dstRange = c->dstRange;
1009  *brightness = c->brightness;
1010  *contrast = c->contrast;
1011  *saturation = c->saturation;
1012 
1013  return 0;
1014 }
1015 
1017 {
1018  switch (*format) {
1019  case AV_PIX_FMT_YUVJ420P:
1020  *format = AV_PIX_FMT_YUV420P;
1021  return 1;
1022  case AV_PIX_FMT_YUVJ411P:
1023  *format = AV_PIX_FMT_YUV411P;
1024  return 1;
1025  case AV_PIX_FMT_YUVJ422P:
1026  *format = AV_PIX_FMT_YUV422P;
1027  return 1;
1028  case AV_PIX_FMT_YUVJ444P:
1029  *format = AV_PIX_FMT_YUV444P;
1030  return 1;
1031  case AV_PIX_FMT_YUVJ440P:
1032  *format = AV_PIX_FMT_YUV440P;
1033  return 1;
1034  case AV_PIX_FMT_GRAY8:
1035  case AV_PIX_FMT_YA8:
1036  case AV_PIX_FMT_GRAY9LE:
1037  case AV_PIX_FMT_GRAY9BE:
1038  case AV_PIX_FMT_GRAY10LE:
1039  case AV_PIX_FMT_GRAY10BE:
1040  case AV_PIX_FMT_GRAY12LE:
1041  case AV_PIX_FMT_GRAY12BE:
1042  case AV_PIX_FMT_GRAY14LE:
1043  case AV_PIX_FMT_GRAY14BE:
1044  case AV_PIX_FMT_GRAY16LE:
1045  case AV_PIX_FMT_GRAY16BE:
1046  case AV_PIX_FMT_YA16BE:
1047  case AV_PIX_FMT_YA16LE:
1048  return 1;
1049  default:
1050  return 0;
1051  }
1052 }
1053 
1055 {
1056  switch (*format) {
1057  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1058  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1059  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1060  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1061  default: return 0;
1062  }
1063 }
1064 
1066 {
1067  switch (*format) {
1068  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1069  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1070  default: return 0;
1071  }
1072 }
1073 
1075 {
1076  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1077  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1078  c->srcXYZ |= handle_xyz(&c->srcFormat);
1079  c->dstXYZ |= handle_xyz(&c->dstFormat);
1080  if (c->srcXYZ || c->dstXYZ)
1081  fill_xyztables(c);
1082 }
1083 
1085 {
1086  SwsContext *c = av_mallocz(sizeof(SwsContext));
1087 
1088  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1089 
1090  if (c) {
1093  }
1094 
1095  return c;
1096 }
1097 
1098 static uint16_t * alloc_gamma_tbl(double e)
1099 {
1100  int i = 0;
1101  uint16_t * tbl;
1102  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1103  if (!tbl)
1104  return NULL;
1105 
1106  for (i = 0; i < 65536; ++i) {
1107  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1108  }
1109  return tbl;
1110 }
1111 
1113 {
1114  switch(fmt) {
1115  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1116  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1117  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1118  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1119  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1120 
1124 
1125  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1126 
1129 
1132 
1135 
1140 
1141  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1142  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1143 
1162 
1163 // case AV_PIX_FMT_AYUV64LE:
1164 // case AV_PIX_FMT_AYUV64BE:
1165 // case AV_PIX_FMT_PAL8:
1166  default: return AV_PIX_FMT_NONE;
1167  }
1168 }
1169 
1171  SwsFilter *dstFilter)
1172 {
1173  int i;
1174  int usesVFilter, usesHFilter;
1175  int unscaled;
1176  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1177  int srcW = c->srcW;
1178  int srcH = c->srcH;
1179  int dstW = c->dstW;
1180  int dstH = c->dstH;
1181  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1182  int flags, cpu_flags;
1183  enum AVPixelFormat srcFormat = c->srcFormat;
1184  enum AVPixelFormat dstFormat = c->dstFormat;
1185  const AVPixFmtDescriptor *desc_src;
1186  const AVPixFmtDescriptor *desc_dst;
1187  int ret = 0;
1188  enum AVPixelFormat tmpFmt;
1189  static const float float_mult = 1.0f / 255.0f;
1190 
1191  cpu_flags = av_get_cpu_flags();
1192  flags = c->flags;
1193  emms_c();
1194  if (!rgb15to16)
1196 
1197  unscaled = (srcW == dstW && srcH == dstH);
1198 
1199  c->srcRange |= handle_jpeg(&c->srcFormat);
1200  c->dstRange |= handle_jpeg(&c->dstFormat);
1201 
1202  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1203  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1204 
1205  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1206  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1207  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1208  c->dstRange, 0, 1 << 16, 1 << 16);
1209 
1210  handle_formats(c);
1211  srcFormat = c->srcFormat;
1212  dstFormat = c->dstFormat;
1213  desc_src = av_pix_fmt_desc_get(srcFormat);
1214  desc_dst = av_pix_fmt_desc_get(dstFormat);
1215 
1216  // If the source has no alpha then disable alpha blendaway
1217  if (c->src0Alpha)
1219 
1220  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1221  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1222  if (!sws_isSupportedInput(srcFormat)) {
1223  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1224  av_get_pix_fmt_name(srcFormat));
1225  return AVERROR(EINVAL);
1226  }
1227  if (!sws_isSupportedOutput(dstFormat)) {
1228  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1229  av_get_pix_fmt_name(dstFormat));
1230  return AVERROR(EINVAL);
1231  }
1232  }
1233  av_assert2(desc_src && desc_dst);
1234 
1235  i = flags & (SWS_POINT |
1236  SWS_AREA |
1237  SWS_BILINEAR |
1239  SWS_BICUBIC |
1240  SWS_X |
1241  SWS_GAUSS |
1242  SWS_LANCZOS |
1243  SWS_SINC |
1244  SWS_SPLINE |
1245  SWS_BICUBLIN);
1246 
1247  /* provide a default scaler if not set by caller */
1248  if (!i) {
1249  if (dstW < srcW && dstH < srcH)
1250  flags |= SWS_BICUBIC;
1251  else if (dstW > srcW && dstH > srcH)
1252  flags |= SWS_BICUBIC;
1253  else
1254  flags |= SWS_BICUBIC;
1255  c->flags = flags;
1256  } else if (i & (i - 1)) {
1257  av_log(c, AV_LOG_ERROR,
1258  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1259  return AVERROR(EINVAL);
1260  }
1261  /* sanity check */
1262  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1263  /* FIXME check if these are enough and try to lower them after
1264  * fixing the relevant parts of the code */
1265  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1266  srcW, srcH, dstW, dstH);
1267  return AVERROR(EINVAL);
1268  }
1269  if (flags & SWS_FAST_BILINEAR) {
1270  if (srcW < 8 || dstW < 8) {
1271  flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1272  c->flags = flags;
1273  }
1274  }
1275 
1276  if (!dstFilter)
1277  dstFilter = &dummyFilter;
1278  if (!srcFilter)
1279  srcFilter = &dummyFilter;
1280 
1281  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1282  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1283  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1284  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1285  c->vRounder = 4 * 0x0001000100010001ULL;
1286 
1287  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1288  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1289  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1290  (dstFilter->chrV && dstFilter->chrV->length > 1);
1291  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1292  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1293  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1294  (dstFilter->chrH && dstFilter->chrH->length > 1);
1295 
1298 
1299  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1300  if (dstW&1) {
1301  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1302  flags |= SWS_FULL_CHR_H_INT;
1303  c->flags = flags;
1304  }
1305 
1306  if ( c->chrSrcHSubSample == 0
1307  && c->chrSrcVSubSample == 0
1308  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1309  && !(c->flags & SWS_FAST_BILINEAR)
1310  ) {
1311  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1312  flags |= SWS_FULL_CHR_H_INT;
1313  c->flags = flags;
1314  }
1315  }
1316 
1317  if (c->dither == SWS_DITHER_AUTO) {
1318  if (flags & SWS_ERROR_DIFFUSION)
1319  c->dither = SWS_DITHER_ED;
1320  }
1321 
1322  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1323  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1324  dstFormat == AV_PIX_FMT_BGR8 ||
1325  dstFormat == AV_PIX_FMT_RGB8) {
1326  if (c->dither == SWS_DITHER_AUTO)
1328  if (!(flags & SWS_FULL_CHR_H_INT)) {
1330  av_log(c, AV_LOG_DEBUG,
1331  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1332  av_get_pix_fmt_name(dstFormat));
1333  flags |= SWS_FULL_CHR_H_INT;
1334  c->flags = flags;
1335  }
1336  }
1337  if (flags & SWS_FULL_CHR_H_INT) {
1338  if (c->dither == SWS_DITHER_BAYER) {
1339  av_log(c, AV_LOG_DEBUG,
1340  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1341  av_get_pix_fmt_name(dstFormat));
1342  c->dither = SWS_DITHER_ED;
1343  }
1344  }
1345  }
1346  if (isPlanarRGB(dstFormat)) {
1347  if (!(flags & SWS_FULL_CHR_H_INT)) {
1348  av_log(c, AV_LOG_DEBUG,
1349  "%s output is not supported with half chroma resolution, switching to full\n",
1350  av_get_pix_fmt_name(dstFormat));
1351  flags |= SWS_FULL_CHR_H_INT;
1352  c->flags = flags;
1353  }
1354  }
1355 
1356  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1357  * chroma interpolation */
1358  if (flags & SWS_FULL_CHR_H_INT &&
1359  isAnyRGB(dstFormat) &&
1360  !isPlanarRGB(dstFormat) &&
1361  dstFormat != AV_PIX_FMT_RGBA64LE &&
1362  dstFormat != AV_PIX_FMT_RGBA64BE &&
1363  dstFormat != AV_PIX_FMT_BGRA64LE &&
1364  dstFormat != AV_PIX_FMT_BGRA64BE &&
1365  dstFormat != AV_PIX_FMT_RGB48LE &&
1366  dstFormat != AV_PIX_FMT_RGB48BE &&
1367  dstFormat != AV_PIX_FMT_BGR48LE &&
1368  dstFormat != AV_PIX_FMT_BGR48BE &&
1369  dstFormat != AV_PIX_FMT_RGBA &&
1370  dstFormat != AV_PIX_FMT_ARGB &&
1371  dstFormat != AV_PIX_FMT_BGRA &&
1372  dstFormat != AV_PIX_FMT_ABGR &&
1373  dstFormat != AV_PIX_FMT_RGB24 &&
1374  dstFormat != AV_PIX_FMT_BGR24 &&
1375  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1376  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1377  dstFormat != AV_PIX_FMT_BGR8 &&
1378  dstFormat != AV_PIX_FMT_RGB8
1379  ) {
1381  "full chroma interpolation for destination format '%s' not yet implemented\n",
1382  av_get_pix_fmt_name(dstFormat));
1383  flags &= ~SWS_FULL_CHR_H_INT;
1384  c->flags = flags;
1385  }
1386  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1387  c->chrDstHSubSample = 1;
1388 
1389  // drop some chroma lines if the user wants it
1390  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1392  c->chrSrcVSubSample += c->vChrDrop;
1393 
1394  /* drop every other pixel for chroma calculation unless user
1395  * wants full chroma */
1396  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1397  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1398  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1399  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1400  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1401  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1402  srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
1403  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1404  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1405  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1406  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1407  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1408  srcFormat != AV_PIX_FMT_GBRPF32BE && srcFormat != AV_PIX_FMT_GBRPF32LE &&
1409  srcFormat != AV_PIX_FMT_GBRAPF32BE && srcFormat != AV_PIX_FMT_GBRAPF32LE &&
1410  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1411  (flags & SWS_FAST_BILINEAR)))
1412  c->chrSrcHSubSample = 1;
1413 
1414  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1415  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1416  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1417  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1418  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1419 
1420  FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1421 
1422  c->srcBpc = desc_src->comp[0].depth;
1423  if (c->srcBpc < 8)
1424  c->srcBpc = 8;
1425  c->dstBpc = desc_dst->comp[0].depth;
1426  if (c->dstBpc < 8)
1427  c->dstBpc = 8;
1428  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1429  c->srcBpc = 16;
1430  if (c->dstBpc == 16)
1431  dst_stride <<= 1;
1432 
1433  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1434  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1435  c->chrDstW >= c->chrSrcW &&
1436  (srcW & 15) == 0;
1437  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1438 
1439  && (flags & SWS_FAST_BILINEAR)) {
1440  if (flags & SWS_PRINT_INFO)
1441  av_log(c, AV_LOG_INFO,
1442  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1443  }
1444  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1445  c->canMMXEXTBeUsed = 0;
1446  } else
1447  c->canMMXEXTBeUsed = 0;
1448 
1449  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1450  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1451 
1452  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1453  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1454  * correct scaling.
1455  * n-2 is the last chrominance sample available.
1456  * This is not perfect, but no one should notice the difference, the more
1457  * correct variant would be like the vertical one, but that would require
1458  * some special code for the first and last pixel */
1459  if (flags & SWS_FAST_BILINEAR) {
1460  if (c->canMMXEXTBeUsed) {
1461  c->lumXInc += 20;
1462  c->chrXInc += 20;
1463  }
1464  // we don't use the x86 asm scaler if MMX is available
1465  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1466  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1467  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1468  }
1469  }
1470 
1471  // hardcoded for now
1472  c->gamma_value = 2.2;
1473  tmpFmt = AV_PIX_FMT_RGBA64LE;
1474 
1475 
1476  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1477  SwsContext *c2;
1478  c->cascaded_context[0] = NULL;
1479 
1481  srcW, srcH, tmpFmt, 64);
1482  if (ret < 0)
1483  return ret;
1484 
1485  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1486  srcW, srcH, tmpFmt,
1487  flags, NULL, NULL, c->param);
1488  if (!c->cascaded_context[0]) {
1489  return -1;
1490  }
1491 
1492  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1493  dstW, dstH, tmpFmt,
1494  flags, srcFilter, dstFilter, c->param);
1495 
1496  if (!c->cascaded_context[1])
1497  return -1;
1498 
1499  c2 = c->cascaded_context[1];
1500  c2->is_internal_gamma = 1;
1501  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1502  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1503  if (!c2->gamma || !c2->inv_gamma)
1504  return AVERROR(ENOMEM);
1505 
1506  // is_internal_flag is set after creating the context
1507  // to properly create the gamma convert FilterDescriptor
1508  // we have to re-initialize it
1509  ff_free_filters(c2);
1510  if (ff_init_filters(c2) < 0) {
1511  sws_freeContext(c2);
1512  c->cascaded_context[1] = NULL;
1513  return -1;
1514  }
1515 
1516  c->cascaded_context[2] = NULL;
1517  if (dstFormat != tmpFmt) {
1519  dstW, dstH, tmpFmt, 64);
1520  if (ret < 0)
1521  return ret;
1522 
1523  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1524  dstW, dstH, dstFormat,
1525  flags, NULL, NULL, c->param);
1526  if (!c->cascaded_context[2])
1527  return -1;
1528  }
1529  return 0;
1530  }
1531 
1532  if (isBayer(srcFormat)) {
1533  if (!unscaled ||
1534  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1535  enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1536 
1538  srcW, srcH, tmpFormat, 64);
1539  if (ret < 0)
1540  return ret;
1541 
1542  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1543  srcW, srcH, tmpFormat,
1544  flags, srcFilter, NULL, c->param);
1545  if (!c->cascaded_context[0])
1546  return -1;
1547 
1548  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1549  dstW, dstH, dstFormat,
1550  flags, NULL, dstFilter, c->param);
1551  if (!c->cascaded_context[1])
1552  return -1;
1553  return 0;
1554  }
1555  }
1556 
1557  if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
1558  for (i = 0; i < 256; ++i){
1559  c->uint2float_lut[i] = (float)i * float_mult;
1560  }
1561  }
1562 
1563  // float will be converted to uint16_t
1564  if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
1565  (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
1566  dstFormat != AV_PIX_FMT_GRAY8))){
1567  c->srcBpc = 16;
1568  }
1569 
1570  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1571  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1572 
1573  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
1574  if (!unscaled ||
1575  dstFormat != tmpFormat ||
1576  usesHFilter || usesVFilter ||
1577  c->srcRange != c->dstRange
1578  ) {
1579  c->cascaded_mainindex = 1;
1581  srcW, srcH, tmpFormat, 64);
1582  if (ret < 0)
1583  return ret;
1584 
1585  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1586  srcW, srcH, tmpFormat,
1587  flags, c->param);
1588  if (!c->cascaded_context[0])
1589  return -1;
1591  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1592  if (ret < 0)
1593  return ret;
1594 
1595  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1596  dstW, dstH, dstFormat,
1597  flags, c->param);
1598  if (!c->cascaded_context[1])
1599  return -1;
1600 
1601  c->cascaded_context[1]->srcRange = c->srcRange;
1602  c->cascaded_context[1]->dstRange = c->dstRange;
1603  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1604  if (ret < 0)
1605  return ret;
1606 
1607  return 0;
1608  }
1609  }
1610 
1611 #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
1612 #define USE_MMAP 1
1613 #else
1614 #define USE_MMAP 0
1615 #endif
1616 
1617  /* precalculate horizontal scaler filter coefficients */
1618  {
1619 #if HAVE_MMXEXT_INLINE
1620 // can't downscale !!!
1621  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1623  NULL, NULL, 8);
1625  NULL, NULL, NULL, 4);
1626 
1627 #if USE_MMAP
1628  c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
1629  PROT_READ | PROT_WRITE,
1630  MAP_PRIVATE | MAP_ANONYMOUS,
1631  -1, 0);
1632  c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
1633  PROT_READ | PROT_WRITE,
1634  MAP_PRIVATE | MAP_ANONYMOUS,
1635  -1, 0);
1636 #elif HAVE_VIRTUALALLOC
1637  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1639  MEM_COMMIT,
1640  PAGE_EXECUTE_READWRITE);
1641  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1643  MEM_COMMIT,
1644  PAGE_EXECUTE_READWRITE);
1645 #else
1648 #endif
1649 
1650 #ifdef MAP_ANONYMOUS
1651  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1652 #else
1654 #endif
1655  {
1656  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1657  return AVERROR(ENOMEM);
1658  }
1659 
1660  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1661  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1662  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1663  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1664 
1666  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1668  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1669 
1670 #if USE_MMAP
1671  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1672  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1673  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1674  goto fail;
1675  }
1676 #endif
1677  } else
1678 #endif /* HAVE_MMXEXT_INLINE */
1679  {
1680  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1681  PPC_ALTIVEC(cpu_flags) ? 8 :
1682  have_neon(cpu_flags) ? 8 : 1;
1683 
1684  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1685  &c->hLumFilterSize, c->lumXInc,
1686  srcW, dstW, filterAlign, 1 << 14,
1687  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1688  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1689  c->param,
1690  get_local_pos(c, 0, 0, 0),
1691  get_local_pos(c, 0, 0, 0))) < 0)
1692  goto fail;
1693  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1694  &c->hChrFilterSize, c->chrXInc,
1695  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1696  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1697  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1698  c->param,
1700  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1701  goto fail;
1702  }
1703  } // initialize horizontal stuff
1704 
1705  /* precalculate vertical scaler filter coefficients */
1706  {
1707  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1708  PPC_ALTIVEC(cpu_flags) ? 8 :
1709  have_neon(cpu_flags) ? 2 : 1;
1710 
1711  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1712  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1713  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1714  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1715  c->param,
1716  get_local_pos(c, 0, 0, 1),
1717  get_local_pos(c, 0, 0, 1))) < 0)
1718  goto fail;
1719  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1720  c->chrYInc, c->chrSrcH, c->chrDstH,
1721  filterAlign, (1 << 12),
1722  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1723  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1724  c->param,
1726  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1727 
1728  goto fail;
1729 
1730 #if HAVE_ALTIVEC
1731  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1732  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1733 
1734  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1735  int j;
1736  short *p = (short *)&c->vYCoeffsBank[i];
1737  for (j = 0; j < 8; j++)
1738  p[j] = c->vLumFilter[i];
1739  }
1740 
1741  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1742  int j;
1743  short *p = (short *)&c->vCCoeffsBank[i];
1744  for (j = 0; j < 8; j++)
1745  p[j] = c->vChrFilter[i];
1746  }
1747 #endif
1748  }
1749 
1750  for (i = 0; i < 4; i++)
1751  FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1752 
1753  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1754 
1755  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1756  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1757  c->uv_offx2 = dst_stride + 16;
1758 
1759  av_assert0(c->chrDstH <= dstH);
1760 
1761  if (flags & SWS_PRINT_INFO) {
1762  const char *scaler = NULL, *cpucaps;
1763 
1764  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1765  if (flags & scale_algorithms[i].flag) {
1766  scaler = scale_algorithms[i].description;
1767  break;
1768  }
1769  }
1770  if (!scaler)
1771  scaler = "ehh flags invalid?!";
1772  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1773  scaler,
1774  av_get_pix_fmt_name(srcFormat),
1775 #ifdef DITHER1XBPP
1776  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1777  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1778  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1779  "dithered " : "",
1780 #else
1781  "",
1782 #endif
1783  av_get_pix_fmt_name(dstFormat));
1784 
1785  if (INLINE_MMXEXT(cpu_flags))
1786  cpucaps = "MMXEXT";
1787  else if (INLINE_AMD3DNOW(cpu_flags))
1788  cpucaps = "3DNOW";
1789  else if (INLINE_MMX(cpu_flags))
1790  cpucaps = "MMX";
1791  else if (PPC_ALTIVEC(cpu_flags))
1792  cpucaps = "AltiVec";
1793  else
1794  cpucaps = "C";
1795 
1796  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1797 
1798  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1799  av_log(c, AV_LOG_DEBUG,
1800  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1801  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1802  av_log(c, AV_LOG_DEBUG,
1803  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1804  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1805  c->chrXInc, c->chrYInc);
1806  }
1807 
1808  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1809  if (unscaled && !usesHFilter && !usesVFilter &&
1811  isALPHA(srcFormat) &&
1812  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1813  alphaless_fmt(srcFormat) == dstFormat
1814  ) {
1816 
1817  if (flags & SWS_PRINT_INFO)
1818  av_log(c, AV_LOG_INFO,
1819  "using alpha blendaway %s -> %s special converter\n",
1820  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1821  return 0;
1822  }
1823 
1824  /* unscaled special cases */
1825  if (unscaled && !usesHFilter && !usesVFilter &&
1826  (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
1827  isFloat(srcFormat) || isFloat(dstFormat))){
1829 
1830  if (c->swscale) {
1831  if (flags & SWS_PRINT_INFO)
1832  av_log(c, AV_LOG_INFO,
1833  "using unscaled %s -> %s special converter\n",
1834  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1835  return 0;
1836  }
1837  }
1838 
1839  c->swscale = ff_getSwsFunc(c);
1840  return ff_init_filters(c);
1841 fail: // FIXME replace things by appropriate error codes
1842  if (ret == RETCODE_USE_CASCADE) {
1843  int tmpW = sqrt(srcW * (int64_t)dstW);
1844  int tmpH = sqrt(srcH * (int64_t)dstH);
1845  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1846 
1847  if (isALPHA(srcFormat))
1848  tmpFormat = AV_PIX_FMT_YUVA420P;
1849 
1850  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1851  return AVERROR(EINVAL);
1852 
1854  tmpW, tmpH, tmpFormat, 64);
1855  if (ret < 0)
1856  return ret;
1857 
1858  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1859  tmpW, tmpH, tmpFormat,
1860  flags, srcFilter, NULL, c->param);
1861  if (!c->cascaded_context[0])
1862  return -1;
1863 
1864  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1865  dstW, dstH, dstFormat,
1866  flags, NULL, dstFilter, c->param);
1867  if (!c->cascaded_context[1])
1868  return -1;
1869  return 0;
1870  }
1871  return -1;
1872 }
1873 
1874 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1875  int dstW, int dstH, enum AVPixelFormat dstFormat,
1876  int flags, const double *param)
1877 {
1878  SwsContext *c;
1879 
1880  if (!(c = sws_alloc_context()))
1881  return NULL;
1882 
1883  c->flags = flags;
1884  c->srcW = srcW;
1885  c->srcH = srcH;
1886  c->dstW = dstW;
1887  c->dstH = dstH;
1888  c->srcFormat = srcFormat;
1889  c->dstFormat = dstFormat;
1890 
1891  if (param) {
1892  c->param[0] = param[0];
1893  c->param[1] = param[1];
1894  }
1895 
1896  return c;
1897 }
1898 
1899 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1900  int dstW, int dstH, enum AVPixelFormat dstFormat,
1901  int flags, SwsFilter *srcFilter,
1902  SwsFilter *dstFilter, const double *param)
1903 {
1904  SwsContext *c;
1905 
1906  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1907  dstW, dstH, dstFormat,
1908  flags, param);
1909  if (!c)
1910  return NULL;
1911 
1912  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1913  sws_freeContext(c);
1914  return NULL;
1915  }
1916 
1917  return c;
1918 }
1919 
1920 static int isnan_vec(SwsVector *a)
1921 {
1922  int i;
1923  for (i=0; i<a->length; i++)
1924  if (isnan(a->coeff[i]))
1925  return 1;
1926  return 0;
1927 }
1928 
1929 static void makenan_vec(SwsVector *a)
1930 {
1931  int i;
1932  for (i=0; i<a->length; i++)
1933  a->coeff[i] = NAN;
1934 }
1935 
1936 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1937  float lumaSharpen, float chromaSharpen,
1938  float chromaHShift, float chromaVShift,
1939  int verbose)
1940 {
1941  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1942  if (!filter)
1943  return NULL;
1944 
1945  if (lumaGBlur != 0.0) {
1946  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1947  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1948  } else {
1949  filter->lumH = sws_getIdentityVec();
1950  filter->lumV = sws_getIdentityVec();
1951  }
1952 
1953  if (chromaGBlur != 0.0) {
1954  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1955  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1956  } else {
1957  filter->chrH = sws_getIdentityVec();
1958  filter->chrV = sws_getIdentityVec();
1959  }
1960 
1961  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1962  goto fail;
1963 
1964  if (chromaSharpen != 0.0) {
1965  SwsVector *id = sws_getIdentityVec();
1966  if (!id)
1967  goto fail;
1968  sws_scaleVec(filter->chrH, -chromaSharpen);
1969  sws_scaleVec(filter->chrV, -chromaSharpen);
1970  sws_addVec(filter->chrH, id);
1971  sws_addVec(filter->chrV, id);
1972  sws_freeVec(id);
1973  }
1974 
1975  if (lumaSharpen != 0.0) {
1976  SwsVector *id = sws_getIdentityVec();
1977  if (!id)
1978  goto fail;
1979  sws_scaleVec(filter->lumH, -lumaSharpen);
1980  sws_scaleVec(filter->lumV, -lumaSharpen);
1981  sws_addVec(filter->lumH, id);
1982  sws_addVec(filter->lumV, id);
1983  sws_freeVec(id);
1984  }
1985 
1986  if (chromaHShift != 0.0)
1987  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1988 
1989  if (chromaVShift != 0.0)
1990  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1991 
1992  sws_normalizeVec(filter->chrH, 1.0);
1993  sws_normalizeVec(filter->chrV, 1.0);
1994  sws_normalizeVec(filter->lumH, 1.0);
1995  sws_normalizeVec(filter->lumV, 1.0);
1996 
1997  if (isnan_vec(filter->chrH) ||
1998  isnan_vec(filter->chrV) ||
1999  isnan_vec(filter->lumH) ||
2000  isnan_vec(filter->lumV))
2001  goto fail;
2002 
2003  if (verbose)
2004  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
2005  if (verbose)
2006  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
2007 
2008  return filter;
2009 
2010 fail:
2011  sws_freeVec(filter->lumH);
2012  sws_freeVec(filter->lumV);
2013  sws_freeVec(filter->chrH);
2014  sws_freeVec(filter->chrV);
2015  av_freep(&filter);
2016  return NULL;
2017 }
2018 
2020 {
2021  SwsVector *vec;
2022 
2023  if(length <= 0 || length > INT_MAX/ sizeof(double))
2024  return NULL;
2025 
2026  vec = av_malloc(sizeof(SwsVector));
2027  if (!vec)
2028  return NULL;
2029  vec->length = length;
2030  vec->coeff = av_malloc(sizeof(double) * length);
2031  if (!vec->coeff)
2032  av_freep(&vec);
2033  return vec;
2034 }
2035 
2036 SwsVector *sws_getGaussianVec(double variance, double quality)
2037 {
2038  const int length = (int)(variance * quality + 0.5) | 1;
2039  int i;
2040  double middle = (length - 1) * 0.5;
2041  SwsVector *vec;
2042 
2043  if(variance < 0 || quality < 0)
2044  return NULL;
2045 
2046  vec = sws_allocVec(length);
2047 
2048  if (!vec)
2049  return NULL;
2050 
2051  for (i = 0; i < length; i++) {
2052  double dist = i - middle;
2053  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2054  sqrt(2 * variance * M_PI);
2055  }
2056 
2057  sws_normalizeVec(vec, 1.0);
2058 
2059  return vec;
2060 }
2061 
2062 /**
2063  * Allocate and return a vector with length coefficients, all
2064  * with the same value c.
2065  */
2066 #if !FF_API_SWS_VECTOR
2067 static
2068 #endif
2070 {
2071  int i;
2072  SwsVector *vec = sws_allocVec(length);
2073 
2074  if (!vec)
2075  return NULL;
2076 
2077  for (i = 0; i < length; i++)
2078  vec->coeff[i] = c;
2079 
2080  return vec;
2081 }
2082 
2083 /**
2084  * Allocate and return a vector with just one coefficient, with
2085  * value 1.0.
2086  */
2087 #if !FF_API_SWS_VECTOR
2088 static
2089 #endif
2091 {
2092  return sws_getConstVec(1.0, 1);
2093 }
2094 
2095 static double sws_dcVec(SwsVector *a)
2096 {
2097  int i;
2098  double sum = 0;
2099 
2100  for (i = 0; i < a->length; i++)
2101  sum += a->coeff[i];
2102 
2103  return sum;
2104 }
2105 
2106 void sws_scaleVec(SwsVector *a, double scalar)
2107 {
2108  int i;
2109 
2110  for (i = 0; i < a->length; i++)
2111  a->coeff[i] *= scalar;
2112 }
2113 
2115 {
2116  sws_scaleVec(a, height / sws_dcVec(a));
2117 }
2118 
2119 #if FF_API_SWS_VECTOR
2121 {
2122  int length = a->length + b->length - 1;
2123  int i, j;
2124  SwsVector *vec = sws_getConstVec(0.0, length);
2125 
2126  if (!vec)
2127  return NULL;
2128 
2129  for (i = 0; i < a->length; i++) {
2130  for (j = 0; j < b->length; j++) {
2131  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2132  }
2133  }
2134 
2135  return vec;
2136 }
2137 #endif
2138 
2140 {
2141  int length = FFMAX(a->length, b->length);
2142  int i;
2143  SwsVector *vec = sws_getConstVec(0.0, length);
2144 
2145  if (!vec)
2146  return NULL;
2147 
2148  for (i = 0; i < a->length; i++)
2149  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2150  for (i = 0; i < b->length; i++)
2151  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2152 
2153  return vec;
2154 }
2155 
2156 #if FF_API_SWS_VECTOR
2158 {
2159  int length = FFMAX(a->length, b->length);
2160  int i;
2161  SwsVector *vec = sws_getConstVec(0.0, length);
2162 
2163  if (!vec)
2164  return NULL;
2165 
2166  for (i = 0; i < a->length; i++)
2167  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2168  for (i = 0; i < b->length; i++)
2169  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2170 
2171  return vec;
2172 }
2173 #endif
2174 
2175 /* shift left / or right if "shift" is negative */
2177 {
2178  int length = a->length + FFABS(shift) * 2;
2179  int i;
2180  SwsVector *vec = sws_getConstVec(0.0, length);
2181 
2182  if (!vec)
2183  return NULL;
2184 
2185  for (i = 0; i < a->length; i++) {
2186  vec->coeff[i + (length - 1) / 2 -
2187  (a->length - 1) / 2 - shift] = a->coeff[i];
2188  }
2189 
2190  return vec;
2191 }
2192 
2193 #if !FF_API_SWS_VECTOR
2194 static
2195 #endif
2197 {
2198  SwsVector *shifted = sws_getShiftedVec(a, shift);
2199  if (!shifted) {
2200  makenan_vec(a);
2201  return;
2202  }
2203  av_free(a->coeff);
2204  a->coeff = shifted->coeff;
2205  a->length = shifted->length;
2206  av_free(shifted);
2207 }
2208 
2209 #if !FF_API_SWS_VECTOR
2210 static
2211 #endif
2213 {
2214  SwsVector *sum = sws_sumVec(a, b);
2215  if (!sum) {
2216  makenan_vec(a);
2217  return;
2218  }
2219  av_free(a->coeff);
2220  a->coeff = sum->coeff;
2221  a->length = sum->length;
2222  av_free(sum);
2223 }
2224 
2225 #if FF_API_SWS_VECTOR
2227 {
2228  SwsVector *diff = sws_diffVec(a, b);
2229  if (!diff) {
2230  makenan_vec(a);
2231  return;
2232  }
2233  av_free(a->coeff);
2234  a->coeff = diff->coeff;
2235  a->length = diff->length;
2236  av_free(diff);
2237 }
2238 
2240 {
2241  SwsVector *conv = sws_getConvVec(a, b);
2242  if (!conv) {
2243  makenan_vec(a);
2244  return;
2245  }
2246  av_free(a->coeff);
2247  a->coeff = conv->coeff;
2248  a->length = conv->length;
2249  av_free(conv);
2250 }
2251 
2253 {
2254  SwsVector *vec = sws_allocVec(a->length);
2255 
2256  if (!vec)
2257  return NULL;
2258 
2259  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2260 
2261  return vec;
2262 }
2263 #endif
2264 
2265 /**
2266  * Print with av_log() a textual representation of the vector a
2267  * if log_level <= av_log_level.
2268  */
2269 #if !FF_API_SWS_VECTOR
2270 static
2271 #endif
2272 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2273 {
2274  int i;
2275  double max = 0;
2276  double min = 0;
2277  double range;
2278 
2279  for (i = 0; i < a->length; i++)
2280  if (a->coeff[i] > max)
2281  max = a->coeff[i];
2282 
2283  for (i = 0; i < a->length; i++)
2284  if (a->coeff[i] < min)
2285  min = a->coeff[i];
2286 
2287  range = max - min;
2288 
2289  for (i = 0; i < a->length; i++) {
2290  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2291  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2292  for (; x > 0; x--)
2293  av_log(log_ctx, log_level, " ");
2294  av_log(log_ctx, log_level, "|\n");
2295  }
2296 }
2297 
2299 {
2300  if (!a)
2301  return;
2302  av_freep(&a->coeff);
2303  a->length = 0;
2304  av_free(a);
2305 }
2306 
2308 {
2309  if (!filter)
2310  return;
2311 
2312  sws_freeVec(filter->lumH);
2313  sws_freeVec(filter->lumV);
2314  sws_freeVec(filter->chrH);
2315  sws_freeVec(filter->chrV);
2316  av_free(filter);
2317 }
2318 
2320 {
2321  int i;
2322  if (!c)
2323  return;
2324 
2325  for (i = 0; i < 4; i++)
2326  av_freep(&c->dither_error[i]);
2327 
2328  av_freep(&c->vLumFilter);
2329  av_freep(&c->vChrFilter);
2330  av_freep(&c->hLumFilter);
2331  av_freep(&c->hChrFilter);
2332 #if HAVE_ALTIVEC
2333  av_freep(&c->vYCoeffsBank);
2334  av_freep(&c->vCCoeffsBank);
2335 #endif
2336 
2337  av_freep(&c->vLumFilterPos);
2338  av_freep(&c->vChrFilterPos);
2339  av_freep(&c->hLumFilterPos);
2340  av_freep(&c->hChrFilterPos);
2341 
2342 #if HAVE_MMX_INLINE
2343 #if USE_MMAP
2344  if (c->lumMmxextFilterCode)
2346  if (c->chrMmxextFilterCode)
2348 #elif HAVE_VIRTUALALLOC
2349  if (c->lumMmxextFilterCode)
2350  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2351  if (c->chrMmxextFilterCode)
2352  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2353 #else
2356 #endif
2359 #endif /* HAVE_MMX_INLINE */
2360 
2361  av_freep(&c->yuvTable);
2363 
2367  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2368  av_freep(&c->cascaded_tmp[0]);
2369  av_freep(&c->cascaded1_tmp[0]);
2370 
2371  av_freep(&c->gamma);
2372  av_freep(&c->inv_gamma);
2373 
2374  ff_free_filters(c);
2375 
2376  av_free(c);
2377 }
2378 
2380  int srcH, enum AVPixelFormat srcFormat,
2381  int dstW, int dstH,
2382  enum AVPixelFormat dstFormat, int flags,
2383  SwsFilter *srcFilter,
2384  SwsFilter *dstFilter,
2385  const double *param)
2386 {
2387  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2389  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2390  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2391 
2392  if (!param)
2393  param = default_param;
2394 
2395  if (context &&
2396  (context->srcW != srcW ||
2397  context->srcH != srcH ||
2398  context->srcFormat != srcFormat ||
2399  context->dstW != dstW ||
2400  context->dstH != dstH ||
2401  context->dstFormat != dstFormat ||
2402  context->flags != flags ||
2403  context->param[0] != param[0] ||
2404  context->param[1] != param[1])) {
2405 
2406  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2407  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2408  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2409  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2410  sws_freeContext(context);
2411  context = NULL;
2412  }
2413 
2414  if (!context) {
2415  if (!(context = sws_alloc_context()))
2416  return NULL;
2417  context->srcW = srcW;
2418  context->srcH = srcH;
2419  context->srcFormat = srcFormat;
2420  context->dstW = dstW;
2421  context->dstH = dstH;
2422  context->dstFormat = dstFormat;
2423  context->flags = flags;
2424  context->param[0] = param[0];
2425  context->param[1] = param[1];
2426 
2427  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2428  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2429  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2430  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2431 
2432  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2433  sws_freeContext(context);
2434  return NULL;
2435  }
2436  }
2437  return context;
2438 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:81
SwsVector * chrV
Definition: swscale.h:119
IEEE-754 single precision Y, 32bpp, big-endian.
Definition: pixfmt.h:340
packed YUV 4:2:2 like YUYV422, 20bpp, data in the high bits, little-endian
Definition: pixfmt.h:359
uint8_t is_supported_out
Definition: utils.c:94
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:291
#define NULL
Definition: coverity.c:32
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:282
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:166
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:275
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:252
static enum AVPixelFormat pix_fmt
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2139
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
static const FormatEntry format_entries[]
Definition: utils.c:98
static int shift(int a, int b)
Definition: sonic.c:82
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1054
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:245
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:70
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2549
int chrSrcH
Height of source chroma planes.
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:167
#define SWS_X
Definition: swscale.h:61
int ff_free_filters(SwsContext *c)
Definition: slice.c:383
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
#define RV_IDX
#define SWS_BICUBIC
Definition: swscale.h:60
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:733
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:249
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:159
#define BV_IDX
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:131
8 bits gray, 8 bits alpha
Definition: pixfmt.h:143
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:208
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
SwsVector * lumV
Definition: swscale.h:117
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, little-endian ...
Definition: pixfmt.h:346
Definition: vf_addroi.c:26
int16_t * rgbgamma
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:84
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:307
SwsAlphaBlend alphablend
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:998
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:192
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:162
int acc
Definition: yuv2rgb.c:555
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2501
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:2036
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:250
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples
Definition: pixfmt.h:262
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1357
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples
Definition: pixfmt.h:263
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:774
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:207
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:108
#define SWS_BICUBLIN
Definition: swscale.h:64
int16_t * rgbgammainv
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:294
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:413
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:270
#define GV_IDX
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
int av_log2(unsigned v)
Definition: intmath.c:26
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:392
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:189
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:36
Convenience header that includes libavutil&#39;s core.
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:1016
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:288
static int isnan_vec(SwsVector *a)
Definition: utils.c:1920
int16_t * xyzgammainv
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:111
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:71
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:255
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:156
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:140
static atomic_int cpu_flags
Definition: cpu.c:50
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples
Definition: pixfmt.h:260
static void error(const char *err)
#define RGB_GAMMA
#define SWS_PRINT_INFO
Definition: swscale.h:75
Y , 12bpp, little-endian.
Definition: pixfmt.h:296
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2645
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate.The lists are not just lists
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:254
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:131
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:87
Macro definitions for various function/variable attributes.
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:106
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:85
#define SWS_BILINEAR
Definition: swscale.h:59
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:179
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2239
#define RU_IDX
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:216
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:190
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1098
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, little-endian ...
Definition: pixfmt.h:344
ptrdiff_t uv_off
offset (in pixels) between u and v planes
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:88
#define av_malloc(s)
int length
number of coefficients in the vector
Definition: swscale.h:111
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1170
#define SWS_LANCZOS
Definition: swscale.h:67
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:77
AVOptions.
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:103
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2252
int vChrFilterSize
Vertical filter size for chroma pixels.
#define f(width, name)
Definition: cbs_vp9.c:255
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:268
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:269
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:205
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:139
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:251
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:79
int cascaded_tmpStride[4]
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:105
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:191
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:2069
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:276
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:174
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
Definition: pixfmt.h:100
Y , 9bpp, little-endian.
Definition: pixfmt.h:316
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1899
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:194
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:388
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int16_t rgb2xyz_matrix[3][4]
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:410
Y , 10bpp, little-endian.
Definition: pixfmt.h:298
#define max(a, b)
Definition: cuda_runtime.h:33
external API header
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale.c:51
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:278
uint16_t * inv_gamma
#define A(x)
Definition: vp56_arith.h:28
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:264
#define FFALIGN(x, a)
Definition: macros.h:48
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
#define av_log(a,...)
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
float uint2float_lut[256]
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2176
static const uint16_t table[]
Definition: prosumer.c:206
uint64_t vRounder
#define ROUNDED_DIV(a, b)
Definition: common.h:56
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
int * dither_error[4]
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:157
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1936
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:170
#define INLINE_MMX(flags)
Definition: cpu.h:86
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:165
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:176
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
16 bits gray, 16 bits alpha (big-endian)
Definition: pixfmt.h:212
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
like NV12, with 16bpp per component, big-endian
Definition: pixfmt.h:301
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:136
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:583
const char * description
human-readable description
Definition: utils.c:318
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2577
#define B
Definition: huffyuvdsp.h:32
#define PPC_ALTIVEC(flags)
Definition: cpu.h:25
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:87
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2226
unsigned int pos
Definition: spdifenc.c:410
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2272
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:182
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:161
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:586
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:89
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:383
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:248
GLsizei GLsizei * length
Definition: opengl_enc.c:114
like NV12, with 16bpp per component, little-endian
Definition: pixfmt.h:300
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:134
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:400
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
Definition: pixfmt.h:285
#define SWS_CS_DEFAULT
Definition: swscale.h:95
#define X86_MMX(flags)
Definition: cpu.h:30
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:183
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2106
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:116
#define fail()
Definition: checkasm.h:123
int8_t exp
Definition: eval.c:72
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:149
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
uint8_t * cascaded1_tmp[4]
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2114
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:184
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2379
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define RETCODE_USE_CASCADE
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1112
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2307
int hChrFilterSize
Horizontal filter size for chroma pixels.
int16_t * xyzgamma
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:2019
planar YUV 4:4:4, 24bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:348
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:395
as above, but U and V bytes are swapped
Definition: pixfmt.h:90
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:287
#define RGB2YUV_SHIFT
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
#define b
Definition: input.c:41
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:290
#define APCK_SIZE
#define have_neon(flags)
Definition: cpu.h:26
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:416
IEEE-754 single precision planar GBR 4:4:4, 96bpp, little-endian.
Definition: pixfmt.h:319
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:381
#define NAN
Definition: mathematics.h:64
#define FFMIN(a, b)
Definition: common.h:96
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:88
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
#define SWS_GAUSS
Definition: swscale.h:65
SwsVector * chrH
Definition: swscale.h:118
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:84
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:137
int32_t
#define RY_IDX
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2196
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about quality
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2319
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:188
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:210
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:180
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:243
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:200
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:158
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:526
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1874
unsigned swscale_version(void)
Definition: utils.c:75
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
Definition: pixfmt.h:284
double gamma_value
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:863
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:396
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:167
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:148
#define DITHER1XBPP
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:110
uint8_t * cascaded_tmp[4]
#define FF_ARRAY_ELEMS(a)
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:322
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
int cascaded1_tmpStride[4]
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:288
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:408
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define isGray(x)
Definition: swscale.c:40
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:390
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:912
#define MAX_FILTER_SIZE
Definition: af_dynaudnorm.c:33
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:83
double * coeff
pointer to the list of coefficients
Definition: swscale.h:110
int flag
flag associated to the algorithm
Definition: utils.c:317
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:132
int dstColorspaceTable[4]
#define AV_PIX_FMT_GRAYF32
Definition: pixfmt.h:429
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:336
const AVClass * av_class
info on struct for av_log
int16_t xyz2rgb_matrix[3][4]
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
#define DITHER32_INT
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:267
void sws_freeVec(SwsVector *a)
Definition: utils.c:2298
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:172
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:31
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:271
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:192
int chrDstH
Height of destination chroma planes.
#define ub(width, name)
Definition: cbs_h2645.c:264
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:67
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2]...the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so...,+,-,+,-,+,+,-,+,-,+,...hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32-hcoeff[1]-hcoeff[2]-...a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2}an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||.........intra?||||:Block01:yes no||||:Block02:.................||||:Block03::y DC::ref index:||||:Block04::cb DC::motion x:||||.........:cr DC::motion y:||||.................|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------------------------------|||Y subbands||Cb subbands||Cr subbands||||------||------||------|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||------||------||------||||------||------||------|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||------||------||------||||------||------||------|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||------||------||------||||------||------||------|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------------------------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction------------|\Dequantization-------------------\||Reference frames|\IDWT|--------------|Motion\|||Frame 0||Frame 1||Compensation.OBMC v-------|--------------|--------------.\------> Frame n output Frame Frame<----------------------------------/|...|-------------------Range Coder:============Binary Range Coder:-------------------The implemented range coder is an adapted version based upon"Range encoding: an algorithm for removing redundancy from a digitised message."by G.N.N.Martin.The symbols encoded by the Snow range coder are bits(0|1).The associated probabilities are not fix but change depending on the symbol mix seen so far.bit seen|new state---------+-----------------------------------------------0|256-state_transition_table[256-old_state];1|state_transition_table[old_state];state_transition_table={0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:-------------------------FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1.the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:206
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:277
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:257
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:85
Replacements for frequently missing libm functions.
#define SWS_AREA
Definition: swscale.h:63
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:397
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:193
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2157
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:67
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:195
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
Y , 16bpp, big-endian.
Definition: pixfmt.h:97
as above, but U and V bytes are swapped
Definition: pixfmt.h:349
IEEE-754 single precision planar GBR 4:4:4, 96bpp, big-endian.
Definition: pixfmt.h:318
#define isnan(x)
Definition: libm.h:340
int verbose
Definition: checkasm.c:272
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:83
byte swapping routines
static void handle_formats(SwsContext *c)
Definition: utils.c:1074
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:244
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, big-endian ...
Definition: pixfmt.h:345
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
Y , 9bpp, big-endian.
Definition: pixfmt.h:315
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:256
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:178
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:394
const VDPAUPixFmtMap * map
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:113
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:93
#define SWS_POINT
Definition: swscale.h:62
int ff_init_filters(SwsContext *c)
Definition: slice.c:252
Y , 14bpp, little-endian.
Definition: pixfmt.h:338
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:265
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1084
#define GY_IDX
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:389
#define SWS_SPLINE
Definition: swscale.h:68
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:414
#define SWS_SINC
Definition: swscale.h:66
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:187
#define flags(name, subs,...)
Definition: cbs_av1.c:564
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:398
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:107
#define SWS_BITEXACT
Definition: swscale.h:84
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:266
Y , 10bpp, big-endian.
Definition: pixfmt.h:297
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:142
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:163
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:135
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1065
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:158
Definition: vc1_parser.c:48
SwsDither dither
uint8_t is_supported_in
Definition: utils.c:93
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:76
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2212
#define INLINE_MMXEXT(flags)
Definition: cpu.h:87
int
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2095
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:247
Y , 8bpp.
Definition: pixfmt.h:74
double param[2]
Input parameters for scaling algorithms that need them.
#define exp2(x)
Definition: libm.h:288
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:75
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:140
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, little-endian.
Definition: pixfmt.h:321
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:171
#define flag(name)
Definition: cbs_av1.c:556
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:102
#define AV_WL16(p, v)
Definition: intreadwrite.h:412
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:133
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples
Definition: pixfmt.h:261
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:86
static const uint64_t c2
Definition: murmur3.c:50
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:73
#define XYZ_GAMMA
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:185
struct SwsContext * cascaded_context[3]
#define SWS_PARAM_DEFAULT
Definition: swscale.h:73
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:81
uint16_t * gamma
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, big-endian.
Definition: pixfmt.h:320
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
static av_always_inline int diff(const uint32_t a, const uint32_t b)
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:199
#define av_free(p)
int size_factor
size factor used when initing the filters
Definition: utils.c:319
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:253
int srcFormatBpp
Number of bits per pixel of the source pixel format.
Y , 14bpp, big-endian.
Definition: pixfmt.h:337
const AVClass ff_sws_context_class
Definition: options.c:87
Y , 16bpp, little-endian.
Definition: pixfmt.h:98
uint8_t is_supported_endianness
Definition: utils.c:95
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:258
#define lrint
Definition: tablegen.h:53
16 bits gray, 16 bits alpha (little-endian)
Definition: pixfmt.h:213
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:276
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2090
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:186
Y , 12bpp, big-endian.
Definition: pixfmt.h:295
static int height
Definition: utils.c:158
int32_t input_rgb2yuv_table[16+40 *4]
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:112
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
#define av_freep(p)
#define GU_IDX
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:99
#define M_PI
Definition: mathematics.h:52
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:175
static void makenan_vec(SwsVector *a)
Definition: utils.c:1929
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define av_malloc_array(a, b)
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:141
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2465
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:181
#define BY_IDX
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without and describe what they for example set the foo of the bar offset is the offset of the field in your local context
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
int depth
Number of bits in the component.
Definition: pixdesc.h:58
IEEE-754 single precision Y, 32bpp, little-endian.
Definition: pixfmt.h:341
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:217
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:82
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:827
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:242
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:409
#define BU_IDX
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:164
for(j=16;j >0;--j)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:246
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:149
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:173
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2120
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:206
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:279
#define V
Definition: avdct.c:30
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, big-endian ...
Definition: pixfmt.h:343
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:160
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86