Go to the documentation of this file.
58 #define OFFSET(x) offsetof(BilateralContext, x)
59 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
94 float inv_sigma_range;
96 inv_sigma_range = 1.0f / (
s->sigmaR * ((1 <<
s->depth) - 1));
100 for (
int i = 0;
i < (1 <<
s->depth);
i++)
101 s->range_table[
i] =
s->alpha *
expf(-
i * inv_sigma_range);
116 s->depth =
desc->comp[0].depth;
120 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
122 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
127 for (
int p = 0; p <
s->nb_planes; p++) {
128 const int w =
s->planewidth[p];
129 const int h =
s->planeheight[p];
135 s->slice_factor_a[p] =
av_calloc(
w,
sizeof(
float));
136 s->slice_factor_b[p] =
av_calloc(
w,
sizeof(
float));
140 if (!
s->img_out_f[p] ||
142 !
s->map_factor_a[p] ||
143 !
s->map_factor_b[p] ||
144 !
s->slice_factor_a[p] ||
145 !
s->slice_factor_a[p] ||
146 !
s->line_factor_a[p] ||
147 !
s->line_factor_a[p])
154 #define BILATERAL_H(type, name) \
155 static void bilateralh_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
156 int jobnr, int nb_jobs, int plane) \
158 const int width = s->planewidth[plane]; \
159 const int height = s->planeheight[plane]; \
160 const int slice_start = (height * jobnr) / nb_jobs; \
161 const int slice_end = (height * (jobnr+1)) / nb_jobs; \
162 const int src_linesize = in->linesize[plane] / sizeof(type); \
163 const type *src = (const type *)in->data[plane]; \
164 float *img_temp = s->img_temp[plane]; \
165 float *map_factor_a = s->map_factor_a[plane]; \
166 const float *const range_table = s->range_table; \
167 const float alpha = s->alpha; \
168 float ypr, ycr, fp, fc; \
169 const float inv_alpha_ = 1.f - alpha; \
171 for (int y = slice_start; y < slice_end; y++) { \
172 float *temp_factor_x, *temp_x = &img_temp[y * width]; \
173 const type *in_x = &src[y * src_linesize]; \
174 const type *texture_x = &src[y * src_linesize]; \
177 *temp_x++ = ypr = *in_x++; \
178 tpr = *texture_x++; \
180 temp_factor_x = &map_factor_a[y * width]; \
181 *temp_factor_x++ = fp = 1; \
183 for (int x = 1; x < width; x++) { \
186 type tcr = *texture_x++; \
187 type dr = abs(tcr - tpr); \
190 alpha_ = range_table[range_dist]; \
191 *temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr; \
194 *temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp; \
197 --temp_x; *temp_x = ((*temp_x) + (*--in_x)); \
198 tpr = *--texture_x; \
201 --temp_factor_x; *temp_factor_x = ((*temp_factor_x) + 1); \
204 for (int x = width - 2; x >= 0; x--) { \
205 type tcr = *--texture_x; \
206 type dr = abs(tcr - tpr); \
207 int range_dist = dr; \
208 float alpha_ = range_table[range_dist]; \
210 ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr; \
211 --temp_x; *temp_x = ((*temp_x) + ycr); \
215 fc = inv_alpha_ + alpha_*fp; \
217 *temp_factor_x = ((*temp_factor_x) + fc); \
226 #define BILATERAL_V(type, name) \
227 static void bilateralv_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
228 int jobnr, int nb_jobs, int plane) \
230 const int width = s->planewidth[plane]; \
231 const int height = s->planeheight[plane]; \
232 const int slice_start = (width * jobnr) / nb_jobs; \
233 const int slice_end = (width * (jobnr+1)) / nb_jobs; \
234 const int src_linesize = in->linesize[plane] / sizeof(type); \
235 const type *src = (const type *)in->data[plane] + slice_start; \
236 float *img_out_f = s->img_out_f[plane] + slice_start; \
237 float *img_temp = s->img_temp[plane] + slice_start; \
238 float *map_factor_a = s->map_factor_a[plane] + slice_start; \
239 float *map_factor_b = s->map_factor_b[plane] + slice_start; \
240 float *slice_factor_a = s->slice_factor_a[plane] + slice_start; \
241 float *slice_factor_b = s->slice_factor_b[plane] + slice_start; \
242 float *line_factor_a = s->line_factor_a[plane] + slice_start; \
243 float *line_factor_b = s->line_factor_b[plane] + slice_start; \
244 const float *const range_table = s->range_table; \
245 const float alpha = s->alpha; \
246 float *ycy, *ypy, *xcy; \
247 const float inv_alpha_ = 1.f - alpha; \
248 float *ycf, *ypf, *xcf, *in_factor; \
249 const type *tcy, *tpy; \
252 memcpy(img_out_f, img_temp, sizeof(float) * (slice_end - slice_start)); \
254 in_factor = map_factor_a; \
255 memcpy(map_factor_b, in_factor, sizeof(float) * (slice_end - slice_start)); \
256 for (int y = 1; y < height; y++) { \
257 tpy = &src[(y - 1) * src_linesize]; \
258 tcy = &src[y * src_linesize]; \
259 xcy = &img_temp[y * width]; \
260 ypy = &img_out_f[(y - 1) * width]; \
261 ycy = &img_out_f[y * width]; \
263 xcf = &in_factor[y * width]; \
264 ypf = &map_factor_b[(y - 1) * width]; \
265 ycf = &map_factor_b[y * width]; \
266 for (int x = 0; x < slice_end - slice_start; x++) { \
267 type dr = abs((*tcy++) - (*tpy++)); \
268 int range_dist = dr; \
269 float alpha_ = range_table[range_dist]; \
271 *ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++); \
272 *ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++); \
276 ycf = line_factor_a; \
277 ypf = line_factor_b; \
278 memcpy(ypf, &in_factor[h1 * width], sizeof(float) * (slice_end - slice_start)); \
279 for (int x = 0, k = 0; x < slice_end - slice_start; x++) \
280 map_factor_b[h1 * width + x] = (map_factor_b[h1 * width + x] + ypf[k++]); \
282 ycy = slice_factor_a; \
283 ypy = slice_factor_b; \
284 memcpy(ypy, &img_temp[h1 * width], sizeof(float) * (slice_end - slice_start)); \
285 for (int x = 0, k = 0; x < slice_end - slice_start; x++) { \
286 int idx = h1 * width + x; \
287 img_out_f[idx] = (img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \
290 for (int y = h1 - 1; y >= 0; y--) { \
291 float *ycf_, *ypf_, *factor_; \
292 float *ycy_, *ypy_, *out_; \
294 tpy = &src[(y + 1) * src_linesize]; \
295 tcy = &src[y * src_linesize]; \
296 xcy = &img_temp[y * width]; \
299 out_ = &img_out_f[y * width]; \
301 xcf = &in_factor[y * width]; \
304 factor_ = &map_factor_b[y * width]; \
305 for (int x = 0; x < slice_end - slice_start; x++) { \
306 type dr = abs((*tcy++) - (*tpy++)); \
307 int range_dist = dr; \
308 float alpha_ = range_table[range_dist]; \
309 float ycc, fcc = inv_alpha_*(*xcf++) + alpha_*(*ypf_++); \
312 *factor_ = (*factor_ + fcc); \
314 ycc = inv_alpha_*(*xcy++) + alpha_*(*ypy_++); \
316 *out_ = (*out_ + ycc) / (*factor_); \
329 #define BILATERAL_O(type, name) \
330 static void bilateralo_##name(BilateralContext *s, AVFrame *out, AVFrame *in, \
331 int jobnr, int nb_jobs, int plane) \
333 const int width = s->planewidth[plane]; \
334 const int height = s->planeheight[plane]; \
335 const int slice_start = (height * jobnr) / nb_jobs; \
336 const int slice_end = (height * (jobnr+1)) / nb_jobs; \
337 const int dst_linesize = out->linesize[plane] / sizeof(type); \
339 for (int i = slice_start; i < slice_end; i++) { \
340 type *dst = (type *)out->data[plane] + i * dst_linesize; \
341 const float *const img_out_f = s->img_out_f[plane] + i * width; \
342 for (int j = 0; j < width; j++) \
343 dst[j] = lrintf(img_out_f[j]); \
351 int jobnr,
int nb_jobs)
358 for (
int plane = 0; plane <
s->nb_planes; plane++) {
359 if (!(
s->planes & (1 << plane)))
363 bilateralh_byte(
s,
out, in, jobnr, nb_jobs, plane);
365 bilateralh_word(
s,
out, in, jobnr, nb_jobs, plane);
372 int jobnr,
int nb_jobs)
379 for (
int plane = 0; plane <
s->nb_planes; plane++) {
380 if (!(
s->planes & (1 << plane)))
384 bilateralv_byte(
s,
out, in, jobnr, nb_jobs, plane);
386 bilateralv_word(
s,
out, in, jobnr, nb_jobs, plane);
393 int jobnr,
int nb_jobs)
400 for (
int plane = 0; plane <
s->nb_planes; plane++) {
401 if (!(
s->planes & (1 << plane))) {
403 const int height =
s->planeheight[plane];
406 const int width =
s->planewidth[plane];
407 const int linesize = in->
linesize[plane];
408 const int dst_linesize =
out->linesize[plane];
409 const uint8_t *
src = in->
data[plane];
410 uint8_t *
dst =
out->data[plane];
416 width * ((
s->depth + 7) / 8),
423 bilateralo_byte(
s,
out, in, jobnr, nb_jobs, plane);
425 bilateralo_word(
s,
out, in, jobnr, nb_jobs, plane);
465 for (
int p = 0; p <
s->nb_planes; p++) {
505 .priv_class = &bilateral_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_GBRAP16
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int config_params(AVFilterContext *ctx)
#define FILTER_PIXFMTS_ARRAY(array)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static int bilateralv_planes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define AV_PIX_FMT_YUVA422P9
#define FILTER_INPUTS(array)
This structure describes decoded (raw) audio or video data.
#define AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUV420P10
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
const char * name
Filter name.
A link between two filters.
#define AV_PIX_FMT_YUVA422P10
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
#define AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_GBRP14
static int slice_end(AVCodecContext *avctx, AVFrame *pict, int *got_output)
Handle slice ends.
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUVA444P16
float * slice_factor_a[4]
#define AV_PIX_FMT_YUV422P9
static av_cold void uninit(AVFilterContext *ctx)
static enum AVPixelFormat pix_fmts[]
#define AV_PIX_FMT_GRAY16
A filter pad used for either input or output.
#define AV_PIX_FMT_YUV444P10
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
#define AV_PIX_FMT_YUV422P16
const AVFilterPad ff_video_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_VIDEO.
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define AV_PIX_FMT_GBRAP10
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
static int config_input(AVFilterLink *inlink)
#define AV_PIX_FMT_GBRAP12
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
#define AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_GRAY14
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define FILTER_OUTPUTS(array)
AVFILTER_DEFINE_CLASS(bilateral)
static const AVOption bilateral_options[]
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
#define AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GBRP16
static const struct @465 planes[]
Describe the class of an AVClass context structure.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static __device__ float sqrtf(float a)
#define AV_PIX_FMT_YUV422P10
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static const AVFilterPad bilateral_inputs[]
#define BILATERAL_H(type, name)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
#define AV_PIX_FMT_YUV422P12
float * slice_factor_b[4]
#define AV_PIX_FMT_YUV444P12
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
@ AV_OPT_TYPE_FLOAT
Underlying C type is float.
#define BILATERAL_V(type, name)
static int bilateralh_planes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define i(width, name, range_min, range_max)
int w
agreed upon image width
#define AV_PIX_FMT_GBRP12
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
const char * name
Pad name.
void * av_calloc(size_t nmemb, size_t size)
#define AV_PIX_FMT_YUV444P9
static int slice_start(SliceContext *sc, VVCContext *s, VVCFrameContext *fc, const CodedBitstreamUnit *unit, const int is_first_slice)
#define AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUV420P12
static int bilateralo_planes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AV_PIX_FMT_YUV422P14
static int process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
int h
agreed upon image height
int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
@ AV_OPT_TYPE_INT
Underlying C type is int.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
const AVFilter ff_vf_bilateral
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
#define AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_GRAY12
#define BILATERAL_O(type, name)
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_PIX_FMT_YUV420P14