Go to the documentation of this file.
29 #include "config_components.h"
47 #define OFFSET(x) offsetof(LUT3DContext, x)
48 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
49 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
50 #define COMMON_OPTIONS \
51 { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, TFLAGS, .unit = "interp_mode" }, \
52 { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
53 { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
54 { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
55 { "pyramid", "interpolate values using a pyramid", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PYRAMID}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
56 { "prism", "interpolate values using a prism", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PRISM}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
59 #define EXPONENT_MASK 0x7F800000
60 #define MANTISSA_MASK 0x007FFFFF
61 #define SIGN_MASK 0x80000000
83 static inline float lerpf(
float v0,
float v1,
float f)
85 return v0 + (v1 - v0) *
f;
96 #define NEAR(x) ((int)((x) + .5))
97 #define PREV(x) ((int)(x))
98 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
106 return lut3d->lut[
NEAR(
s->r) * lut3d->lutsize2 +
NEAR(
s->g) * lut3d->lutsize +
NEAR(
s->b)];
116 const int lutsize2 = lut3d->lutsize2;
117 const int lutsize = lut3d->lutsize;
120 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
121 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
122 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
123 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
124 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
125 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
126 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
127 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
128 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
142 const int lutsize2 = lut3d->lutsize2;
143 const int lutsize = lut3d->lutsize;
146 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
147 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
148 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
151 if (d.
g > d.
r && d.
b > d.
r) {
152 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
153 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
154 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
156 c.r = c000.
r + (c111.
r - c011.
r) * d.
r + (c010.
r - c000.
r) * d.
g + (c001.
r - c000.
r) * d.
b +
157 (c011.
r - c001.
r - c010.
r + c000.
r) * d.
g * d.
b;
158 c.g = c000.
g + (c111.
g - c011.
g) * d.
r + (c010.
g - c000.
g) * d.
g + (c001.
g - c000.
g) * d.
b +
159 (c011.
g - c001.
g - c010.
g + c000.
g) * d.
g * d.
b;
160 c.b = c000.
b + (c111.
b - c011.
b) * d.
r + (c010.
b - c000.
b) * d.
g + (c001.
b - c000.
b) * d.
b +
161 (c011.
b - c001.
b - c010.
b + c000.
b) * d.
g * d.
b;
162 }
else if (d.
r > d.
g && d.
b > d.
g) {
163 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
164 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
165 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
167 c.r = c000.
r + (c100.
r - c000.
r) * d.
r + (c111.
r - c101.
r) * d.
g + (c001.
r - c000.
r) * d.
b +
168 (c101.
r - c001.
r - c100.
r + c000.
r) * d.
r * d.
b;
169 c.g = c000.
g + (c100.
g - c000.
g) * d.
r + (c111.
g - c101.
g) * d.
g + (c001.
g - c000.
g) * d.
b +
170 (c101.
g - c001.
g - c100.
g + c000.
g) * d.
r * d.
b;
171 c.b = c000.
b + (c100.
b - c000.
b) * d.
r + (c111.
b - c101.
b) * d.
g + (c001.
b - c000.
b) * d.
b +
172 (c101.
b - c001.
b - c100.
b + c000.
b) * d.
r * d.
b;
174 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
175 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
176 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
178 c.r = c000.
r + (c100.
r - c000.
r) * d.
r + (c010.
r - c000.
r) * d.
g + (c111.
r - c110.
r) * d.
b +
179 (c110.
r - c100.
r - c010.
r + c000.
r) * d.
r * d.
g;
180 c.g = c000.
g + (c100.
g - c000.
g) * d.
r + (c010.
g - c000.
g) * d.
g + (c111.
g - c110.
g) * d.
b +
181 (c110.
g - c100.
g - c010.
g + c000.
g) * d.
r * d.
g;
182 c.b = c000.
b + (c100.
b - c000.
b) * d.
r + (c010.
b - c000.
b) * d.
g + (c111.
b - c110.
b) * d.
b +
183 (c110.
b - c100.
b - c010.
b + c000.
b) * d.
r * d.
g;
192 const int lutsize2 = lut3d->lutsize2;
193 const int lutsize = lut3d->lutsize;
196 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
197 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
198 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
199 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
200 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
204 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
205 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
207 c.r = c000.
r + (c001.
r - c000.
r) * d.
b + (c101.
r - c001.
r) * d.
r + (c010.
r - c000.
r) * d.
g +
208 (c000.
r - c010.
r - c001.
r + c011.
r) * d.
b * d.
g +
209 (c001.
r - c011.
r - c101.
r + c111.
r) * d.
r * d.
g;
210 c.g = c000.
g + (c001.
g - c000.
g) * d.
b + (c101.
g - c001.
g) * d.
r + (c010.
g - c000.
g) * d.
g +
211 (c000.
g - c010.
g - c001.
g + c011.
g) * d.
b * d.
g +
212 (c001.
g - c011.
g - c101.
g + c111.
g) * d.
r * d.
g;
213 c.b = c000.
b + (c001.
b - c000.
b) * d.
b + (c101.
b - c001.
b) * d.
r + (c010.
b - c000.
b) * d.
g +
214 (c000.
b - c010.
b - c001.
b + c011.
b) * d.
b * d.
g +
215 (c001.
b - c011.
b - c101.
b + c111.
b) * d.
r * d.
g;
217 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
218 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
220 c.r = c000.
r + (c101.
r - c100.
r) * d.
b + (c100.
r - c000.
r) * d.
r + (c010.
r - c000.
r) * d.
g +
221 (c100.
r - c110.
r - c101.
r + c111.
r) * d.
b * d.
g +
222 (c000.
r - c010.
r - c100.
r + c110.
r) * d.
r * d.
g;
223 c.g = c000.
g + (c101.
g - c100.
g) * d.
b + (c100.
g - c000.
g) * d.
r + (c010.
g - c000.
g) * d.
g +
224 (c100.
g - c110.
g - c101.
g + c111.
g) * d.
b * d.
g +
225 (c000.
g - c010.
g - c100.
g + c110.
g) * d.
r * d.
g;
226 c.b = c000.
b + (c101.
b - c100.
b) * d.
b + (c100.
b - c000.
b) * d.
r + (c010.
b - c000.
b) * d.
g +
227 (c100.
b - c110.
b - c101.
b + c111.
b) * d.
b * d.
g +
228 (c000.
b - c010.
b - c100.
b + c110.
b) * d.
r * d.
g;
241 const int lutsize2 = lut3d->lutsize2;
242 const int lutsize = lut3d->lutsize;
245 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
246 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
247 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
251 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
252 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
253 c.r = (1-d.
r) * c000.
r + (d.
r-d.
g) * c100.
r + (d.
g-d.
b) * c110.
r + (d.
b) * c111.
r;
254 c.g = (1-d.
r) * c000.
g + (d.
r-d.
g) * c100.
g + (d.
g-d.
b) * c110.
g + (d.
b) * c111.
g;
255 c.b = (1-d.
r) * c000.
b + (d.
r-d.
g) * c100.
b + (d.
g-d.
b) * c110.
b + (d.
b) * c111.
b;
256 }
else if (d.
r > d.
b) {
257 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
258 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
259 c.r = (1-d.
r) * c000.
r + (d.
r-d.
b) * c100.
r + (d.
b-d.
g) * c101.
r + (d.
g) * c111.
r;
260 c.g = (1-d.
r) * c000.
g + (d.
r-d.
b) * c100.
g + (d.
b-d.
g) * c101.
g + (d.
g) * c111.
g;
261 c.b = (1-d.
r) * c000.
b + (d.
r-d.
b) * c100.
b + (d.
b-d.
g) * c101.
b + (d.
g) * c111.
b;
263 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
264 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
265 c.r = (1-d.
b) * c000.
r + (d.
b-d.
r) * c001.
r + (d.
r-d.
g) * c101.
r + (d.
g) * c111.
r;
266 c.g = (1-d.
b) * c000.
g + (d.
b-d.
r) * c001.
g + (d.
r-d.
g) * c101.
g + (d.
g) * c111.
g;
267 c.b = (1-d.
b) * c000.
b + (d.
b-d.
r) * c001.
b + (d.
r-d.
g) * c101.
b + (d.
g) * c111.
b;
271 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
272 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
273 c.r = (1-d.
b) * c000.
r + (d.
b-d.
g) * c001.
r + (d.
g-d.
r) * c011.
r + (d.
r) * c111.
r;
274 c.g = (1-d.
b) * c000.
g + (d.
b-d.
g) * c001.
g + (d.
g-d.
r) * c011.
g + (d.
r) * c111.
g;
275 c.b = (1-d.
b) * c000.
b + (d.
b-d.
g) * c001.
b + (d.
g-d.
r) * c011.
b + (d.
r) * c111.
b;
276 }
else if (d.
b > d.
r) {
277 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
278 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
279 c.r = (1-d.
g) * c000.
r + (d.
g-d.
b) * c010.
r + (d.
b-d.
r) * c011.
r + (d.
r) * c111.
r;
280 c.g = (1-d.
g) * c000.
g + (d.
g-d.
b) * c010.
g + (d.
b-d.
r) * c011.
g + (d.
r) * c111.
g;
281 c.b = (1-d.
g) * c000.
b + (d.
g-d.
b) * c010.
b + (d.
b-d.
r) * c011.
b + (d.
r) * c111.
b;
283 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
284 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
285 c.r = (1-d.
g) * c000.
r + (d.
g-d.
r) * c010.
r + (d.
r-d.
b) * c110.
r + (d.
b) * c111.
r;
286 c.g = (1-d.
g) * c000.
g + (d.
g-d.
r) * c010.
g + (d.
r-d.
b) * c110.
g + (d.
b) * c111.
g;
287 c.b = (1-d.
g) * c000.
b + (d.
g-d.
r) * c010.
b + (d.
r-d.
b) * c110.
b + (d.
b) * c111.
b;
294 int idx,
const float s)
296 const int lut_max = prelut->
size - 1;
297 const float scaled = (
s - prelut->
min[idx]) * prelut->
scale[idx];
298 const float x =
av_clipf(scaled, 0.0
f, lut_max);
299 const int prev =
PREV(x);
300 const int next =
FFMIN((
int)(x) + 1, lut_max);
301 const float p = prelut->
lut[idx][prev];
302 const float n = prelut->
lut[idx][next];
303 const float d = x - (
float)prev;
304 return lerpf(p, n, d);
312 if (prelut->size <= 0)
321 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \
322 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
325 const LUT3DContext *lut3d = ctx->priv; \
326 const Lut3DPreLut *prelut = &lut3d->prelut; \
327 const ThreadData *td = arg; \
328 const AVFrame *in = td->in; \
329 const AVFrame *out = td->out; \
330 const int direct = out == in; \
331 const int slice_start = (in->height * jobnr ) / nb_jobs; \
332 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
333 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
334 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
335 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
336 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
337 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
338 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
339 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
340 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
341 const float lut_max = lut3d->lutsize - 1; \
342 const float scale_f = 1.0f / ((1<<depth) - 1); \
343 const float scale_r = lut3d->scale.r * lut_max; \
344 const float scale_g = lut3d->scale.g * lut_max; \
345 const float scale_b = lut3d->scale.b * lut_max; \
347 for (y = slice_start; y < slice_end; y++) { \
348 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
349 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
350 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
351 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
352 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
353 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
354 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
355 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
356 for (x = 0; x < in->width; x++) { \
357 const struct rgbvec rgb = {srcr[x] * scale_f, \
359 srcb[x] * scale_f}; \
360 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
361 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
362 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
363 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
364 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
365 dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \
366 dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \
367 dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \
368 if (!direct && in->linesize[3]) \
371 grow += out->linesize[0]; \
372 brow += out->linesize[1]; \
373 rrow += out->linesize[2]; \
374 arow += out->linesize[3]; \
375 srcgrow += in->linesize[0]; \
376 srcbrow += in->linesize[1]; \
377 srcrrow += in->linesize[2]; \
378 srcarow += in->linesize[3]; \
419 #define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth) \
420 static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
423 const LUT3DContext *lut3d = ctx->priv; \
424 const Lut3DPreLut *prelut = &lut3d->prelut; \
425 const ThreadData *td = arg; \
426 const AVFrame *in = td->in; \
427 const AVFrame *out = td->out; \
428 const int direct = out == in; \
429 const int slice_start = (in->height * jobnr ) / nb_jobs; \
430 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
431 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
432 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
433 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
434 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
435 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
436 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
437 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
438 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
439 const float lut_max = lut3d->lutsize - 1; \
440 const float scale_r = lut3d->scale.r * lut_max; \
441 const float scale_g = lut3d->scale.g * lut_max; \
442 const float scale_b = lut3d->scale.b * lut_max; \
444 for (y = slice_start; y < slice_end; y++) { \
445 float *dstg = (float *)grow; \
446 float *dstb = (float *)brow; \
447 float *dstr = (float *)rrow; \
448 float *dsta = (float *)arow; \
449 const float *srcg = (const float *)srcgrow; \
450 const float *srcb = (const float *)srcbrow; \
451 const float *srcr = (const float *)srcrrow; \
452 const float *srca = (const float *)srcarow; \
453 for (x = 0; x < in->width; x++) { \
454 const struct rgbvec rgb = {sanitizef(srcr[x]), \
455 sanitizef(srcg[x]), \
456 sanitizef(srcb[x])}; \
457 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
458 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
459 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
460 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
461 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
465 if (!direct && in->linesize[3]) \
468 grow += out->linesize[0]; \
469 brow += out->linesize[1]; \
470 rrow += out->linesize[2]; \
471 arow += out->linesize[3]; \
472 srcgrow += in->linesize[0]; \
473 srcbrow += in->linesize[1]; \
474 srcrrow += in->linesize[2]; \
475 srcarow += in->linesize[3]; \
486 #define DEFINE_INTERP_FUNC(name, nbits) \
487 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
490 const LUT3DContext *lut3d = ctx->priv; \
491 const Lut3DPreLut *prelut = &lut3d->prelut; \
492 const ThreadData *td = arg; \
493 const AVFrame *in = td->in; \
494 const AVFrame *out = td->out; \
495 const int direct = out == in; \
496 const int step = lut3d->step; \
497 const uint8_t r = lut3d->rgba_map[R]; \
498 const uint8_t g = lut3d->rgba_map[G]; \
499 const uint8_t b = lut3d->rgba_map[B]; \
500 const uint8_t a = lut3d->rgba_map[A]; \
501 const int slice_start = (in->height * jobnr ) / nb_jobs; \
502 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
503 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
504 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
505 const float lut_max = lut3d->lutsize - 1; \
506 const float scale_f = 1.0f / ((1<<nbits) - 1); \
507 const float scale_r = lut3d->scale.r * lut_max; \
508 const float scale_g = lut3d->scale.g * lut_max; \
509 const float scale_b = lut3d->scale.b * lut_max; \
511 for (y = slice_start; y < slice_end; y++) { \
512 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
513 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
514 for (x = 0; x < in->width * step; x += step) { \
515 const struct rgbvec rgb = {src[x + r] * scale_f, \
516 src[x + g] * scale_f, \
517 src[x + b] * scale_f}; \
518 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
519 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
520 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
521 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
522 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
523 dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
524 dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
525 dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
526 if (!direct && step == 4) \
527 dst[x + a] = src[x + a]; \
529 dstrow += out->linesize[0]; \
530 srcrow += in ->linesize[0]; \
547 #define MAX_LINE_SIZE 512
553 return !*p || *p ==
'#';
564 while ((
c = fgetc(
f)) != EOF) {
575 if ((
c = fgetc(
f)) == EOF)
590 #define NEXT_LINE(loop_cond) do { \
591 if (!fgets(line, sizeof(line), f)) { \
592 av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
593 return AVERROR_INVALIDDATA; \
597 #define NEXT_LINE_OR_GOTO(loop_cond, label) do { \
598 if (!fgets(line, sizeof(line), f)) { \
599 av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
600 ret = AVERROR_INVALIDDATA; \
609 if (lutsize < 2 || lutsize >
MAX_LEVEL) {
621 for (
i = 0;
i < 3;
i++) {
629 for (
i = 0;
i < 3;
i++) {
634 lut3d->
lutsize2 = lutsize * lutsize;
650 if (!strncmp(
line,
"3DLUTSIZE ", 10)) {
660 for (k = 0; k <
size; k++) {
661 for (j = 0; j <
size; j++) {
664 if (k != 0 || j != 0 ||
i != 0)
679 float min[3] = {0.0, 0.0, 0.0};
680 float max[3] = {1.0, 1.0, 1.0};
683 if (!strncmp(
line,
"LUT_3D_SIZE", 11)) {
692 for (k = 0; k <
size; k++) {
693 for (j = 0; j <
size; j++) {
700 if (!strncmp(
line,
"DOMAIN_", 7)) {
702 if (!strncmp(
line + 7,
"MIN ", 4)) vals =
min;
703 else if (!strncmp(
line + 7,
"MAX ", 4)) vals =
max;
706 if (
av_sscanf(
line + 11,
"%f %f %f", vals, vals + 1, vals + 2) != 3)
711 }
else if (!strncmp(
line,
"TITLE", 5)) {
739 const int size2 = 17 * 17;
740 const float scale = 16*16*16;
749 for (k = 0; k <
size; k++) {
750 for (j = 0; j <
size; j++) {
774 uint8_t rgb_map[3] = {0, 1, 2};
777 if (!strncmp(
line,
"in", 2)) in = strtol(
line + 2,
NULL, 0);
779 else if (!strncmp(
line,
"values", 6)) {
780 const char *p =
line + 6;
781 #define SET_COLOR(id) do { \
782 while (av_isspace(*p)) \
785 case 'r': rgb_map[id] = 0; break; \
786 case 'g': rgb_map[id] = 1; break; \
787 case 'b': rgb_map[id] = 2; break; \
789 while (*p && !av_isspace(*p)) \
799 if (in == -1 ||
out == -1) {
803 if (in < 2 ||
out < 2 ||
819 for (k = 0; k <
size; k++) {
820 for (j = 0; j <
size; j++) {
854 mid = (low + hi) / 2;
865 #define NEXT_FLOAT_OR_GOTO(value, label) \
866 if (!fget_next_word(line, sizeof(line) ,f)) { \
867 ret = AVERROR_INVALIDDATA; \
870 if (av_sscanf(line, "%f", &value) != 1) { \
871 ret = AVERROR_INVALIDDATA; \
879 float in_min[3] = {0.0, 0.0, 0.0};
880 float in_max[3] = {1.0, 1.0, 1.0};
881 float out_min[3] = {0.0, 0.0, 0.0};
882 float out_max[3] = {1.0, 1.0, 1.0};
883 int inside_metadata = 0,
size, size2;
887 int prelut_sizes[3] = {0, 0, 0};
892 if (strncmp(
line,
"CSPLUTV100", 10)) {
899 if (strncmp(
line,
"3D", 2)) {
908 if (!strncmp(
line,
"BEGIN METADATA", 14)) {
912 if (!strncmp(
line,
"END METADATA", 12)) {
916 if (inside_metadata == 0) {
917 int size_r, size_g, size_b;
919 for (
int i = 0;
i < 3;
i++) {
920 int npoints = strtol(
line,
NULL, 0);
931 if (in_prelut[
i] || out_prelut[
i]) {
937 in_prelut[
i] = (
float*)
av_malloc(npoints *
sizeof(
float));
938 out_prelut[
i] = (
float*)
av_malloc(npoints *
sizeof(
float));
939 if (!in_prelut[
i] || !out_prelut[
i]) {
944 prelut_sizes[
i] = npoints;
946 in_max[
i] = -FLT_MAX;
947 out_min[
i] = FLT_MAX;
948 out_max[
i] = -FLT_MAX;
950 for (
int j = 0; j < npoints; j++) {
952 in_min[
i] =
FFMIN(in_min[
i], v);
953 in_max[
i] =
FFMAX(in_max[
i], v);
955 if (j > 0 && v < last) {
963 for (
int j = 0; j < npoints; j++) {
965 out_min[
i] =
FFMIN(out_min[
i], v);
966 out_max[
i] =
FFMAX(out_max[
i], v);
967 out_prelut[
i][j] = v;
970 }
else if (npoints == 2) {
991 if (
av_sscanf(
line,
"%d %d %d", &size_r, &size_g, &size_b) != 3) {
995 if (size_r != size_g || size_r != size_b) {
1004 if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2])
1011 for (
int k = 0; k <
size; k++) {
1012 for (
int j = 0; j <
size; j++) {
1013 for (
int i = 0;
i <
size;
i++) {
1022 vec->
r *= out_max[0] - out_min[0];
1023 vec->
g *= out_max[1] - out_min[1];
1024 vec->
b *= out_max[2] - out_min[2];
1034 for (
int c = 0;
c < 3;
c++) {
1047 a = out_prelut[
c][idx + 0];
1048 b = out_prelut[
c][idx + 1];
1049 mix = x - in_prelut[
c][idx];
1065 for (
int c = 0;
c < 3;
c++) {
1077 const float c = 1. / (
size - 1);
1083 for (k = 0; k <
size; k++) {
1084 for (j = 0; j <
size; j++) {
1115 #if CONFIG_LUT3D_FILTER || CONFIG_HALDCLUT_FILTER
1119 int depth, is16bit, isfloat,
planar;
1123 depth =
desc->comp[0].depth;
1124 is16bit =
desc->comp[0].depth > 8;
1130 #define SET_FUNC(name) do { \
1131 if (planar && !isfloat) { \
1133 case 8: lut3d->interp = interp_8_##name##_p8; break; \
1134 case 9: lut3d->interp = interp_16_##name##_p9; break; \
1135 case 10: lut3d->interp = interp_16_##name##_p10; break; \
1136 case 12: lut3d->interp = interp_16_##name##_p12; break; \
1137 case 14: lut3d->interp = interp_16_##name##_p14; break; \
1138 case 16: lut3d->interp = interp_16_##name##_p16; break; \
1140 } else if (isfloat) { lut3d->interp = interp_##name##_pf32; \
1141 } else if (is16bit) { lut3d->interp = interp_16_##name; \
1142 } else { lut3d->interp = interp_8_##name; } \
1205 char *res,
int res_len,
int flags)
1219 #define COMMON_OPTIONS_OFFSET CONFIG_LUT3D_FILTER
1220 static const AVOption lut3d_haldclut_options[] = {
1221 #if CONFIG_LUT3D_FILTER
1224 #if CONFIG_HALDCLUT_FILTER
1226 {
"first",
"process only first CLUT, ignore rest", 0,
AV_OPT_TYPE_CONST, {.i64=0}, .flags =
TFLAGS, .unit =
"clut" },
1232 #if CONFIG_LUT3D_FILTER
1256 ext = strrchr(lut3d->
file,
'.');
1295 for (
i = 0;
i < 3;
i++) {
1318 .priv_class = &lut3d_class,
1324 #if CONFIG_HALDCLUT_FILTER
1329 const ptrdiff_t linesize =
frame->linesize[0];
1330 const int w = lut3d->clut_width;
1331 const int step = lut3d->clut_step;
1332 const uint8_t *rgba_map = lut3d->clut_rgba_map;
1334 const int level2 = lut3d->
lutsize2;
1336 #define LOAD_CLUT(nbits) do { \
1337 int i, j, k, x = 0, y = 0; \
1339 for (k = 0; k < level; k++) { \
1340 for (j = 0; j < level; j++) { \
1341 for (i = 0; i < level; i++) { \
1342 const uint##nbits##_t *src = (const uint##nbits##_t *) \
1343 (data + y*linesize + x*step); \
1344 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1345 vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
1346 vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
1347 vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
1357 switch (lut3d->clut_bits) {
1358 case 8: LOAD_CLUT(8);
break;
1359 case 16: LOAD_CLUT(16);
break;
1365 const uint8_t *datag =
frame->data[0];
1366 const uint8_t *datab =
frame->data[1];
1367 const uint8_t *datar =
frame->data[2];
1368 const ptrdiff_t glinesize =
frame->linesize[0];
1369 const ptrdiff_t blinesize =
frame->linesize[1];
1370 const ptrdiff_t rlinesize =
frame->linesize[2];
1371 const int w = lut3d->clut_width;
1373 const int level2 = lut3d->
lutsize2;
1375 #define LOAD_CLUT_PLANAR(nbits, depth) do { \
1376 int i, j, k, x = 0, y = 0; \
1378 for (k = 0; k < level; k++) { \
1379 for (j = 0; j < level; j++) { \
1380 for (i = 0; i < level; i++) { \
1381 const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
1382 (datag + y*glinesize); \
1383 const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
1384 (datab + y*blinesize); \
1385 const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
1386 (datar + y*rlinesize); \
1387 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1388 vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \
1389 vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \
1390 vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \
1400 switch (lut3d->clut_bits) {
1401 case 8: LOAD_CLUT_PLANAR(8, 8);
break;
1402 case 9: LOAD_CLUT_PLANAR(16, 9);
break;
1403 case 10: LOAD_CLUT_PLANAR(16, 10);
break;
1404 case 12: LOAD_CLUT_PLANAR(16, 12);
break;
1405 case 14: LOAD_CLUT_PLANAR(16, 14);
break;
1406 case 16: LOAD_CLUT_PLANAR(16, 16);
break;
1412 const uint8_t *datag =
frame->data[0];
1413 const uint8_t *datab =
frame->data[1];
1414 const uint8_t *datar =
frame->data[2];
1415 const ptrdiff_t glinesize =
frame->linesize[0];
1416 const ptrdiff_t blinesize =
frame->linesize[1];
1417 const ptrdiff_t rlinesize =
frame->linesize[2];
1418 const int w = lut3d->clut_width;
1420 const int level2 = lut3d->
lutsize2;
1422 int i, j, k, x = 0, y = 0;
1424 for (k = 0; k <
level; k++) {
1425 for (j = 0; j <
level; j++) {
1427 const float *gsrc = (
const float *)(datag + y*glinesize);
1428 const float *bsrc = (
const float *)(datab + y*blinesize);
1429 const float *rsrc = (
const float *)(datar + y*rlinesize);
1452 outlink->
w =
ctx->inputs[0]->w;
1453 outlink->
h =
ctx->inputs[0]->h;
1475 lut3d->clut_bits =
desc->comp[0].depth;
1499 const int max_clut_level = sqrt(
MAX_LEVEL);
1500 const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
1502 "(maximum level is %d, or %dx%d CLUT)\n",
1503 max_clut_level, max_clut_size, max_clut_size);
1523 if (lut3d->clut || !lut3d->got_clut) {
1524 if (lut3d->clut_float)
1525 update_clut_float(
ctx->priv, second);
1526 else if (lut3d->clut_planar)
1527 update_clut_planar(
ctx->priv, second);
1529 update_clut_packed(
ctx->priv, second);
1530 lut3d->got_clut = 1;
1540 lut3d->fs.on_event = update_apply_clut;
1552 &lut3d_haldclut_options[COMMON_OPTIONS_OFFSET]);
1562 .config_props = config_clut,
1578 .
preinit = haldclut_framesync_preinit,
1579 .
init = haldclut_init,
1580 .
uninit = haldclut_uninit,
1585 .priv_class = &haldclut_class,
1593 #if CONFIG_LUT1D_FILTER
1595 enum interp_1d_mode {
1596 INTERPOLATE_1D_NEAREST,
1597 INTERPOLATE_1D_LINEAR,
1598 INTERPOLATE_1D_CUBIC,
1599 INTERPOLATE_1D_COSINE,
1600 INTERPOLATE_1D_SPLINE,
1604 #define MAX_1D_LEVEL 65536
1606 typedef struct LUT1DContext {
1611 uint8_t rgba_map[4];
1613 float lut[3][MAX_1D_LEVEL];
1619 #define OFFSET(x) offsetof(LUT1DContext, x)
1621 static void set_identity_matrix_1d(LUT1DContext *lut1d,
int size)
1623 const float c = 1. / (
size - 1);
1626 lut1d->lutsize =
size;
1628 lut1d->lut[0][
i] =
i *
c;
1629 lut1d->lut[1][
i] =
i *
c;
1630 lut1d->lut[2][
i] =
i *
c;
1636 LUT1DContext *lut1d =
ctx->priv;
1638 float in_min[3] = {0.0, 0.0, 0.0};
1639 float in_max[3] = {1.0, 1.0, 1.0};
1640 float out_min[3] = {0.0, 0.0, 0.0};
1641 float out_max[3] = {1.0, 1.0, 1.0};
1642 int inside_metadata = 0,
size;
1645 if (strncmp(
line,
"CSPLUTV100", 10)) {
1651 if (strncmp(
line,
"1D", 2)) {
1659 if (!strncmp(
line,
"BEGIN METADATA", 14)) {
1660 inside_metadata = 1;
1663 if (!strncmp(
line,
"END METADATA", 12)) {
1664 inside_metadata = 0;
1667 if (inside_metadata == 0) {
1668 for (
int i = 0;
i < 3;
i++) {
1669 int npoints = strtol(
line,
NULL, 0);
1687 if (size < 2 || size > MAX_1D_LEVEL) {
1692 lut1d->lutsize =
size;
1694 for (
int i = 0;
i <
size;
i++) {
1696 if (
av_sscanf(
line,
"%f %f %f", &lut1d->lut[0][
i], &lut1d->lut[1][
i], &lut1d->lut[2][
i]) != 3)
1698 lut1d->lut[0][
i] *= out_max[0] - out_min[0];
1699 lut1d->lut[1][
i] *= out_max[1] - out_min[1];
1700 lut1d->lut[2][
i] *= out_max[2] - out_min[2];
1707 lut1d->scale.r =
av_clipf(1. / (in_max[0] - in_min[0]), 0.
f, 1.
f);
1708 lut1d->scale.g =
av_clipf(1. / (in_max[1] - in_min[1]), 0.
f, 1.
f);
1709 lut1d->scale.b =
av_clipf(1. / (in_max[2] - in_min[2]), 0.
f, 1.
f);
1716 LUT1DContext *lut1d =
ctx->priv;
1718 float min[3] = {0.0, 0.0, 0.0};
1719 float max[3] = {1.0, 1.0, 1.0};
1722 if (!strncmp(
line,
"LUT_1D_SIZE", 11)) {
1726 if (size < 2 || size > MAX_1D_LEVEL) {
1730 lut1d->lutsize =
size;
1735 if (!strncmp(
line,
"DOMAIN_", 7)) {
1737 if (!strncmp(
line + 7,
"MIN ", 4)) vals =
min;
1738 else if (!strncmp(
line + 7,
"MAX ", 4)) vals =
max;
1741 if (
av_sscanf(
line + 11,
"%f %f %f", vals, vals + 1, vals + 2) != 3)
1746 }
else if (!strncmp(
line,
"LUT_1D_INPUT_RANGE ", 19)) {
1752 }
else if (!strncmp(
line,
"TITLE", 5)) {
1756 if (
av_sscanf(
line,
"%f %f %f", &lut1d->lut[0][
i], &lut1d->lut[1][
i], &lut1d->lut[2][
i]) != 3)
1770 static const AVOption lut1d_options[] = {
1773 {
"nearest",
"use values from the nearest defined points", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, 0, 0,
TFLAGS, .unit =
"interp_mode" },
1774 {
"linear",
"use values from the linear interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, 0, 0,
TFLAGS, .unit =
"interp_mode" },
1775 {
"cosine",
"use values from the cosine interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, 0, 0,
TFLAGS, .unit =
"interp_mode" },
1776 {
"cubic",
"use values from the cubic interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, 0, 0,
TFLAGS, .unit =
"interp_mode" },
1777 {
"spline",
"use values from the spline interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, 0, 0,
TFLAGS, .unit =
"interp_mode" },
1783 static inline float interp_1d_nearest(
const LUT1DContext *lut1d,
1784 int idx,
const float s)
1786 return lut1d->lut[idx][
NEAR(
s)];
1789 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
1791 static inline float interp_1d_linear(
const LUT1DContext *lut1d,
1792 int idx,
const float s)
1794 const int prev =
PREV(
s);
1795 const int next = NEXT1D(
s);
1796 const float d =
s - prev;
1797 const float p = lut1d->lut[idx][prev];
1798 const float n = lut1d->lut[idx][next];
1800 return lerpf(p, n, d);
1803 static inline float interp_1d_cosine(
const LUT1DContext *lut1d,
1804 int idx,
const float s)
1806 const int prev =
PREV(
s);
1807 const int next = NEXT1D(
s);
1808 const float d =
s - prev;
1809 const float p = lut1d->lut[idx][prev];
1810 const float n = lut1d->lut[idx][next];
1811 const float m = (1.f -
cosf(d *
M_PI)) * .5
f;
1813 return lerpf(p, n, m);
1816 static inline float interp_1d_cubic(
const LUT1DContext *lut1d,
1817 int idx,
const float s)
1819 const int prev =
PREV(
s);
1820 const int next = NEXT1D(
s);
1821 const float mu =
s - prev;
1824 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1825 float y1 = lut1d->lut[idx][prev];
1826 float y2 = lut1d->lut[idx][next];
1827 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1831 a0 = y3 - y2 - y0 + y1;
1836 return a0 * mu * mu2 +
a1 * mu2 +
a2 * mu +
a3;
1839 static inline float interp_1d_spline(
const LUT1DContext *lut1d,
1840 int idx,
const float s)
1842 const int prev =
PREV(
s);
1843 const int next = NEXT1D(
s);
1844 const float x =
s - prev;
1845 float c0,
c1,
c2, c3;
1847 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1848 float y1 = lut1d->lut[idx][prev];
1849 float y2 = lut1d->lut[idx][next];
1850 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1853 c1 = .5f * (y2 - y0);
1854 c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
1855 c3 = .5f * (y3 - y0) + 1.5
f * (y1 - y2);
1857 return ((c3 * x +
c2) * x +
c1) * x + c0;
1860 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \
1861 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \
1862 void *arg, int jobnr, \
1866 const LUT1DContext *lut1d = ctx->priv; \
1867 const ThreadData *td = arg; \
1868 const AVFrame *in = td->in; \
1869 const AVFrame *out = td->out; \
1870 const int direct = out == in; \
1871 const int slice_start = (in->height * jobnr ) / nb_jobs; \
1872 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1873 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1874 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1875 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1876 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1877 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1878 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1879 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1880 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1881 const float factor = (1 << depth) - 1; \
1882 const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
1883 const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
1884 const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
1886 for (y = slice_start; y < slice_end; y++) { \
1887 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
1888 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
1889 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
1890 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
1891 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
1892 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
1893 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
1894 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
1895 for (x = 0; x < in->width; x++) { \
1896 float r = srcr[x] * scale_r; \
1897 float g = srcg[x] * scale_g; \
1898 float b = srcb[x] * scale_b; \
1899 r = interp_1d_##name(lut1d, 0, r); \
1900 g = interp_1d_##name(lut1d, 1, g); \
1901 b = interp_1d_##name(lut1d, 2, b); \
1902 dstr[x] = av_clip_uintp2(r * factor, depth); \
1903 dstg[x] = av_clip_uintp2(g * factor, depth); \
1904 dstb[x] = av_clip_uintp2(b * factor, depth); \
1905 if (!direct && in->linesize[3]) \
1906 dsta[x] = srca[x]; \
1908 grow += out->linesize[0]; \
1909 brow += out->linesize[1]; \
1910 rrow += out->linesize[2]; \
1911 arow += out->linesize[3]; \
1912 srcgrow += in->linesize[0]; \
1913 srcbrow += in->linesize[1]; \
1914 srcrrow += in->linesize[2]; \
1915 srcarow += in->linesize[3]; \
1920 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
1921 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 8, 8)
1922 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8)
1923 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
1924 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8)
1926 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
1927 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 9)
1928 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9)
1929 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
1930 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9)
1932 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
1933 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 10)
1934 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10)
1935 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
1936 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10)
1938 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
1939 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 12)
1940 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12)
1941 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
1942 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12)
1944 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
1945 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 14)
1946 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14)
1947 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
1948 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14)
1950 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
1951 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 16)
1952 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16)
1953 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
1954 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16)
1956 #define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth) \
1957 static int interp_1d_##name##_pf##depth(AVFilterContext *ctx, \
1958 void *arg, int jobnr, \
1962 const LUT1DContext *lut1d = ctx->priv; \
1963 const ThreadData *td = arg; \
1964 const AVFrame *in = td->in; \
1965 const AVFrame *out = td->out; \
1966 const int direct = out == in; \
1967 const int slice_start = (in->height * jobnr ) / nb_jobs; \
1968 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1969 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1970 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1971 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1972 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1973 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1974 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1975 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1976 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1977 const float lutsize = lut1d->lutsize - 1; \
1978 const float scale_r = lut1d->scale.r * lutsize; \
1979 const float scale_g = lut1d->scale.g * lutsize; \
1980 const float scale_b = lut1d->scale.b * lutsize; \
1982 for (y = slice_start; y < slice_end; y++) { \
1983 float *dstg = (float *)grow; \
1984 float *dstb = (float *)brow; \
1985 float *dstr = (float *)rrow; \
1986 float *dsta = (float *)arow; \
1987 const float *srcg = (const float *)srcgrow; \
1988 const float *srcb = (const float *)srcbrow; \
1989 const float *srcr = (const float *)srcrrow; \
1990 const float *srca = (const float *)srcarow; \
1991 for (x = 0; x < in->width; x++) { \
1992 float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \
1993 float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \
1994 float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \
1995 r = interp_1d_##name(lut1d, 0, r); \
1996 g = interp_1d_##name(lut1d, 1, g); \
1997 b = interp_1d_##name(lut1d, 2, b); \
2001 if (!direct && in->linesize[3]) \
2002 dsta[x] = srca[x]; \
2004 grow += out->linesize[0]; \
2005 brow += out->linesize[1]; \
2006 rrow += out->linesize[2]; \
2007 arow += out->linesize[3]; \
2008 srcgrow += in->linesize[0]; \
2009 srcbrow += in->linesize[1]; \
2010 srcrrow += in->linesize[2]; \
2011 srcarow += in->linesize[3]; \
2016 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32)
2017 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(
linear, 32)
2018 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine, 32)
2019 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic, 32)
2020 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline, 32)
2022 #define DEFINE_INTERP_FUNC_1D(name, nbits) \
2023 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \
2024 int jobnr, int nb_jobs) \
2027 const LUT1DContext *lut1d = ctx->priv; \
2028 const ThreadData *td = arg; \
2029 const AVFrame *in = td->in; \
2030 const AVFrame *out = td->out; \
2031 const int direct = out == in; \
2032 const int step = lut1d->step; \
2033 const uint8_t r = lut1d->rgba_map[R]; \
2034 const uint8_t g = lut1d->rgba_map[G]; \
2035 const uint8_t b = lut1d->rgba_map[B]; \
2036 const uint8_t a = lut1d->rgba_map[A]; \
2037 const int slice_start = (in->height * jobnr ) / nb_jobs; \
2038 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
2039 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
2040 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
2041 const float factor = (1 << nbits) - 1; \
2042 const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
2043 const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
2044 const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
2046 for (y = slice_start; y < slice_end; y++) { \
2047 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
2048 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
2049 for (x = 0; x < in->width * step; x += step) { \
2050 float rr = src[x + r] * scale_r; \
2051 float gg = src[x + g] * scale_g; \
2052 float bb = src[x + b] * scale_b; \
2053 rr = interp_1d_##name(lut1d, 0, rr); \
2054 gg = interp_1d_##name(lut1d, 1, gg); \
2055 bb = interp_1d_##name(lut1d, 2, bb); \
2056 dst[x + r] = av_clip_uint##nbits(rr * factor); \
2057 dst[x + g] = av_clip_uint##nbits(gg * factor); \
2058 dst[x + b] = av_clip_uint##nbits(bb * factor); \
2059 if (!direct && step == 4) \
2060 dst[x + a] = src[x + a]; \
2062 dstrow += out->linesize[0]; \
2063 srcrow += in ->linesize[0]; \
2068 DEFINE_INTERP_FUNC_1D(nearest, 8)
2069 DEFINE_INTERP_FUNC_1D(
linear, 8)
2070 DEFINE_INTERP_FUNC_1D(cosine, 8)
2071 DEFINE_INTERP_FUNC_1D(cubic, 8)
2072 DEFINE_INTERP_FUNC_1D(spline, 8)
2074 DEFINE_INTERP_FUNC_1D(nearest, 16)
2075 DEFINE_INTERP_FUNC_1D(
linear, 16)
2076 DEFINE_INTERP_FUNC_1D(cosine, 16)
2077 DEFINE_INTERP_FUNC_1D(cubic, 16)
2078 DEFINE_INTERP_FUNC_1D(spline, 16)
2082 int depth, is16bit, isfloat,
planar;
2083 LUT1DContext *lut1d =
inlink->dst->priv;
2086 depth =
desc->comp[0].depth;
2087 is16bit =
desc->comp[0].depth > 8;
2093 #define SET_FUNC_1D(name) do { \
2094 if (planar && !isfloat) { \
2096 case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \
2097 case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \
2098 case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
2099 case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
2100 case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
2101 case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
2103 } else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \
2104 } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \
2105 } else { lut1d->interp = interp_1d_8_##name; } \
2108 switch (lut1d->interpolation) {
2109 case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest);
break;
2110 case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(
linear);
break;
2111 case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine);
break;
2112 case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic);
break;
2113 case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline);
break;
2126 LUT1DContext *lut1d =
ctx->priv;
2128 lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
2131 set_identity_matrix_1d(lut1d, 32);
2142 ext = strrchr(lut1d->file,
'.');
2153 ret = parse_cinespace_1d(
ctx,
f);
2159 if (!
ret && !lut1d->lutsize) {
2172 LUT1DContext *lut1d =
ctx->priv;
2208 static int lut1d_process_command(
AVFilterContext *
ctx,
const char *cmd,
const char *args,
2209 char *res,
int res_len,
int flags)
2211 LUT1DContext *lut1d =
ctx->priv;
2220 set_identity_matrix_1d(lut1d, 32);
2223 return config_input_1d(
ctx->inputs[0]);
2230 .filter_frame = filter_frame_1d,
2231 .config_props = config_input_1d,
2238 .priv_size =
sizeof(LUT1DContext),
2243 .priv_class = &lut1d_class,
2245 .process_command = lut1d_process_command,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_PIX_FMT_GBRAP16
#define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth)
static float lerpf(float v0, float v1, float f)
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
#define AV_LOG_WARNING
Something somehow does not look correct.
AVPixelFormat
Pixel format.
static int mix(int c0, int c1)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int parse_m3d(AVFilterContext *ctx, FILE *f)
#define FILTER_PIXFMTS_ARRAY(array)
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
#define NEXT_FLOAT_OR_GOTO(value, label)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
int() avfilter_action_func(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A function pointer passed to the AVFilterGraph::execute callback to be executed multiple times,...
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
static struct rgbvec apply_prelut(const Lut3DPreLut *prelut, const struct rgbvec *s)
static struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
static int parse_dat(AVFilterContext *ctx, FILE *f)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define AVFILTER_DEFINE_CLASS_EXT(name, desc, options)
#define FILTER_INPUTS(array)
This structure describes decoded (raw) audio or video data.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
static int skip_line(const char *p)
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
static struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s)
Tetrahedral interpolation.
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
static av_cold int preinit(AVFilterContext *ctx)
static struct rgbvec interp_prism(const LUT3DContext *lut3d, const struct rgbvec *s)
const char * name
Filter name.
static int parse_cube(AVFilterContext *ctx, FILE *f)
A link between two filters.
const AVFilter ff_vf_lut3d
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
static int parse_3dl(AVFilterContext *ctx, FILE *f)
#define AV_PIX_FMT_GBRP14
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
#define AV_PIX_FMT_GBRP10
static double val(void *priv, double ch)
static double a2(void *priv, double x, double y)
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
static struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s)
Interpolate using the 8 vertices of a cube.
A filter pad used for either input or output.
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
const AVFilterPad ff_video_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_VIDEO.
#define AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP12
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static char * fget_next_word(char *dst, int max, FILE *f)
#define DEFINE_INTERP_FUNC(name, nbits)
#define FILTER_OUTPUTS(array)
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
static float prelut_interp_1d_linear(const Lut3DPreLut *prelut, int idx, const float s)
Describe the class of an AVClass context structure.
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
static int config_input(AVFilterLink *inlink)
static double a3(void *priv, double x, double y)
#define fs(width, name, subs,...)
filter_frame For filters that do not use the activate() callback
#define FRAMESYNC_DEFINE_CLASS_EXT(name, context, field, options)
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
static int filter_frame(DBEDecodeContext *s, AVFrame *frame)
void ff_lut3d_init_x86(LUT3DContext *s, const AVPixFmtDescriptor *desc)
#define AVFILTER_DEFINE_CLASS(fname)
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
int(* init)(AVBSFContext *ctx)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
static int config_output(AVFilterLink *outlink)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
#define AV_PIX_FMT_GBRPF32
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
static double a0(void *priv, double x, double y)
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
static int set_identity_matrix(AVFilterContext *ctx, int size)
void av_frame_side_data_remove_by_props(AVFrameSideData ***sd, int *nb_sd, int props)
Remove and free all side data instances that match any of the given side data properties.
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
#define AV_LOG_INFO
Standard information.
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
static void uninit(AVBSFContext *ctx)
#define AV_PIX_FMT_BGRA64
#define i(width, name, range_min, range_max)
avfilter_action_func * interp
int w
agreed upon image width
static av_always_inline v3u16_t tetrahedral(const SwsLut3D *lut3d, int Rx, int Gx, int Bx, int Rf, int Gf, int Bf)
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)
#define AV_PIX_FMT_GBRP12
#define av_malloc_array(a, b)
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
static struct rgbvec interp_pyramid(const LUT3DContext *lut3d, const struct rgbvec *s)
const char * name
Pad name.
FILE * avpriv_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
@ AV_SIDE_DATA_PROP_COLOR_DEPENDENT
Side data depends on the video color space.
static int parse_cinespace(AVFilterContext *ctx, FILE *f)
static float sanitizef(float f)
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
#define NEXT_LINE_OR_GOTO(loop_cond, label)
const AVFilter ff_vf_haldclut
int h
agreed upon image height
int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
@ AV_OPT_TYPE_INT
Underlying C type is int.
#define AV_PIX_FMT_GBRAPF32
static struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s)
Get the nearest defined point.
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
#define NEXT_LINE(loop_cond)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static void scale(int *out, const int *in, const int w, const int h, const int shift)
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define flags(name, subs,...)
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
@ INTERPOLATE_TETRAHEDRAL
static double a1(void *priv, double x, double y)
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
const AVFilter ff_vf_lut1d
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
@ AV_OPT_TYPE_STRING
Underlying C type is a uint8_t* that is either NULL or points to a C string allocated with the av_mal...
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
int interpolation
interp_mode
static int nearest_sample_index(float *data, float x, int low, int hi)