39 int jobnr,
int nb_jobs);
42 static inline float lerpf(
float v0,
float v1,
float f)
44 return v0 + (v1 -
v0) * f;
53 const float scale = 1.f / 255.f;
59 const float gintensity = intensity * s->
balance[0];
60 const float bintensity = intensity * s->
balance[1];
61 const float rintensity = intensity * s->
balance[2];
62 const float sgintensity = alternate *
FFSIGN(gintensity);
63 const float sbintensity = alternate *
FFSIGN(bintensity);
64 const float srintensity = alternate *
FFSIGN(rintensity);
65 const int slice_start = (height * jobnr) / nb_jobs;
66 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
67 const int glinesize = frame->
linesize[0];
68 const int blinesize = frame->
linesize[1];
69 const int rlinesize = frame->
linesize[2];
70 uint8_t *gptr = frame->
data[0] + slice_start * glinesize;
71 uint8_t *bptr = frame->
data[1] + slice_start * blinesize;
72 uint8_t *rptr = frame->
data[2] + slice_start * rlinesize;
74 for (
int y = slice_start; y <
slice_end; y++) {
75 for (
int x = 0; x <
width; x++) {
76 float g = gptr[x] * scale;
77 float b = bptr[x] * scale;
78 float r = rptr[x] * scale;
79 float max_color =
FFMAX3(r, g, b);
80 float min_color =
FFMIN3(r, g, b);
81 float color_saturation = max_color - min_color;
82 float luma = g * gc + r * rc + b * bc;
83 const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
84 const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
85 const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
87 g =
lerpf(luma, g, cg);
88 b =
lerpf(luma, b, cb);
89 r =
lerpf(luma, r, cr);
91 gptr[x] = av_clip_uint8(g * 255.
f);
92 bptr[x] = av_clip_uint8(b * 255.f);
93 rptr[x] = av_clip_uint8(r * 255.f);
110 const float scale = 1.f /
max;
111 const float gc = s->
lcoeffs[0];
112 const float bc = s->
lcoeffs[1];
113 const float rc = s->
lcoeffs[2];
118 const float gintensity = intensity * s->
balance[0];
119 const float bintensity = intensity * s->
balance[1];
120 const float rintensity = intensity * s->
balance[2];
121 const float sgintensity = alternate *
FFSIGN(gintensity);
122 const float sbintensity = alternate *
FFSIGN(bintensity);
123 const float srintensity = alternate *
FFSIGN(rintensity);
124 const int slice_start = (height * jobnr) / nb_jobs;
125 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
126 const int glinesize = frame->
linesize[0] / 2;
127 const int blinesize = frame->
linesize[1] / 2;
128 const int rlinesize = frame->
linesize[2] / 2;
129 uint16_t *gptr = (uint16_t *)frame->
data[0] + slice_start * glinesize;
130 uint16_t *bptr = (uint16_t *)frame->
data[1] + slice_start * blinesize;
131 uint16_t *rptr = (uint16_t *)frame->
data[2] + slice_start * rlinesize;
134 for (
int x = 0; x <
width; x++) {
135 float g = gptr[x] * scale;
136 float b = bptr[x] * scale;
137 float r = rptr[x] * scale;
138 float max_color =
FFMAX3(r, g, b);
139 float min_color =
FFMIN3(r, g, b);
140 float color_saturation = max_color - min_color;
141 float luma = g * gc + r * rc + b * bc;
142 const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
143 const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
144 const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
146 g =
lerpf(luma, g, cg);
147 b =
lerpf(luma, b, cb);
148 r =
lerpf(luma, r, cr);
226 #define OFFSET(x) offsetof(VibranceContext, x) 227 #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM 247 .priv_class = &vibrance_class,
249 .
inputs = vibrance_inputs,
AVFILTER_DEFINE_CLASS(vibrance)
static av_cold int query_formats(AVFilterContext *avctx)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
This structure describes decoded (raw) audio or video data.
#define AV_PIX_FMT_GBRAP10
Main libavfilter public API header.
#define AV_PIX_FMT_GBRP10
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
const char * name
Pad name.
int(* do_slice)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs)
static double cb(void *priv, double x, double y)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
static int vibrance_slice8(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
A filter pad used for either input or output.
A link between two filters.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options...
void * priv
private data for use by the filter
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
#define AV_PIX_FMT_GBRAP12
static const AVOption vibrance_options[]
#define AV_PIX_FMT_GBRAP16
#define AV_PIX_FMT_GBRP16
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
static const AVFilterPad vibrance_inputs[]
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define AV_PIX_FMT_GBRP14
static const AVFilterPad outputs[]
int format
agreed upon media format
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static int filter_frame(AVFilterLink *link, AVFrame *frame)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
Describe the class of an AVClass context structure.
const char * name
Filter name.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a link
static const AVFilterPad vibrance_outputs[]
static av_cold int config_input(AVFilterLink *inlink)
AVFilterLink ** outputs
array of pointers to output links
static float lerpf(float v0, float v1, float f)
#define AV_PIX_FMT_GBRP12
#define flags(name, subs,...)
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
planar GBRA 4:4:4:4 32bpp
static int vibrance_slice16(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
avfilter_execute_func * execute
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
AVFilterContext * dst
dest filter
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
static double cr(void *priv, double x, double y)
int depth
Number of bits in the component.
AVPixelFormat
Pixel format.
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.