FFmpeg
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
error_resilience.c
Go to the documentation of this file.
1 /*
2  * Error resilience / concealment
3  *
4  * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Error resilience / concealment.
26  */
27 
28 #include <limits.h>
29 
30 #include "libavutil/atomic.h"
31 #include "libavutil/internal.h"
32 #include "avcodec.h"
33 #include "error_resilience.h"
34 #include "me_cmp.h"
35 #include "mpegutils.h"
36 #include "mpegvideo.h"
37 #include "rectangle.h"
38 #include "thread.h"
39 #include "version.h"
40 
41 /**
42  * @param stride the number of MVs to get to the next row
43  * @param mv_step the number of MVs per row or column in a macroblock
44  */
45 static void set_mv_strides(ERContext *s, ptrdiff_t *mv_step, ptrdiff_t *stride)
46 {
47  if (s->avctx->codec_id == AV_CODEC_ID_H264) {
49  *mv_step = 4;
50  *stride = s->mb_width * 4;
51  } else {
52  *mv_step = 2;
53  *stride = s->b8_stride;
54  }
55 }
56 
57 /**
58  * Replace the current MB with a flat dc-only version.
59  */
60 static void put_dc(ERContext *s, uint8_t *dest_y, uint8_t *dest_cb,
61  uint8_t *dest_cr, int mb_x, int mb_y)
62 {
63  int *linesize = s->cur_pic.f->linesize;
64  int dc, dcu, dcv, y, i;
65  for (i = 0; i < 4; i++) {
66  dc = s->dc_val[0][mb_x * 2 + (i & 1) + (mb_y * 2 + (i >> 1)) * s->b8_stride];
67  if (dc < 0)
68  dc = 0;
69  else if (dc > 2040)
70  dc = 2040;
71  for (y = 0; y < 8; y++) {
72  int x;
73  for (x = 0; x < 8; x++)
74  dest_y[x + (i & 1) * 8 + (y + (i >> 1) * 8) * linesize[0]] = dc / 8;
75  }
76  }
77  dcu = s->dc_val[1][mb_x + mb_y * s->mb_stride];
78  dcv = s->dc_val[2][mb_x + mb_y * s->mb_stride];
79  if (dcu < 0)
80  dcu = 0;
81  else if (dcu > 2040)
82  dcu = 2040;
83  if (dcv < 0)
84  dcv = 0;
85  else if (dcv > 2040)
86  dcv = 2040;
87 
88  if (dest_cr)
89  for (y = 0; y < 8; y++) {
90  int x;
91  for (x = 0; x < 8; x++) {
92  dest_cb[x + y * linesize[1]] = dcu / 8;
93  dest_cr[x + y * linesize[2]] = dcv / 8;
94  }
95  }
96 }
97 
98 static void filter181(int16_t *data, int width, int height, ptrdiff_t stride)
99 {
100  int x, y;
101 
102  /* horizontal filter */
103  for (y = 1; y < height - 1; y++) {
104  int prev_dc = data[0 + y * stride];
105 
106  for (x = 1; x < width - 1; x++) {
107  int dc;
108  dc = -prev_dc +
109  data[x + y * stride] * 8 -
110  data[x + 1 + y * stride];
111  dc = (dc * 10923 + 32768) >> 16;
112  prev_dc = data[x + y * stride];
113  data[x + y * stride] = dc;
114  }
115  }
116 
117  /* vertical filter */
118  for (x = 1; x < width - 1; x++) {
119  int prev_dc = data[x];
120 
121  for (y = 1; y < height - 1; y++) {
122  int dc;
123 
124  dc = -prev_dc +
125  data[x + y * stride] * 8 -
126  data[x + (y + 1) * stride];
127  dc = (dc * 10923 + 32768) >> 16;
128  prev_dc = data[x + y * stride];
129  data[x + y * stride] = dc;
130  }
131  }
132 }
133 
134 /**
135  * guess the dc of blocks which do not have an undamaged dc
136  * @param w width in 8 pixel blocks
137  * @param h height in 8 pixel blocks
138  */
139 static void guess_dc(ERContext *s, int16_t *dc, int w,
140  int h, ptrdiff_t stride, int is_luma)
141 {
142  int b_x, b_y;
143  int16_t (*col )[4] = av_malloc_array(stride, h*sizeof( int16_t)*4);
144  uint32_t (*dist)[4] = av_malloc_array(stride, h*sizeof(uint32_t)*4);
145 
146  if(!col || !dist) {
147  av_log(s->avctx, AV_LOG_ERROR, "guess_dc() is out of memory\n");
148  goto fail;
149  }
150 
151  for(b_y=0; b_y<h; b_y++){
152  int color= 1024;
153  int distance= -1;
154  for(b_x=0; b_x<w; b_x++){
155  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
156  int error_j= s->error_status_table[mb_index_j];
157  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
158  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
159  color= dc[b_x + b_y*stride];
160  distance= b_x;
161  }
162  col [b_x + b_y*stride][1]= color;
163  dist[b_x + b_y*stride][1]= distance >= 0 ? b_x-distance : 9999;
164  }
165  color= 1024;
166  distance= -1;
167  for(b_x=w-1; b_x>=0; b_x--){
168  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
169  int error_j= s->error_status_table[mb_index_j];
170  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
171  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
172  color= dc[b_x + b_y*stride];
173  distance= b_x;
174  }
175  col [b_x + b_y*stride][0]= color;
176  dist[b_x + b_y*stride][0]= distance >= 0 ? distance-b_x : 9999;
177  }
178  }
179  for(b_x=0; b_x<w; b_x++){
180  int color= 1024;
181  int distance= -1;
182  for(b_y=0; b_y<h; b_y++){
183  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
184  int error_j= s->error_status_table[mb_index_j];
185  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
186  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
187  color= dc[b_x + b_y*stride];
188  distance= b_y;
189  }
190  col [b_x + b_y*stride][3]= color;
191  dist[b_x + b_y*stride][3]= distance >= 0 ? b_y-distance : 9999;
192  }
193  color= 1024;
194  distance= -1;
195  for(b_y=h-1; b_y>=0; b_y--){
196  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
197  int error_j= s->error_status_table[mb_index_j];
198  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
199  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
200  color= dc[b_x + b_y*stride];
201  distance= b_y;
202  }
203  col [b_x + b_y*stride][2]= color;
204  dist[b_x + b_y*stride][2]= distance >= 0 ? distance-b_y : 9999;
205  }
206  }
207 
208  for (b_y = 0; b_y < h; b_y++) {
209  for (b_x = 0; b_x < w; b_x++) {
210  int mb_index, error, j;
211  int64_t guess, weight_sum;
212  mb_index = (b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride;
213  error = s->error_status_table[mb_index];
214 
215  if (IS_INTER(s->cur_pic.mb_type[mb_index]))
216  continue; // inter
217  if (!(error & ER_DC_ERROR))
218  continue; // dc-ok
219 
220  weight_sum = 0;
221  guess = 0;
222  for (j = 0; j < 4; j++) {
223  int64_t weight = 256 * 256 * 256 * 16 / FFMAX(dist[b_x + b_y*stride][j], 1);
224  guess += weight*(int64_t)col[b_x + b_y*stride][j];
225  weight_sum += weight;
226  }
227  guess = (guess + weight_sum / 2) / weight_sum;
228  dc[b_x + b_y * stride] = guess;
229  }
230  }
231 
232 fail:
233  av_freep(&col);
234  av_freep(&dist);
235 }
236 
237 /**
238  * simple horizontal deblocking filter used for error resilience
239  * @param w width in 8 pixel blocks
240  * @param h height in 8 pixel blocks
241  */
242 static void h_block_filter(ERContext *s, uint8_t *dst, int w,
243  int h, ptrdiff_t stride, int is_luma)
244 {
245  int b_x, b_y;
246  ptrdiff_t mvx_stride, mvy_stride;
247  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
248  set_mv_strides(s, &mvx_stride, &mvy_stride);
249  mvx_stride >>= is_luma;
250  mvy_stride *= mvx_stride;
251 
252  for (b_y = 0; b_y < h; b_y++) {
253  for (b_x = 0; b_x < w - 1; b_x++) {
254  int y;
255  int left_status = s->error_status_table[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride];
256  int right_status = s->error_status_table[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride];
257  int left_intra = IS_INTRA(s->cur_pic.mb_type[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride]);
258  int right_intra = IS_INTRA(s->cur_pic.mb_type[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride]);
259  int left_damage = left_status & ER_MB_ERROR;
260  int right_damage = right_status & ER_MB_ERROR;
261  int offset = b_x * 8 + b_y * stride * 8;
262  int16_t *left_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
263  int16_t *right_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * (b_x + 1)];
264  if (!(left_damage || right_damage))
265  continue; // both undamaged
266  if ((!left_intra) && (!right_intra) &&
267  FFABS(left_mv[0] - right_mv[0]) +
268  FFABS(left_mv[1] + right_mv[1]) < 2)
269  continue;
270 
271  for (y = 0; y < 8; y++) {
272  int a, b, c, d;
273 
274  a = dst[offset + 7 + y * stride] - dst[offset + 6 + y * stride];
275  b = dst[offset + 8 + y * stride] - dst[offset + 7 + y * stride];
276  c = dst[offset + 9 + y * stride] - dst[offset + 8 + y * stride];
277 
278  d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1);
279  d = FFMAX(d, 0);
280  if (b < 0)
281  d = -d;
282 
283  if (d == 0)
284  continue;
285 
286  if (!(left_damage && right_damage))
287  d = d * 16 / 9;
288 
289  if (left_damage) {
290  dst[offset + 7 + y * stride] = cm[dst[offset + 7 + y * stride] + ((d * 7) >> 4)];
291  dst[offset + 6 + y * stride] = cm[dst[offset + 6 + y * stride] + ((d * 5) >> 4)];
292  dst[offset + 5 + y * stride] = cm[dst[offset + 5 + y * stride] + ((d * 3) >> 4)];
293  dst[offset + 4 + y * stride] = cm[dst[offset + 4 + y * stride] + ((d * 1) >> 4)];
294  }
295  if (right_damage) {
296  dst[offset + 8 + y * stride] = cm[dst[offset + 8 + y * stride] - ((d * 7) >> 4)];
297  dst[offset + 9 + y * stride] = cm[dst[offset + 9 + y * stride] - ((d * 5) >> 4)];
298  dst[offset + 10+ y * stride] = cm[dst[offset + 10 + y * stride] - ((d * 3) >> 4)];
299  dst[offset + 11+ y * stride] = cm[dst[offset + 11 + y * stride] - ((d * 1) >> 4)];
300  }
301  }
302  }
303  }
304 }
305 
306 /**
307  * simple vertical deblocking filter used for error resilience
308  * @param w width in 8 pixel blocks
309  * @param h height in 8 pixel blocks
310  */
311 static void v_block_filter(ERContext *s, uint8_t *dst, int w, int h,
312  ptrdiff_t stride, int is_luma)
313 {
314  int b_x, b_y;
315  ptrdiff_t mvx_stride, mvy_stride;
316  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
317  set_mv_strides(s, &mvx_stride, &mvy_stride);
318  mvx_stride >>= is_luma;
319  mvy_stride *= mvx_stride;
320 
321  for (b_y = 0; b_y < h - 1; b_y++) {
322  for (b_x = 0; b_x < w; b_x++) {
323  int x;
324  int top_status = s->error_status_table[(b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride];
325  int bottom_status = s->error_status_table[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride];
326  int top_intra = IS_INTRA(s->cur_pic.mb_type[(b_x >> is_luma) + ( b_y >> is_luma) * s->mb_stride]);
327  int bottom_intra = IS_INTRA(s->cur_pic.mb_type[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride]);
328  int top_damage = top_status & ER_MB_ERROR;
329  int bottom_damage = bottom_status & ER_MB_ERROR;
330  int offset = b_x * 8 + b_y * stride * 8;
331 
332  int16_t *top_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
333  int16_t *bottom_mv = s->cur_pic.motion_val[0][mvy_stride * (b_y + 1) + mvx_stride * b_x];
334 
335  if (!(top_damage || bottom_damage))
336  continue; // both undamaged
337 
338  if ((!top_intra) && (!bottom_intra) &&
339  FFABS(top_mv[0] - bottom_mv[0]) +
340  FFABS(top_mv[1] + bottom_mv[1]) < 2)
341  continue;
342 
343  for (x = 0; x < 8; x++) {
344  int a, b, c, d;
345 
346  a = dst[offset + x + 7 * stride] - dst[offset + x + 6 * stride];
347  b = dst[offset + x + 8 * stride] - dst[offset + x + 7 * stride];
348  c = dst[offset + x + 9 * stride] - dst[offset + x + 8 * stride];
349 
350  d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1);
351  d = FFMAX(d, 0);
352  if (b < 0)
353  d = -d;
354 
355  if (d == 0)
356  continue;
357 
358  if (!(top_damage && bottom_damage))
359  d = d * 16 / 9;
360 
361  if (top_damage) {
362  dst[offset + x + 7 * stride] = cm[dst[offset + x + 7 * stride] + ((d * 7) >> 4)];
363  dst[offset + x + 6 * stride] = cm[dst[offset + x + 6 * stride] + ((d * 5) >> 4)];
364  dst[offset + x + 5 * stride] = cm[dst[offset + x + 5 * stride] + ((d * 3) >> 4)];
365  dst[offset + x + 4 * stride] = cm[dst[offset + x + 4 * stride] + ((d * 1) >> 4)];
366  }
367  if (bottom_damage) {
368  dst[offset + x + 8 * stride] = cm[dst[offset + x + 8 * stride] - ((d * 7) >> 4)];
369  dst[offset + x + 9 * stride] = cm[dst[offset + x + 9 * stride] - ((d * 5) >> 4)];
370  dst[offset + x + 10 * stride] = cm[dst[offset + x + 10 * stride] - ((d * 3) >> 4)];
371  dst[offset + x + 11 * stride] = cm[dst[offset + x + 11 * stride] - ((d * 1) >> 4)];
372  }
373  }
374  }
375  }
376 }
377 
378 #define MV_FROZEN 8
379 #define MV_CHANGED 4
380 #define MV_UNCHANGED 2
381 #define MV_LISTED 1
382 static av_always_inline void add_blocklist(int (*blocklist)[2], int *blocklist_length, uint8_t *fixed, int mb_x, int mb_y, int mb_xy)
383 {
384  if (fixed[mb_xy])
385  return;
386  fixed[mb_xy] = MV_LISTED;
387  blocklist[ *blocklist_length ][0] = mb_x;
388  blocklist[(*blocklist_length)++][1] = mb_y;
389 }
390 
391 static void guess_mv(ERContext *s)
392 {
393  int (*blocklist)[2], (*next_blocklist)[2];
394  uint8_t *fixed;
395  const ptrdiff_t mb_stride = s->mb_stride;
396  const int mb_width = s->mb_width;
397  int mb_height = s->mb_height;
398  int i, depth, num_avail;
399  int mb_x, mb_y;
400  ptrdiff_t mot_step, mot_stride;
401  int blocklist_length, next_blocklist_length;
402 
403  if (s->last_pic.f && s->last_pic.f->data[0])
404  mb_height = FFMIN(mb_height, (s->last_pic.f->height+15)>>4);
405  if (s->next_pic.f && s->next_pic.f->data[0])
406  mb_height = FFMIN(mb_height, (s->next_pic.f->height+15)>>4);
407 
408  blocklist = (int (*)[2])s->er_temp_buffer;
409  next_blocklist = blocklist + s->mb_stride * s->mb_height;
410  fixed = (uint8_t *)(next_blocklist + s->mb_stride * s->mb_height);
411 
412  set_mv_strides(s, &mot_step, &mot_stride);
413 
414  num_avail = 0;
415  if (s->last_pic.motion_val[0])
416  ff_thread_await_progress(s->last_pic.tf, mb_height-1, 0);
417  for (i = 0; i < mb_width * mb_height; i++) {
418  const int mb_xy = s->mb_index2xy[i];
419  int f = 0;
420  int error = s->error_status_table[mb_xy];
421 
422  if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
423  f = MV_FROZEN; // intra // FIXME check
424  if (!(error & ER_MV_ERROR))
425  f = MV_FROZEN; // inter with undamaged MV
426 
427  fixed[mb_xy] = f;
428  if (f == MV_FROZEN)
429  num_avail++;
430  else if(s->last_pic.f->data[0] && s->last_pic.motion_val[0]){
431  const int mb_y= mb_xy / s->mb_stride;
432  const int mb_x= mb_xy % s->mb_stride;
433  const int mot_index= (mb_x + mb_y*mot_stride) * mot_step;
434  s->cur_pic.motion_val[0][mot_index][0]= s->last_pic.motion_val[0][mot_index][0];
435  s->cur_pic.motion_val[0][mot_index][1]= s->last_pic.motion_val[0][mot_index][1];
436  s->cur_pic.ref_index[0][4*mb_xy] = s->last_pic.ref_index[0][4*mb_xy];
437  }
438  }
439 
440  if ((!(s->avctx->error_concealment&FF_EC_GUESS_MVS)) ||
441  num_avail <= mb_width / 2) {
442  for (mb_y = 0; mb_y < mb_height; mb_y++) {
443  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
444  const int mb_xy = mb_x + mb_y * s->mb_stride;
445  int mv_dir = (s->last_pic.f && s->last_pic.f->data[0]) ? MV_DIR_FORWARD : MV_DIR_BACKWARD;
446 
447  if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
448  continue;
449  if (!(s->error_status_table[mb_xy] & ER_MV_ERROR))
450  continue;
451 
452  s->mv[0][0][0] = 0;
453  s->mv[0][0][1] = 0;
454  s->decode_mb(s->opaque, 0, mv_dir, MV_TYPE_16X16, &s->mv,
455  mb_x, mb_y, 0, 0);
456  }
457  }
458  return;
459  }
460 
461  blocklist_length = 0;
462  for (mb_y = 0; mb_y < mb_height; mb_y++) {
463  for (mb_x = 0; mb_x < mb_width; mb_x++) {
464  const int mb_xy = mb_x + mb_y * mb_stride;
465  if (fixed[mb_xy] == MV_FROZEN) {
466  if (mb_x) add_blocklist(blocklist, &blocklist_length, fixed, mb_x - 1, mb_y, mb_xy - 1);
467  if (mb_y) add_blocklist(blocklist, &blocklist_length, fixed, mb_x, mb_y - 1, mb_xy - mb_stride);
468  if (mb_x+1 < mb_width) add_blocklist(blocklist, &blocklist_length, fixed, mb_x + 1, mb_y, mb_xy + 1);
469  if (mb_y+1 < mb_height) add_blocklist(blocklist, &blocklist_length, fixed, mb_x, mb_y + 1, mb_xy + mb_stride);
470  }
471  }
472  }
473 
474  for (depth = 0; ; depth++) {
475  int changed, pass, none_left;
476  int blocklist_index;
477 
478  none_left = 1;
479  changed = 1;
480  for (pass = 0; (changed || pass < 2) && pass < 10; pass++) {
481  int score_sum = 0;
482 
483  changed = 0;
484  for (blocklist_index = 0; blocklist_index < blocklist_length; blocklist_index++) {
485  const int mb_x = blocklist[blocklist_index][0];
486  const int mb_y = blocklist[blocklist_index][1];
487  const int mb_xy = mb_x + mb_y * mb_stride;
488  int mv_predictor[8][2];
489  int ref[8];
490  int pred_count;
491  int j;
492  int best_score;
493  int best_pred;
494  int mot_index;
495  int prev_x, prev_y, prev_ref;
496 
497  if ((mb_x ^ mb_y ^ pass) & 1)
498  continue;
499  av_assert2(fixed[mb_xy] != MV_FROZEN);
500 
501 
502  av_assert1(!IS_INTRA(s->cur_pic.mb_type[mb_xy]));
503  av_assert1(s->last_pic.f && s->last_pic.f->data[0]);
504 
505  j = 0;
506  if (mb_x > 0)
507  j |= fixed[mb_xy - 1];
508  if (mb_x + 1 < mb_width)
509  j |= fixed[mb_xy + 1];
510  if (mb_y > 0)
511  j |= fixed[mb_xy - mb_stride];
512  if (mb_y + 1 < mb_height)
513  j |= fixed[mb_xy + mb_stride];
514 
515  av_assert2(j & MV_FROZEN);
516 
517  if (!(j & MV_CHANGED) && pass > 1)
518  continue;
519 
520  none_left = 0;
521  pred_count = 0;
522  mot_index = (mb_x + mb_y * mot_stride) * mot_step;
523 
524  if (mb_x > 0 && fixed[mb_xy - 1] > 1) {
525  mv_predictor[pred_count][0] =
526  s->cur_pic.motion_val[0][mot_index - mot_step][0];
527  mv_predictor[pred_count][1] =
528  s->cur_pic.motion_val[0][mot_index - mot_step][1];
529  ref[pred_count] =
530  s->cur_pic.ref_index[0][4 * (mb_xy - 1)];
531  pred_count++;
532  }
533  if (mb_x + 1 < mb_width && fixed[mb_xy + 1] > 1) {
534  mv_predictor[pred_count][0] =
535  s->cur_pic.motion_val[0][mot_index + mot_step][0];
536  mv_predictor[pred_count][1] =
537  s->cur_pic.motion_val[0][mot_index + mot_step][1];
538  ref[pred_count] =
539  s->cur_pic.ref_index[0][4 * (mb_xy + 1)];
540  pred_count++;
541  }
542  if (mb_y > 0 && fixed[mb_xy - mb_stride] > 1) {
543  mv_predictor[pred_count][0] =
544  s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][0];
545  mv_predictor[pred_count][1] =
546  s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][1];
547  ref[pred_count] =
548  s->cur_pic.ref_index[0][4 * (mb_xy - s->mb_stride)];
549  pred_count++;
550  }
551  if (mb_y + 1<mb_height && fixed[mb_xy + mb_stride] > 1) {
552  mv_predictor[pred_count][0] =
553  s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][0];
554  mv_predictor[pred_count][1] =
555  s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][1];
556  ref[pred_count] =
557  s->cur_pic.ref_index[0][4 * (mb_xy + s->mb_stride)];
558  pred_count++;
559  }
560  if (pred_count == 0)
561  continue;
562 
563  if (pred_count > 1) {
564  int sum_x = 0, sum_y = 0, sum_r = 0;
565  int max_x, max_y, min_x, min_y, max_r, min_r;
566 
567  for (j = 0; j < pred_count; j++) {
568  sum_x += mv_predictor[j][0];
569  sum_y += mv_predictor[j][1];
570  sum_r += ref[j];
571  if (j && ref[j] != ref[j - 1])
572  goto skip_mean_and_median;
573  }
574 
575  /* mean */
576  mv_predictor[pred_count][0] = sum_x / j;
577  mv_predictor[pred_count][1] = sum_y / j;
578  ref[pred_count] = sum_r / j;
579 
580  /* median */
581  if (pred_count >= 3) {
582  min_y = min_x = min_r = 99999;
583  max_y = max_x = max_r = -99999;
584  } else {
585  min_x = min_y = max_x = max_y = min_r = max_r = 0;
586  }
587  for (j = 0; j < pred_count; j++) {
588  max_x = FFMAX(max_x, mv_predictor[j][0]);
589  max_y = FFMAX(max_y, mv_predictor[j][1]);
590  max_r = FFMAX(max_r, ref[j]);
591  min_x = FFMIN(min_x, mv_predictor[j][0]);
592  min_y = FFMIN(min_y, mv_predictor[j][1]);
593  min_r = FFMIN(min_r, ref[j]);
594  }
595  mv_predictor[pred_count + 1][0] = sum_x - max_x - min_x;
596  mv_predictor[pred_count + 1][1] = sum_y - max_y - min_y;
597  ref[pred_count + 1] = sum_r - max_r - min_r;
598 
599  if (pred_count == 4) {
600  mv_predictor[pred_count + 1][0] /= 2;
601  mv_predictor[pred_count + 1][1] /= 2;
602  ref[pred_count + 1] /= 2;
603  }
604  pred_count += 2;
605  }
606 
607 skip_mean_and_median:
608  /* zero MV */
609  mv_predictor[pred_count][0] =
610  mv_predictor[pred_count][1] =
611  ref[pred_count] = 0;
612  pred_count++;
613 
614  prev_x = s->cur_pic.motion_val[0][mot_index][0];
615  prev_y = s->cur_pic.motion_val[0][mot_index][1];
616  prev_ref = s->cur_pic.ref_index[0][4 * mb_xy];
617 
618  /* last MV */
619  mv_predictor[pred_count][0] = prev_x;
620  mv_predictor[pred_count][1] = prev_y;
621  ref[pred_count] = prev_ref;
622  pred_count++;
623 
624  best_pred = 0;
625  best_score = 256 * 256 * 256 * 64;
626  for (j = 0; j < pred_count; j++) {
627  int *linesize = s->cur_pic.f->linesize;
628  int score = 0;
629  uint8_t *src = s->cur_pic.f->data[0] +
630  mb_x * 16 + mb_y * 16 * linesize[0];
631 
632  s->cur_pic.motion_val[0][mot_index][0] =
633  s->mv[0][0][0] = mv_predictor[j][0];
634  s->cur_pic.motion_val[0][mot_index][1] =
635  s->mv[0][0][1] = mv_predictor[j][1];
636 
637  // predictor intra or otherwise not available
638  if (ref[j] < 0)
639  continue;
640 
641  s->decode_mb(s->opaque, ref[j], MV_DIR_FORWARD,
642  MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0);
643 
644  if (mb_x > 0 && fixed[mb_xy - 1] > 1) {
645  int k;
646  for (k = 0; k < 16; k++)
647  score += FFABS(src[k * linesize[0] - 1] -
648  src[k * linesize[0]]);
649  }
650  if (mb_x + 1 < mb_width && fixed[mb_xy + 1] > 1) {
651  int k;
652  for (k = 0; k < 16; k++)
653  score += FFABS(src[k * linesize[0] + 15] -
654  src[k * linesize[0] + 16]);
655  }
656  if (mb_y > 0 && fixed[mb_xy - mb_stride] > 1) {
657  int k;
658  for (k = 0; k < 16; k++)
659  score += FFABS(src[k - linesize[0]] - src[k]);
660  }
661  if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] > 1) {
662  int k;
663  for (k = 0; k < 16; k++)
664  score += FFABS(src[k + linesize[0] * 15] -
665  src[k + linesize[0] * 16]);
666  }
667 
668  if (score <= best_score) { // <= will favor the last MV
669  best_score = score;
670  best_pred = j;
671  }
672  }
673  score_sum += best_score;
674  s->mv[0][0][0] = mv_predictor[best_pred][0];
675  s->mv[0][0][1] = mv_predictor[best_pred][1];
676 
677  for (i = 0; i < mot_step; i++)
678  for (j = 0; j < mot_step; j++) {
679  s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][0] = s->mv[0][0][0];
680  s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][1] = s->mv[0][0][1];
681  }
682 
683  s->decode_mb(s->opaque, ref[best_pred], MV_DIR_FORWARD,
684  MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0);
685 
686 
687  if (s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y) {
688  fixed[mb_xy] = MV_CHANGED;
689  changed++;
690  } else
691  fixed[mb_xy] = MV_UNCHANGED;
692  }
693  }
694 
695  if (none_left)
696  return;
697 
698  next_blocklist_length = 0;
699 
700  for (blocklist_index = 0; blocklist_index < blocklist_length; blocklist_index++) {
701  const int mb_x = blocklist[blocklist_index][0];
702  const int mb_y = blocklist[blocklist_index][1];
703  const int mb_xy = mb_x + mb_y * mb_stride;
704 
705  if (fixed[mb_xy] & (MV_CHANGED|MV_UNCHANGED|MV_FROZEN)) {
706  fixed[mb_xy] = MV_FROZEN;
707  if (mb_x > 0)
708  add_blocklist(next_blocklist, &next_blocklist_length, fixed, mb_x - 1, mb_y, mb_xy - 1);
709  if (mb_y > 0)
710  add_blocklist(next_blocklist, &next_blocklist_length, fixed, mb_x, mb_y - 1, mb_xy - mb_stride);
711  if (mb_x + 1 < mb_width)
712  add_blocklist(next_blocklist, &next_blocklist_length, fixed, mb_x + 1, mb_y, mb_xy + 1);
713  if (mb_y + 1 < mb_height)
714  add_blocklist(next_blocklist, &next_blocklist_length, fixed, mb_x, mb_y + 1, mb_xy + mb_stride);
715  }
716  }
717  av_assert0(next_blocklist_length <= mb_height * mb_width);
718  FFSWAP(int , blocklist_length, next_blocklist_length);
719  FFSWAP(void*, blocklist, next_blocklist);
720  }
721 }
722 
724 {
725  int is_intra_likely, i, j, undamaged_count, skip_amount, mb_x, mb_y;
726 
727  if (!s->last_pic.f || !s->last_pic.f->data[0])
728  return 1; // no previous frame available -> use spatial prediction
729 
731  return 0;
732 
733  undamaged_count = 0;
734  for (i = 0; i < s->mb_num; i++) {
735  const int mb_xy = s->mb_index2xy[i];
736  const int error = s->error_status_table[mb_xy];
737  if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR)))
738  undamaged_count++;
739  }
740 
741  if (undamaged_count < 5)
742  return 0; // almost all MBs damaged -> use temporal prediction
743 
744  // prevent dsp.sad() check, that requires access to the image
745  if (CONFIG_XVMC &&
746  s->avctx->hwaccel && s->avctx->hwaccel->decode_mb &&
748  return 1;
749 
750  skip_amount = FFMAX(undamaged_count / 50, 1); // check only up to 50 MBs
751  is_intra_likely = 0;
752 
753  j = 0;
754  for (mb_y = 0; mb_y < s->mb_height - 1; mb_y++) {
755  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
756  int error;
757  const int mb_xy = mb_x + mb_y * s->mb_stride;
758 
759  error = s->error_status_table[mb_xy];
760  if ((error & ER_DC_ERROR) && (error & ER_MV_ERROR))
761  continue; // skip damaged
762 
763  j++;
764  // skip a few to speed things up
765  if ((j % skip_amount) != 0)
766  continue;
767 
768  if (s->cur_pic.f->pict_type == AV_PICTURE_TYPE_I) {
769  int *linesize = s->cur_pic.f->linesize;
770  uint8_t *mb_ptr = s->cur_pic.f->data[0] +
771  mb_x * 16 + mb_y * 16 * linesize[0];
772  uint8_t *last_mb_ptr = s->last_pic.f->data[0] +
773  mb_x * 16 + mb_y * 16 * linesize[0];
774 
775  if (s->avctx->codec_id == AV_CODEC_ID_H264) {
776  // FIXME
777  } else {
778  ff_thread_await_progress(s->last_pic.tf, mb_y, 0);
779  }
780  is_intra_likely += s->mecc.sad[0](NULL, last_mb_ptr, mb_ptr,
781  linesize[0], 16);
782  // FIXME need await_progress() here
783  is_intra_likely -= s->mecc.sad[0](NULL, last_mb_ptr,
784  last_mb_ptr + linesize[0] * 16,
785  linesize[0], 16);
786  } else {
787  if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
788  is_intra_likely++;
789  else
790  is_intra_likely--;
791  }
792  }
793  }
794 // av_log(NULL, AV_LOG_ERROR, "is_intra_likely: %d type:%d\n", is_intra_likely, s->pict_type);
795  return is_intra_likely > 0;
796 }
797 
799 {
800  if (!s->avctx->error_concealment)
801  return;
802 
803  if (!s->mecc_inited) {
804  ff_me_cmp_init(&s->mecc, s->avctx);
805  s->mecc_inited = 1;
806  }
807 
809  s->mb_stride * s->mb_height * sizeof(uint8_t));
810  s->error_count = 3 * s->mb_num;
811  s->error_occurred = 0;
812 }
813 
815 {
816  if(s->avctx->hwaccel && s->avctx->hwaccel->decode_slice ||
819 #endif
820  !s->cur_pic.f ||
822  )
823  return 0;
824  return 1;
825 }
826 
827 /**
828  * Add a slice.
829  * @param endx x component of the last macroblock, can be -1
830  * for the last of the previous line
831  * @param status the status at the end (ER_MV_END, ER_AC_ERROR, ...), it is
832  * assumed that no earlier end or error of the same type occurred
833  */
834 void ff_er_add_slice(ERContext *s, int startx, int starty,
835  int endx, int endy, int status)
836 {
837  const int start_i = av_clip(startx + starty * s->mb_width, 0, s->mb_num - 1);
838  const int end_i = av_clip(endx + endy * s->mb_width, 0, s->mb_num);
839  const int start_xy = s->mb_index2xy[start_i];
840  const int end_xy = s->mb_index2xy[end_i];
841  int mask = -1;
842 
843  if (s->avctx->hwaccel && s->avctx->hwaccel->decode_slice)
844  return;
845 
846  if (start_i > end_i || start_xy > end_xy) {
848  "internal error, slice end before start\n");
849  return;
850  }
851 
852  if (!s->avctx->error_concealment)
853  return;
854 
855  mask &= ~VP_START;
856  if (status & (ER_AC_ERROR | ER_AC_END)) {
857  mask &= ~(ER_AC_ERROR | ER_AC_END);
858  avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
859  }
860  if (status & (ER_DC_ERROR | ER_DC_END)) {
861  mask &= ~(ER_DC_ERROR | ER_DC_END);
862  avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
863  }
864  if (status & (ER_MV_ERROR | ER_MV_END)) {
865  mask &= ~(ER_MV_ERROR | ER_MV_END);
866  avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
867  }
868 
869  if (status & ER_MB_ERROR) {
870  s->error_occurred = 1;
871  avpriv_atomic_int_set(&s->error_count, INT_MAX);
872  }
873 
874  if (mask == ~0x7F) {
875  memset(&s->error_status_table[start_xy], 0,
876  (end_xy - start_xy) * sizeof(uint8_t));
877  } else {
878  int i;
879  for (i = start_xy; i < end_xy; i++)
880  s->error_status_table[i] &= mask;
881  }
882 
883  if (end_i == s->mb_num)
884  avpriv_atomic_int_set(&s->error_count, INT_MAX);
885  else {
886  s->error_status_table[end_xy] &= mask;
887  s->error_status_table[end_xy] |= status;
888  }
889 
890  s->error_status_table[start_xy] |= VP_START;
891 
892  if (start_xy > 0 && !(s->avctx->active_thread_type & FF_THREAD_SLICE) &&
893  er_supported(s) && s->avctx->skip_top * s->mb_width < start_i) {
894  int prev_status = s->error_status_table[s->mb_index2xy[start_i - 1]];
895 
896  prev_status &= ~ VP_START;
897  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END)) {
898  s->error_occurred = 1;
899  avpriv_atomic_int_set(&s->error_count, INT_MAX);
900  }
901  }
902 }
903 
905 {
906  int *linesize = NULL;
907  int i, mb_x, mb_y, error, error_type, dc_error, mv_error, ac_error;
908  int distance;
909  int threshold_part[4] = { 100, 100, 100 };
910  int threshold = 50;
911  int is_intra_likely;
912  int size = s->b8_stride * 2 * s->mb_height;
913 
914  /* We do not support ER of field pictures yet,
915  * though it should not crash if enabled. */
916  if (!s->avctx->error_concealment || s->error_count == 0 ||
917  s->avctx->lowres ||
918  !er_supported(s) ||
919  s->error_count == 3 * s->mb_width *
920  (s->avctx->skip_top + s->avctx->skip_bottom)) {
921  return;
922  }
923  linesize = s->cur_pic.f->linesize;
924  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
925  int status = s->error_status_table[mb_x + (s->mb_height - 1) * s->mb_stride];
926  if (status != 0x7F)
927  break;
928  }
929 
930  if ( mb_x == s->mb_width
932  && (FFALIGN(s->avctx->height, 16)&16)
933  && s->error_count == 3 * s->mb_width * (s->avctx->skip_top + s->avctx->skip_bottom + 1)
934  ) {
935  av_log(s->avctx, AV_LOG_DEBUG, "ignoring last missing slice\n");
936  return;
937  }
938 
939  if (s->last_pic.f) {
940  if (s->last_pic.f->width != s->cur_pic.f->width ||
941  s->last_pic.f->height != s->cur_pic.f->height ||
942  s->last_pic.f->format != s->cur_pic.f->format) {
943  av_log(s->avctx, AV_LOG_WARNING, "Cannot use previous picture in error concealment\n");
944  memset(&s->last_pic, 0, sizeof(s->last_pic));
945  }
946  }
947  if (s->next_pic.f) {
948  if (s->next_pic.f->width != s->cur_pic.f->width ||
949  s->next_pic.f->height != s->cur_pic.f->height ||
950  s->next_pic.f->format != s->cur_pic.f->format) {
951  av_log(s->avctx, AV_LOG_WARNING, "Cannot use next picture in error concealment\n");
952  memset(&s->next_pic, 0, sizeof(s->next_pic));
953  }
954  }
955 
956  if (!s->cur_pic.motion_val[0] || !s->cur_pic.ref_index[0]) {
957  av_log(s->avctx, AV_LOG_ERROR, "Warning MVs not available\n");
958 
959  for (i = 0; i < 2; i++) {
960  s->ref_index_buf[i] = av_buffer_allocz(s->mb_stride * s->mb_height * 4 * sizeof(uint8_t));
961  s->motion_val_buf[i] = av_buffer_allocz((size + 4) * 2 * sizeof(uint16_t));
962  if (!s->ref_index_buf[i] || !s->motion_val_buf[i])
963  break;
964  s->cur_pic.ref_index[i] = s->ref_index_buf[i]->data;
965  s->cur_pic.motion_val[i] = (int16_t (*)[2])s->motion_val_buf[i]->data + 4;
966  }
967  if (i < 2) {
968  for (i = 0; i < 2; i++) {
971  s->cur_pic.ref_index[i] = NULL;
972  s->cur_pic.motion_val[i] = NULL;
973  }
974  return;
975  }
976  }
977 
978  if (s->avctx->debug & FF_DEBUG_ER) {
979  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
980  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
981  int status = s->error_status_table[mb_x + mb_y * s->mb_stride];
982 
983  av_log(s->avctx, AV_LOG_DEBUG, "%2X ", status);
984  }
985  av_log(s->avctx, AV_LOG_DEBUG, "\n");
986  }
987  }
988 
989 #if 1
990  /* handle overlapping slices */
991  for (error_type = 1; error_type <= 3; error_type++) {
992  int end_ok = 0;
993 
994  for (i = s->mb_num - 1; i >= 0; i--) {
995  const int mb_xy = s->mb_index2xy[i];
996  int error = s->error_status_table[mb_xy];
997 
998  if (error & (1 << error_type))
999  end_ok = 1;
1000  if (error & (8 << error_type))
1001  end_ok = 1;
1002 
1003  if (!end_ok)
1004  s->error_status_table[mb_xy] |= 1 << error_type;
1005 
1006  if (error & VP_START)
1007  end_ok = 0;
1008  }
1009  }
1010 #endif
1011 #if 1
1012  /* handle slices with partitions of different length */
1013  if (s->partitioned_frame) {
1014  int end_ok = 0;
1015 
1016  for (i = s->mb_num - 1; i >= 0; i--) {
1017  const int mb_xy = s->mb_index2xy[i];
1018  int error = s->error_status_table[mb_xy];
1019 
1020  if (error & ER_AC_END)
1021  end_ok = 0;
1022  if ((error & ER_MV_END) ||
1023  (error & ER_DC_END) ||
1024  (error & ER_AC_ERROR))
1025  end_ok = 1;
1026 
1027  if (!end_ok)
1028  s->error_status_table[mb_xy]|= ER_AC_ERROR;
1029 
1030  if (error & VP_START)
1031  end_ok = 0;
1032  }
1033  }
1034 #endif
1035  /* handle missing slices */
1036  if (s->avctx->err_recognition & AV_EF_EXPLODE) {
1037  int end_ok = 1;
1038 
1039  // FIXME + 100 hack
1040  for (i = s->mb_num - 2; i >= s->mb_width + 100; i--) {
1041  const int mb_xy = s->mb_index2xy[i];
1042  int error1 = s->error_status_table[mb_xy];
1043  int error2 = s->error_status_table[s->mb_index2xy[i + 1]];
1044 
1045  if (error1 & VP_START)
1046  end_ok = 1;
1047 
1048  if (error2 == (VP_START | ER_MB_ERROR | ER_MB_END) &&
1049  error1 != (VP_START | ER_MB_ERROR | ER_MB_END) &&
1050  ((error1 & ER_AC_END) || (error1 & ER_DC_END) ||
1051  (error1 & ER_MV_END))) {
1052  // end & uninit
1053  end_ok = 0;
1054  }
1055 
1056  if (!end_ok)
1057  s->error_status_table[mb_xy] |= ER_MB_ERROR;
1058  }
1059  }
1060 
1061 #if 1
1062  /* backward mark errors */
1063  distance = 9999999;
1064  for (error_type = 1; error_type <= 3; error_type++) {
1065  for (i = s->mb_num - 1; i >= 0; i--) {
1066  const int mb_xy = s->mb_index2xy[i];
1067  int error = s->error_status_table[mb_xy];
1068 
1069  if (!s->mbskip_table || !s->mbskip_table[mb_xy]) // FIXME partition specific
1070  distance++;
1071  if (error & (1 << error_type))
1072  distance = 0;
1073 
1074  if (s->partitioned_frame) {
1075  if (distance < threshold_part[error_type - 1])
1076  s->error_status_table[mb_xy] |= 1 << error_type;
1077  } else {
1078  if (distance < threshold)
1079  s->error_status_table[mb_xy] |= 1 << error_type;
1080  }
1081 
1082  if (error & VP_START)
1083  distance = 9999999;
1084  }
1085  }
1086 #endif
1087 
1088  /* forward mark errors */
1089  error = 0;
1090  for (i = 0; i < s->mb_num; i++) {
1091  const int mb_xy = s->mb_index2xy[i];
1092  int old_error = s->error_status_table[mb_xy];
1093 
1094  if (old_error & VP_START) {
1095  error = old_error & ER_MB_ERROR;
1096  } else {
1097  error |= old_error & ER_MB_ERROR;
1098  s->error_status_table[mb_xy] |= error;
1099  }
1100  }
1101 #if 1
1102  /* handle not partitioned case */
1103  if (!s->partitioned_frame) {
1104  for (i = 0; i < s->mb_num; i++) {
1105  const int mb_xy = s->mb_index2xy[i];
1106  int error = s->error_status_table[mb_xy];
1107  if (error & ER_MB_ERROR)
1108  error |= ER_MB_ERROR;
1109  s->error_status_table[mb_xy] = error;
1110  }
1111  }
1112 #endif
1113 
1114  dc_error = ac_error = mv_error = 0;
1115  for (i = 0; i < s->mb_num; i++) {
1116  const int mb_xy = s->mb_index2xy[i];
1117  int error = s->error_status_table[mb_xy];
1118  if (error & ER_DC_ERROR)
1119  dc_error++;
1120  if (error & ER_AC_ERROR)
1121  ac_error++;
1122  if (error & ER_MV_ERROR)
1123  mv_error++;
1124  }
1125  av_log(s->avctx, AV_LOG_INFO, "concealing %d DC, %d AC, %d MV errors in %c frame\n",
1126  dc_error, ac_error, mv_error, av_get_picture_type_char(s->cur_pic.f->pict_type));
1127 
1128  is_intra_likely = is_intra_more_likely(s);
1129 
1130  /* set unknown mb-type to most likely */
1131  for (i = 0; i < s->mb_num; i++) {
1132  const int mb_xy = s->mb_index2xy[i];
1133  int error = s->error_status_table[mb_xy];
1134  if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR)))
1135  continue;
1136 
1137  if (is_intra_likely)
1138  s->cur_pic.mb_type[mb_xy] = MB_TYPE_INTRA4x4;
1139  else
1140  s->cur_pic.mb_type[mb_xy] = MB_TYPE_16x16 | MB_TYPE_L0;
1141  }
1142 
1143  // change inter to intra blocks if no reference frames are available
1144  if (!(s->last_pic.f && s->last_pic.f->data[0]) &&
1145  !(s->next_pic.f && s->next_pic.f->data[0]))
1146  for (i = 0; i < s->mb_num; i++) {
1147  const int mb_xy = s->mb_index2xy[i];
1148  if (!IS_INTRA(s->cur_pic.mb_type[mb_xy]))
1149  s->cur_pic.mb_type[mb_xy] = MB_TYPE_INTRA4x4;
1150  }
1151 
1152  /* handle inter blocks with damaged AC */
1153  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1154  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1155  const int mb_xy = mb_x + mb_y * s->mb_stride;
1156  const int mb_type = s->cur_pic.mb_type[mb_xy];
1157  const int dir = !(s->last_pic.f && s->last_pic.f->data[0]);
1158  const int mv_dir = dir ? MV_DIR_BACKWARD : MV_DIR_FORWARD;
1159  int mv_type;
1160 
1161  int error = s->error_status_table[mb_xy];
1162 
1163  if (IS_INTRA(mb_type))
1164  continue; // intra
1165  if (error & ER_MV_ERROR)
1166  continue; // inter with damaged MV
1167  if (!(error & ER_AC_ERROR))
1168  continue; // undamaged inter
1169 
1170  if (IS_8X8(mb_type)) {
1171  int mb_index = mb_x * 2 + mb_y * 2 * s->b8_stride;
1172  int j;
1173  mv_type = MV_TYPE_8X8;
1174  for (j = 0; j < 4; j++) {
1175  s->mv[0][j][0] = s->cur_pic.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][0];
1176  s->mv[0][j][1] = s->cur_pic.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][1];
1177  }
1178  } else {
1179  mv_type = MV_TYPE_16X16;
1180  s->mv[0][0][0] = s->cur_pic.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][0];
1181  s->mv[0][0][1] = s->cur_pic.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][1];
1182  }
1183 
1184  s->decode_mb(s->opaque, 0 /* FIXME H.264 partitioned slices need this set */,
1185  mv_dir, mv_type, &s->mv, mb_x, mb_y, 0, 0);
1186  }
1187  }
1188 
1189  /* guess MVs */
1190  if (s->cur_pic.f->pict_type == AV_PICTURE_TYPE_B) {
1191  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1192  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1193  int xy = mb_x * 2 + mb_y * 2 * s->b8_stride;
1194  const int mb_xy = mb_x + mb_y * s->mb_stride;
1195  const int mb_type = s->cur_pic.mb_type[mb_xy];
1196  int mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD;
1197 
1198  int error = s->error_status_table[mb_xy];
1199 
1200  if (IS_INTRA(mb_type))
1201  continue;
1202  if (!(error & ER_MV_ERROR))
1203  continue; // inter with undamaged MV
1204  if (!(error & ER_AC_ERROR))
1205  continue; // undamaged inter
1206 
1207  if (!(s->last_pic.f && s->last_pic.f->data[0]))
1208  mv_dir &= ~MV_DIR_FORWARD;
1209  if (!(s->next_pic.f && s->next_pic.f->data[0]))
1210  mv_dir &= ~MV_DIR_BACKWARD;
1211 
1212  if (s->pp_time) {
1213  int time_pp = s->pp_time;
1214  int time_pb = s->pb_time;
1215 
1217  ff_thread_await_progress(s->next_pic.tf, mb_y, 0);
1218 
1219  s->mv[0][0][0] = s->next_pic.motion_val[0][xy][0] * time_pb / time_pp;
1220  s->mv[0][0][1] = s->next_pic.motion_val[0][xy][1] * time_pb / time_pp;
1221  s->mv[1][0][0] = s->next_pic.motion_val[0][xy][0] * (time_pb - time_pp) / time_pp;
1222  s->mv[1][0][1] = s->next_pic.motion_val[0][xy][1] * (time_pb - time_pp) / time_pp;
1223  } else {
1224  s->mv[0][0][0] = 0;
1225  s->mv[0][0][1] = 0;
1226  s->mv[1][0][0] = 0;
1227  s->mv[1][0][1] = 0;
1228  }
1229 
1230  s->decode_mb(s->opaque, 0, mv_dir, MV_TYPE_16X16, &s->mv,
1231  mb_x, mb_y, 0, 0);
1232  }
1233  }
1234  } else
1235  guess_mv(s);
1236 
1237  /* the filters below manipulate raw image, skip them */
1238  if (CONFIG_XVMC && s->avctx->hwaccel && s->avctx->hwaccel->decode_mb)
1239  goto ec_clean;
1240  /* fill DC for inter blocks */
1241  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1242  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1243  int dc, dcu, dcv, y, n;
1244  int16_t *dc_ptr;
1245  uint8_t *dest_y, *dest_cb, *dest_cr;
1246  const int mb_xy = mb_x + mb_y * s->mb_stride;
1247  const int mb_type = s->cur_pic.mb_type[mb_xy];
1248 
1249  // error = s->error_status_table[mb_xy];
1250 
1251  if (IS_INTRA(mb_type) && s->partitioned_frame)
1252  continue;
1253  // if (error & ER_MV_ERROR)
1254  // continue; // inter data damaged FIXME is this good?
1255 
1256  dest_y = s->cur_pic.f->data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
1257  dest_cb = s->cur_pic.f->data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
1258  dest_cr = s->cur_pic.f->data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
1259 
1260  dc_ptr = &s->dc_val[0][mb_x * 2 + mb_y * 2 * s->b8_stride];
1261  for (n = 0; n < 4; n++) {
1262  dc = 0;
1263  for (y = 0; y < 8; y++) {
1264  int x;
1265  for (x = 0; x < 8; x++)
1266  dc += dest_y[x + (n & 1) * 8 +
1267  (y + (n >> 1) * 8) * linesize[0]];
1268  }
1269  dc_ptr[(n & 1) + (n >> 1) * s->b8_stride] = (dc + 4) >> 3;
1270  }
1271 
1272  if (!s->cur_pic.f->data[2])
1273  continue;
1274 
1275  dcu = dcv = 0;
1276  for (y = 0; y < 8; y++) {
1277  int x;
1278  for (x = 0; x < 8; x++) {
1279  dcu += dest_cb[x + y * linesize[1]];
1280  dcv += dest_cr[x + y * linesize[2]];
1281  }
1282  }
1283  s->dc_val[1][mb_x + mb_y * s->mb_stride] = (dcu + 4) >> 3;
1284  s->dc_val[2][mb_x + mb_y * s->mb_stride] = (dcv + 4) >> 3;
1285  }
1286  }
1287 #if 1
1288  /* guess DC for damaged blocks */
1289  guess_dc(s, s->dc_val[0], s->mb_width*2, s->mb_height*2, s->b8_stride, 1);
1290  guess_dc(s, s->dc_val[1], s->mb_width , s->mb_height , s->mb_stride, 0);
1291  guess_dc(s, s->dc_val[2], s->mb_width , s->mb_height , s->mb_stride, 0);
1292 #endif
1293 
1294  /* filter luma DC */
1295  filter181(s->dc_val[0], s->mb_width * 2, s->mb_height * 2, s->b8_stride);
1296 
1297 #if 1
1298  /* render DC only intra */
1299  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1300  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1301  uint8_t *dest_y, *dest_cb, *dest_cr;
1302  const int mb_xy = mb_x + mb_y * s->mb_stride;
1303  const int mb_type = s->cur_pic.mb_type[mb_xy];
1304 
1305  int error = s->error_status_table[mb_xy];
1306 
1307  if (IS_INTER(mb_type))
1308  continue;
1309  if (!(error & ER_AC_ERROR))
1310  continue; // undamaged
1311 
1312  dest_y = s->cur_pic.f->data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
1313  dest_cb = s->cur_pic.f->data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
1314  dest_cr = s->cur_pic.f->data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
1315  if (!s->cur_pic.f->data[2])
1316  dest_cb = dest_cr = NULL;
1317 
1318  put_dc(s, dest_y, dest_cb, dest_cr, mb_x, mb_y);
1319  }
1320  }
1321 #endif
1322 
1324  /* filter horizontal block boundaries */
1325  h_block_filter(s, s->cur_pic.f->data[0], s->mb_width * 2,
1326  s->mb_height * 2, linesize[0], 1);
1327 
1328  /* filter vertical block boundaries */
1329  v_block_filter(s, s->cur_pic.f->data[0], s->mb_width * 2,
1330  s->mb_height * 2, linesize[0], 1);
1331 
1332  if (s->cur_pic.f->data[2]) {
1333  h_block_filter(s, s->cur_pic.f->data[1], s->mb_width,
1334  s->mb_height, linesize[1], 0);
1335  h_block_filter(s, s->cur_pic.f->data[2], s->mb_width,
1336  s->mb_height, linesize[2], 0);
1337  v_block_filter(s, s->cur_pic.f->data[1], s->mb_width,
1338  s->mb_height, linesize[1], 0);
1339  v_block_filter(s, s->cur_pic.f->data[2], s->mb_width,
1340  s->mb_height, linesize[2], 0);
1341  }
1342  }
1343 
1344 ec_clean:
1345  /* clean a few tables */
1346  for (i = 0; i < s->mb_num; i++) {
1347  const int mb_xy = s->mb_index2xy[i];
1348  int error = s->error_status_table[mb_xy];
1349 
1350  if (s->mbskip_table && s->cur_pic.f->pict_type != AV_PICTURE_TYPE_B &&
1351  (error & (ER_DC_ERROR | ER_MV_ERROR | ER_AC_ERROR))) {
1352  s->mbskip_table[mb_xy] = 0;
1353  }
1354  if (s->mbintra_table)
1355  s->mbintra_table[mb_xy] = 1;
1356  }
1357 
1358  for (i = 0; i < 2; i++) {
1361  s->cur_pic.ref_index[i] = NULL;
1362  s->cur_pic.motion_val[i] = NULL;
1363  }
1364 
1365  memset(&s->cur_pic, 0, sizeof(ERPicture));
1366  memset(&s->last_pic, 0, sizeof(ERPicture));
1367  memset(&s->next_pic, 0, sizeof(ERPicture));
1368 }
av_cold void ff_me_cmp_init(MECmpContext *c, AVCodecContext *avctx)
Definition: me_cmp.c:1009
#define NULL
Definition: coverity.c:32
const struct AVCodec * codec
Definition: avcodec.h:1741
#define avpriv_atomic_int_add_and_fetch
Definition: atomic_gcc.h:42
const char * s
Definition: avisynth_c.h:768
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
Definition: buffer.c:125
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
#define MV_CHANGED
AVBufferRef * motion_val_buf[2]
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
#define MV_LISTED
static void put_dc(ERContext *s, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int mb_x, int mb_y)
Replace the current MB with a flat dc-only version.
void ff_er_frame_end(ERContext *s)
#define MB_TYPE_INTRA4x4
Definition: avcodec.h:1288
const char * b
Definition: vf_curves.c:113
#define VP_START
< current MB is the first after a resync marker
#define MAX_NEG_CROP
Definition: mathops.h:31
static void guess_mv(ERContext *s)
uint32_t * mb_type
ERPicture last_pic
mpegvideo header.
static void h_block_filter(ERContext *s, uint8_t *dst, int w, int h, ptrdiff_t stride, int is_luma)
simple horizontal deblocking filter used for error resilience
#define ER_MV_ERROR
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
#define src
Definition: vp8dsp.c:254
#define MV_FROZEN
static void v_block_filter(ERContext *s, uint8_t *dst, int w, int h, ptrdiff_t stride, int is_luma)
simple vertical deblocking filter used for error resilience
uint16_t pp_time
struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:3052
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
ptrdiff_t b8_stride
uint8_t
AVBufferRef * ref_index_buf[2]
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
Definition: log.c:94
Multithreading support functions.
#define ER_MB_ERROR
static void set_mv_strides(ERContext *s, ptrdiff_t *mv_step, ptrdiff_t *stride)
#define FF_API_CAP_VDPAU
Definition: version.h:73
#define avpriv_atomic_int_set
Definition: atomic_gcc.h:35
ERPicture cur_pic
#define height
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:91
#define AV_CODEC_CAP_HWACCEL_VDPAU
Codec can export data for HW decoding (VDPAU).
Definition: avcodec.h:1030
#define ER_MV_END
void(* decode_mb)(struct MpegEncContext *s)
Called for every Macroblock in a slice.
Definition: avcodec.h:3909
#define FF_DEBUG_ER
Definition: avcodec.h:2991
int lowres
low resolution decoding, 1-> 1/2 size, 2->1/4 size
Definition: avcodec.h:3141
#define FF_EC_GUESS_MVS
Definition: avcodec.h:2964
ptrdiff_t size
Definition: opengl_enc.c:101
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
#define cm
Definition: dvbsubdec.c:37
Libavcodec version macros.
int width
width and height of the video frame
Definition: frame.h:239
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
static const uint16_t mask[17]
Definition: lzw.c:38
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:3180
int error_concealment
error concealment flags
Definition: avcodec.h:2963
int capabilities
Codec capabilities.
Definition: avcodec.h:3700
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void(* decode_mb)(void *opaque, int ref, int mv_dir, int mv_type, int(*mv)[2][4][2], int mb_x, int mb_y, int mb_intra, int mb_skipped)
ThreadFrame * tf
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
static void filter181(int16_t *data, int width, int height, ptrdiff_t stride)
#define fail()
Definition: checkasm.h:89
uint8_t * mbintra_table
int * mb_index2xy
int depth
Definition: v4l.c:62
#define pass
Definition: fft_template.c:532
static float distance(float x, float y, int band)
uint8_t * error_status_table
static void guess_dc(ERContext *s, int16_t *dc, int w, int h, ptrdiff_t stride, int is_luma)
guess the dc of blocks which do not have an undamaged dc
common internal API header
#define ER_AC_ERROR
useful rectangle filling function
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:261
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:3020
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
uint8_t * er_temp_buffer
#define FFMIN(a, b)
Definition: common.h:96
#define FF_EC_DEBLOCK
Definition: avcodec.h:2965
#define width
#define ER_DC_END
uint16_t pb_time
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:3173
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:3031
int n
Definition: avisynth_c.h:684
int skip_top
Number of macroblock rows at the top which are skipped.
Definition: avcodec.h:2350
preferred ID for MPEG-1/2 video decoding
Definition: avcodec.h:219
static void error(const char *err)
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:251
#define MV_TYPE_16X16
1 vector for the whole mb
Definition: mpegvideo.h:266
#define MV_DIR_BACKWARD
Definition: mpegvideo.h:263
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
Libavcodec external API header.
enum AVCodecID codec_id
Definition: avcodec.h:1749
ERPicture next_pic
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:218
static av_always_inline void add_blocklist(int(*blocklist)[2], int *blocklist_length, uint8_t *fixed, int mb_x, int mb_y, int mb_xy)
int debug
debug
Definition: avcodec.h:2973
uint8_t * data
The data buffer.
Definition: buffer.h:89
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:83
#define MB_TYPE_16x16
Definition: avcodec.h:1291
MECmpContext mecc
#define IS_INTER(a)
Definition: mpegutils.h:81
#define ER_DC_ERROR
AVCodecContext * avctx
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1523
#define MV_DIR_FORWARD
Definition: mpegvideo.h:262
int8_t * ref_index[2]
int skip_bottom
Number of macroblock rows at the bottom which are skipped.
Definition: avcodec.h:2357
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:201
me_cmp_func sad[6]
Definition: me_cmp.h:56
#define FF_EC_FAVOR_INTER
Definition: avcodec.h:2966
volatile int error_count
int
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
int partitioned_frame
if(ret< 0)
Definition: vf_mcdeint.c:282
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
#define MV_UNCHANGED
static double c[64]
int16_t * dc_val[3]
Bi-dir predicted.
Definition: avutil.h:276
AVFrame * f
#define ff_crop_tab
#define IS_INTRA(x, y)
static int is_intra_more_likely(ERContext *s)
int mv[2][4][2]
int16_t(*[2] motion_val)[2]
#define IS_8X8(a)
Definition: mpegutils.h:91
static int er_supported(ERContext *s)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
void ff_er_frame_start(ERContext *s)
int height
Definition: frame.h:239
#define av_freep(p)
#define av_always_inline
Definition: attributes.h:39
#define ER_AC_END
#define av_malloc_array(a, b)
#define FFSWAP(type, a, b)
Definition: common.h:99
#define stride
int(* decode_slice)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Callback for each slice.
Definition: avcodec.h:3878
ptrdiff_t mb_stride
#define MV_TYPE_8X8
4 vectors (H.263, MPEG-4 4MV)
Definition: mpegvideo.h:267
uint8_t * mbskip_table
#define MB_TYPE_L0
Definition: avcodec.h:1304