FFmpeg
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
ffv1enc.c
Go to the documentation of this file.
1 /*
2  * FFV1 encoder
3  *
4  * Copyright (c) 2003-2013 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * FF Video Codec 1 (a lossless codec) encoder
26  */
27 
28 #include "libavutil/attributes.h"
29 #include "libavutil/avassert.h"
30 #include "libavutil/crc.h"
31 #include "libavutil/mem.h"
32 #include "libavutil/opt.h"
33 #include "libavutil/pixdesc.h"
34 #include "libavutil/qsort.h"
35 
36 #include "avcodec.h"
37 #include "encode.h"
38 #include "codec_internal.h"
39 #include "put_bits.h"
40 #include "put_golomb.h"
41 #include "rangecoder.h"
42 #include "ffv1.h"
43 #include "ffv1enc.h"
44 
45 static const int8_t quant5_10bit[256] = {
46  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
47  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
48  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
49  1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
50  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
51  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
52  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
53  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
54  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
55  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
56  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
57  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
58  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1,
59  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
60  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
61  -1, -1, -1, -1, -1, -1, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,
62 };
63 
64 static const int8_t quant5[256] = {
65  0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
66  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
67  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
68  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
69  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
70  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
71  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
72  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
73  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
74  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
75  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
76  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
77  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
78  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
79  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
80  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1,
81 };
82 
83 static const int8_t quant9_10bit[256] = {
84  0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
85  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
86  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
87  3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
88  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
89  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
90  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
91  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
92  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
93  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
94  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
95  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
96  -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3,
97  -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
98  -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
99  -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -0, -0, -0, -0,
100 };
101 
102 static const int8_t quant11[256] = {
103  0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
104  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
105  4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
106  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
107  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
108  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
109  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
110  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
111  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
112  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
113  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
114  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
115  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
116  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4,
117  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
118  -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -1,
119 };
120 
121 static const uint8_t ver2_state[256] = {
122  0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
123  59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
124  40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
125  53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
126  87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
127  85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
128  105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
129  115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
130  165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
131  147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
132  172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
133  175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
134  197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
135  209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
136  226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
137  241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
138 };
139 
140 static void find_best_state(uint8_t best_state[256][256],
141  const uint8_t one_state[256])
142 {
143  int i, j, k, m;
144  uint32_t l2tab[256];
145 
146  for (i = 1; i < 256; i++)
147  l2tab[i] = -log2(i / 256.0) * ((1U << 31) / 8);
148 
149  for (i = 0; i < 256; i++) {
150  uint64_t best_len[256];
151 
152  for (j = 0; j < 256; j++)
153  best_len[j] = UINT64_MAX;
154 
155  for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
156  uint32_t occ[256] = { 0 };
157  uint64_t len = 0;
158  occ[j] = UINT32_MAX;
159 
160  if (!one_state[j])
161  continue;
162 
163  for (k = 0; k < 256; k++) {
164  uint32_t newocc[256] = { 0 };
165  for (m = 1; m < 256; m++)
166  if (occ[m]) {
167  len += (occ[m]*(( i *(uint64_t)l2tab[ m]
168  + (256-i)*(uint64_t)l2tab[256-m])>>8)) >> 8;
169  }
170  if (len < best_len[k]) {
171  best_len[k] = len;
172  best_state[i][k] = j;
173  }
174  for (m = 1; m < 256; m++)
175  if (occ[m]) {
176  newocc[ one_state[ m]] += occ[m] * (uint64_t) i >> 8;
177  newocc[256 - one_state[256 - m]] += occ[m] * (uint64_t)(256 - i) >> 8;
178  }
179  memcpy(occ, newocc, sizeof(occ));
180  }
181  }
182  }
183 }
184 
186  uint8_t *state, int v,
187  int is_signed,
188  uint64_t rc_stat[256][2],
189  uint64_t rc_stat2[32][2])
190 {
191  int i;
192 
193 #define put_rac(C, S, B) \
194  do { \
195  if (rc_stat) { \
196  rc_stat[*(S)][B]++; \
197  rc_stat2[(S) - state][B]++; \
198  } \
199  put_rac(C, S, B); \
200  } while (0)
201 
202  if (v) {
203  const unsigned a = is_signed ? FFABS(v) : v;
204  const int e = av_log2(a);
205  put_rac(c, state + 0, 0);
206  if (e <= 9) {
207  for (i = 0; i < e; i++)
208  put_rac(c, state + 1 + i, 1); // 1..10
209  put_rac(c, state + 1 + i, 0);
210 
211  for (i = e - 1; i >= 0; i--)
212  put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
213 
214  if (is_signed)
215  put_rac(c, state + 11 + e, v < 0); // 11..21
216  } else {
217  for (i = 0; i < e; i++)
218  put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
219  put_rac(c, state + 1 + 9, 0);
220 
221  for (i = e - 1; i >= 0; i--)
222  put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
223 
224  if (is_signed)
225  put_rac(c, state + 11 + 10, v < 0); // 11..21
226  }
227  } else {
228  put_rac(c, state + 0, 1);
229  }
230 #undef put_rac
231 }
232 
233 static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
234  int v, int is_signed)
235 {
236  put_symbol_inline(c, state, v, is_signed, NULL, NULL);
237 }
238 
239 
240 static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
241  int v, int bits)
242 {
243  int i, k, code;
244  v = fold(v - state->bias, bits);
245 
246  i = state->count;
247  k = 0;
248  while (i < state->error_sum) { // FIXME: optimize
249  k++;
250  i += i;
251  }
252 
253  av_assert2(k <= 16);
254 
255  code = v ^ ((2 * state->drift + state->count) >> 31);
256 
257  ff_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
258  state->bias, state->error_sum, state->drift, state->count, k);
259  set_sr_golomb(pb, code, k, 12, bits);
260 
262 }
263 
264 #define TYPE int16_t
265 #define RENAME(name) name
266 #include "ffv1enc_template.c"
267 #undef TYPE
268 #undef RENAME
269 
270 #define TYPE int32_t
271 #define RENAME(name) name ## 32
272 #include "ffv1enc_template.c"
273 
275  const uint8_t *src, int w, int h,
276  int stride, int plane_index, int remap_index, int pixel_stride, int ac)
277 {
278  int x, y, i, ret;
279  const int pass1 = !!(f->avctx->flags & AV_CODEC_FLAG_PASS1);
280  const int ring_size = f->context_model ? 3 : 2;
281  int16_t *sample[3];
282  sc->run_index = 0;
283 
284  memset(sc->sample_buffer, 0, ring_size * (w + 6) * sizeof(*sc->sample_buffer));
285 
286  for (y = 0; y < h; y++) {
287  for (i = 0; i < ring_size; i++)
288  sample[i] = sc->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
289 
290  sample[0][-1]= sample[1][0 ];
291  sample[1][ w]= sample[1][w-1];
292 
293  if (f->bits_per_raw_sample <= 8) {
294  for (x = 0; x < w; x++)
295  sample[0][x] = src[x * pixel_stride + stride * y];
296  if (sc->remap)
297  for (x = 0; x < w; x++)
298  sample[0][x] = sc->fltmap[remap_index][ sample[0][x] ];
299 
300  if((ret = encode_line(f, sc, f->avctx, w, sample, plane_index, 8, ac, pass1)) < 0)
301  return ret;
302  } else {
303  if (f->packed_at_lsb) {
304  for (x = 0; x < w; x++) {
305  sample[0][x] = ((uint16_t*)(src + stride*y))[x * pixel_stride];
306  }
307  } else {
308  for (x = 0; x < w; x++) {
309  sample[0][x] = ((uint16_t*)(src + stride*y))[x * pixel_stride] >> (16 - f->bits_per_raw_sample);
310  }
311  }
312  if (sc->remap)
313  for (x = 0; x < w; x++)
314  sample[0][x] = sc->fltmap[remap_index][ (uint16_t)sample[0][x] ];
315 
316  if((ret = encode_line(f, sc, f->avctx, w, sample, plane_index, f->bits_per_raw_sample, ac, pass1)) < 0)
317  return ret;
318  }
319  }
320  return 0;
321 }
322 
324  const uint8_t *src, int w, int h,
325  int stride, int remap_index, int pixel_stride)
326 {
327  int x, y;
328 
329  memset(sc->fltmap[remap_index], 0, sizeof(sc->fltmap[remap_index]));
330 
331  for (y = 0; y < h; y++) {
332  if (f->bits_per_raw_sample <= 8) {
333  for (x = 0; x < w; x++)
334  sc->fltmap[remap_index][ src[x * pixel_stride + stride * y] ] = 1;
335  } else {
336  if (f->packed_at_lsb) {
337  for (x = 0; x < w; x++)
338  sc->fltmap[remap_index][ ((uint16_t*)(src + stride*y))[x * pixel_stride] ] = 1;
339  } else {
340  for (x = 0; x < w; x++)
341  sc->fltmap[remap_index][ ((uint16_t*)(src + stride*y))[x * pixel_stride] >> (16 - f->bits_per_raw_sample) ] = 1;
342  }
343  }
344  }
345 }
346 
347 static void write_quant_table(RangeCoder *c, int16_t *quant_table)
348 {
349  int last = 0;
350  int i;
351  uint8_t state[CONTEXT_SIZE];
352  memset(state, 128, sizeof(state));
353 
354  for (i = 1; i < MAX_QUANT_TABLE_SIZE/2; i++)
355  if (quant_table[i] != quant_table[i - 1]) {
356  put_symbol(c, state, i - last - 1, 0);
357  last = i;
358  }
359  put_symbol(c, state, i - last - 1, 0);
360 }
361 
364 {
365  int i;
366  for (i = 0; i < 5; i++)
368 }
369 
370 static int contains_non_128(uint8_t (*initial_state)[CONTEXT_SIZE],
371  int nb_contexts)
372 {
373  if (!initial_state)
374  return 0;
375  for (int i = 0; i < nb_contexts; i++)
376  for (int j = 0; j < CONTEXT_SIZE; j++)
377  if (initial_state[i][j] != 128)
378  return 1;
379  return 0;
380 }
381 
383 {
384  uint8_t state[CONTEXT_SIZE];
385  int i, j;
386  RangeCoder *const c = &f->slices[0].c;
387 
388  memset(state, 128, sizeof(state));
389 
390  if (f->version < 2) {
391  put_symbol(c, state, f->version, 0);
392  put_symbol(c, state, f->ac, 0);
393  if (f->ac == AC_RANGE_CUSTOM_TAB) {
394  for (i = 1; i < 256; i++)
395  put_symbol(c, state,
396  f->state_transition[i] - c->one_state[i], 1);
397  }
398  put_symbol(c, state, f->colorspace, 0); //YUV cs type
399  if (f->version > 0)
400  put_symbol(c, state, f->bits_per_raw_sample, 0);
401  put_rac(c, state, f->chroma_planes);
402  put_symbol(c, state, f->chroma_h_shift, 0);
403  put_symbol(c, state, f->chroma_v_shift, 0);
404  put_rac(c, state, f->transparency);
405 
406  write_quant_tables(c, f->quant_tables[f->context_model]);
407  } else if (f->version < 3) {
408  put_symbol(c, state, f->slice_count, 0);
409  for (i = 0; i < f->slice_count; i++) {
410  FFV1SliceContext *fs = &f->slices[i];
411  put_symbol(c, state,
412  (fs->slice_x + 1) * f->num_h_slices / f->width, 0);
413  put_symbol(c, state,
414  (fs->slice_y + 1) * f->num_v_slices / f->height, 0);
415  put_symbol(c, state,
416  (fs->slice_width + 1) * f->num_h_slices / f->width - 1,
417  0);
418  put_symbol(c, state,
419  (fs->slice_height + 1) * f->num_v_slices / f->height - 1,
420  0);
421  for (j = 0; j < f->plane_count; j++) {
422  put_symbol(c, state, fs->plane[j].quant_table_index, 0);
423  av_assert0(fs->plane[j].quant_table_index == f->context_model);
424  }
425  }
426  }
427 }
428 
430 {
431  f->combined_version = f->version << 16;
432  if (f->version > 2) {
433  if (f->version == 3) {
434  f->micro_version = 4;
435  } else if (f->version == 4) {
436  f->micro_version = 7;
437  } else
438  av_assert0(0);
439 
440  f->combined_version += f->micro_version;
441  } else
442  av_assert0(f->micro_version == 0);
443 }
444 
446 {
447  FFV1Context *f = avctx->priv_data;
448 
449  RangeCoder c;
450  uint8_t state[CONTEXT_SIZE];
451  int i, j, k;
452  uint8_t state2[32][CONTEXT_SIZE];
453  unsigned v;
454 
455  memset(state2, 128, sizeof(state2));
456  memset(state, 128, sizeof(state));
457 
458  f->avctx->extradata_size = 10000 + 4 +
459  (11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
460  f->avctx->extradata = av_malloc(f->avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
461  if (!f->avctx->extradata)
462  return AVERROR(ENOMEM);
463  ff_init_range_encoder(&c, f->avctx->extradata, f->avctx->extradata_size);
464  ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
465 
466  put_symbol(&c, state, f->version, 0);
467  if (f->version > 2)
468  put_symbol(&c, state, f->micro_version, 0);
469 
470  put_symbol(&c, state, f->ac, 0);
471  if (f->ac == AC_RANGE_CUSTOM_TAB)
472  for (i = 1; i < 256; i++)
473  put_symbol(&c, state, f->state_transition[i] - c.one_state[i], 1);
474 
475  put_symbol(&c, state, f->colorspace, 0); // YUV cs type
476  put_symbol(&c, state, f->bits_per_raw_sample, 0);
477  put_rac(&c, state, f->chroma_planes);
478  put_symbol(&c, state, f->chroma_h_shift, 0);
479  put_symbol(&c, state, f->chroma_v_shift, 0);
480  put_rac(&c, state, f->transparency);
481  put_symbol(&c, state, f->num_h_slices - 1, 0);
482  put_symbol(&c, state, f->num_v_slices - 1, 0);
483 
484  put_symbol(&c, state, f->quant_table_count, 0);
485  for (i = 0; i < f->quant_table_count; i++)
486  write_quant_tables(&c, f->quant_tables[i]);
487 
488  for (i = 0; i < f->quant_table_count; i++) {
489  if (contains_non_128(f->initial_states[i], f->context_count[i])) {
490  put_rac(&c, state, 1);
491  for (j = 0; j < f->context_count[i]; j++)
492  for (k = 0; k < CONTEXT_SIZE; k++) {
493  int pred = j ? f->initial_states[i][j - 1][k] : 128;
494  put_symbol(&c, state2[k],
495  (int8_t)(f->initial_states[i][j][k] - pred), 1);
496  }
497  } else {
498  put_rac(&c, state, 0);
499  }
500  }
501 
502  if (f->version > 2) {
503  put_symbol(&c, state, f->ec, 0);
504  put_symbol(&c, state, f->intra = (f->avctx->gop_size < 2), 0);
505  }
506 
507  f->avctx->extradata_size = ff_rac_terminate(&c, 0);
508  v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), f->crcref, f->avctx->extradata, f->avctx->extradata_size) ^ (f->crcref ? 0x8CD88196 : 0);
509  AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
510  f->avctx->extradata_size += 4;
511 
512  return 0;
513 }
514 
515 static int sort_stt(FFV1Context *s, uint8_t stt[256])
516 {
517  int i, i2, changed, print = 0;
518 
519  do {
520  changed = 0;
521  for (i = 12; i < 244; i++) {
522  for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
523 
524 #define COST(old, new) \
525  s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
526  s->rc_stat[old][1] * -log2((new) / 256.0)
527 
528 #define COST2(old, new) \
529  COST(old, new) + COST(256 - (old), 256 - (new))
530 
531  double size0 = COST2(i, i) + COST2(i2, i2);
532  double sizeX = COST2(i, i2) + COST2(i2, i);
533  if (size0 - sizeX > size0*(1e-14) && i != 128 && i2 != 128) {
534  int j;
535  FFSWAP(int, stt[i], stt[i2]);
536  FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
537  FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
538  if (i != 256 - i2) {
539  FFSWAP(int, stt[256 - i], stt[256 - i2]);
540  FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
541  FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
542  }
543  for (j = 1; j < 256; j++) {
544  if (stt[j] == i)
545  stt[j] = i2;
546  else if (stt[j] == i2)
547  stt[j] = i;
548  if (i != 256 - i2) {
549  if (stt[256 - j] == 256 - i)
550  stt[256 - j] = 256 - i2;
551  else if (stt[256 - j] == 256 - i2)
552  stt[256 - j] = 256 - i;
553  }
554  }
555  print = changed = 1;
556  }
557  }
558  }
559  } while (changed);
560  return print;
561 }
562 
563 
565 {
566  FFV1Context *s = avctx->priv_data;
567  int plane_count = 1 + 2*s->chroma_planes + s->transparency;
568  int max_h_slices = AV_CEIL_RSHIFT(avctx->width , s->chroma_h_shift);
569  int max_v_slices = AV_CEIL_RSHIFT(avctx->height, s->chroma_v_shift);
570  s->num_v_slices = (avctx->width > 352 || avctx->height > 288 || !avctx->slices) ? 2 : 1;
571  s->num_v_slices = FFMIN(s->num_v_slices, max_v_slices);
572  for (; s->num_v_slices < 32; s->num_v_slices++) {
573  for (s->num_h_slices = s->num_v_slices; s->num_h_slices < 2*s->num_v_slices; s->num_h_slices++) {
574  int maxw = (avctx->width + s->num_h_slices - 1) / s->num_h_slices;
575  int maxh = (avctx->height + s->num_v_slices - 1) / s->num_v_slices;
576  if (s->num_h_slices > max_h_slices || s->num_v_slices > max_v_slices)
577  continue;
578  if (maxw * maxh * (int64_t)(s->bits_per_raw_sample+1) * plane_count > 8<<24)
579  continue;
580  if (s->bits_per_raw_sample == 32)
581  if (maxw * maxh > 65536)
582  continue;
583  if (s->version < 4)
584  if ( ff_need_new_slices(avctx->width , s->num_h_slices, s->chroma_h_shift)
585  ||ff_need_new_slices(avctx->height, s->num_v_slices, s->chroma_v_shift))
586  continue;
587  if (avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= MAX_SLICES || !avctx->slices)
588  return 0;
589  }
590  }
591  av_log(avctx, AV_LOG_ERROR,
592  "Unsupported number %d of slices requested, please specify a "
593  "supported number with -slices (ex:4,6,9,12,16, ...)\n",
594  avctx->slices);
595  return AVERROR(ENOSYS);
596 }
597 
599 {
600  FFV1Context *s = avctx->priv_data;
601  int i, j, k, m, ret;
602 
603  if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) ||
604  avctx->slices > 1)
605  s->version = FFMAX(s->version, 2);
606 
607  if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) && s->ac == AC_GOLOMB_RICE) {
608  av_log(avctx, AV_LOG_ERROR, "2 Pass mode is not possible with golomb coding\n");
609  return AVERROR(EINVAL);
610  }
611 
612  // Unspecified level & slices, we choose version 1.2+ to ensure multithreaded decodability
613  if (avctx->slices == 0 && avctx->level < 0 && avctx->width * avctx->height > 720*576)
614  s->version = FFMAX(s->version, 2);
615 
616  if (avctx->level <= 0 && s->version == 2) {
617  s->version = 3;
618  }
619  if (avctx->level >= 0 && avctx->level <= 4) {
620  if (avctx->level < s->version) {
621  av_log(avctx, AV_LOG_ERROR, "Version %d needed for requested features but %d requested\n", s->version, avctx->level);
622  return AVERROR(EINVAL);
623  }
624  s->version = avctx->level;
625  }
626 
627  if (s->ec < 0) {
628  if (s->version >= 4) {
629  s->ec = 2;
630  s->crcref = 0x7a8c4079;
631  } else if (s->version >= 3) {
632  s->ec = 1;
633  } else
634  s->ec = 0;
635  }
636 
637  // CRC requires version 3+
638  if (s->ec == 1)
639  s->version = FFMAX(s->version, 3);
640  if (s->ec == 2)
641  s->version = FFMAX(s->version, 4);
642 
643  if ((s->version == 2 || s->version>3) && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
644  av_log(avctx, AV_LOG_ERROR, "Version 2 or 4 needed for requested features but version 2 or 4 is experimental and not enabled\n");
645  return AVERROR_INVALIDDATA;
646  }
647 
648  if (s->ac == AC_RANGE_CUSTOM_TAB) {
649  for (i = 1; i < 256; i++)
650  s->state_transition[i] = ver2_state[i];
651  } else {
652  RangeCoder c;
653  ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
654  for (i = 1; i < 256; i++)
655  s->state_transition[i] = c.one_state[i];
656  }
657 
658  for (i = 0; i < 256; i++) {
659  s->quant_table_count = 2;
660  if ((s->qtable == -1 && s->bits_per_raw_sample <= 8) || s->qtable == 1) {
661  s->quant_tables[0][0][i]= quant11[i];
662  s->quant_tables[0][1][i]= 11*quant11[i];
663  s->quant_tables[0][2][i]= 11*11*quant11[i];
664  s->quant_tables[1][0][i]= quant11[i];
665  s->quant_tables[1][1][i]= 11*quant11[i];
666  s->quant_tables[1][2][i]= 11*11*quant5 [i];
667  s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
668  s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
669  s->context_count[0] = (11 * 11 * 11 + 1) / 2;
670  s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
671  } else {
672  s->quant_tables[0][0][i]= quant9_10bit[i];
673  s->quant_tables[0][1][i]= 9*quant9_10bit[i];
674  s->quant_tables[0][2][i]= 9*9*quant9_10bit[i];
675  s->quant_tables[1][0][i]= quant9_10bit[i];
676  s->quant_tables[1][1][i]= 9*quant9_10bit[i];
677  s->quant_tables[1][2][i]= 9*9*quant5_10bit[i];
678  s->quant_tables[1][3][i]= 5*9*9*quant5_10bit[i];
679  s->quant_tables[1][4][i]= 5*5*9*9*quant5_10bit[i];
680  s->context_count[0] = (9 * 9 * 9 + 1) / 2;
681  s->context_count[1] = (9 * 9 * 5 * 5 * 5 + 1) / 2;
682  }
683  }
684 
686  return ret;
687 
688  if (!s->transparency)
689  s->plane_count = 2;
690  if (!s->chroma_planes && s->version > 3)
691  s->plane_count--;
692 
693  s->picture_number = 0;
694 
695  if (avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
696  for (i = 0; i < s->quant_table_count; i++) {
697  s->rc_stat2[i] = av_mallocz(s->context_count[i] *
698  sizeof(*s->rc_stat2[i]));
699  if (!s->rc_stat2[i])
700  return AVERROR(ENOMEM);
701  }
702  }
703  if (avctx->stats_in) {
704  char *p = avctx->stats_in;
705  uint8_t (*best_state)[256] = av_malloc_array(256, 256);
706  int gob_count = 0;
707  char *next;
708  if (!best_state)
709  return AVERROR(ENOMEM);
710 
711  av_assert0(s->version >= 2);
712 
713  for (;;) {
714  for (j = 0; j < 256; j++)
715  for (i = 0; i < 2; i++) {
716  s->rc_stat[j][i] = strtol(p, &next, 0);
717  if (next == p) {
718  av_log(avctx, AV_LOG_ERROR,
719  "2Pass file invalid at %d %d [%s]\n", j, i, p);
720  av_freep(&best_state);
721  return AVERROR_INVALIDDATA;
722  }
723  p = next;
724  }
725  for (i = 0; i < s->quant_table_count; i++)
726  for (j = 0; j < s->context_count[i]; j++) {
727  for (k = 0; k < 32; k++)
728  for (m = 0; m < 2; m++) {
729  s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
730  if (next == p) {
731  av_log(avctx, AV_LOG_ERROR,
732  "2Pass file invalid at %d %d %d %d [%s]\n",
733  i, j, k, m, p);
734  av_freep(&best_state);
735  return AVERROR_INVALIDDATA;
736  }
737  p = next;
738  }
739  }
740  gob_count = strtol(p, &next, 0);
741  if (next == p || gob_count <= 0) {
742  av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
743  av_freep(&best_state);
744  return AVERROR_INVALIDDATA;
745  }
746  p = next;
747  while (*p == '\n' || *p == ' ')
748  p++;
749  if (p[0] == 0)
750  break;
751  }
752  if (s->ac == AC_RANGE_CUSTOM_TAB)
753  sort_stt(s, s->state_transition);
754 
755  find_best_state(best_state, s->state_transition);
756 
757  for (i = 0; i < s->quant_table_count; i++) {
758  for (k = 0; k < 32; k++) {
759  double a=0, b=0;
760  int jp = 0;
761  for (j = 0; j < s->context_count[i]; j++) {
762  double p = 128;
763  if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1] > 200 && j || a+b > 200) {
764  if (a+b)
765  p = 256.0 * b / (a + b);
766  s->initial_states[i][jp][k] =
767  best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
768  for(jp++; jp<j; jp++)
769  s->initial_states[i][jp][k] = s->initial_states[i][jp-1][k];
770  a=b=0;
771  }
772  a += s->rc_stat2[i][j][k][0];
773  b += s->rc_stat2[i][j][k][1];
774  if (a+b) {
775  p = 256.0 * b / (a + b);
776  }
777  s->initial_states[i][j][k] =
778  best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
779  }
780  }
781  }
782  av_freep(&best_state);
783  }
784 
785  if (s->version <= 1) {
786  /* Disable slices when the version doesn't support them */
787  s->num_h_slices = 1;
788  s->num_v_slices = 1;
789  }
790 
792 
793  return 0;
794 }
795 
797  enum AVPixelFormat pix_fmt)
798 {
799  FFV1Context *s = avctx->priv_data;
801 
802  s->plane_count = 3;
803  switch(pix_fmt) {
804  case AV_PIX_FMT_GRAY9:
805  case AV_PIX_FMT_YUV444P9:
806  case AV_PIX_FMT_YUV422P9:
807  case AV_PIX_FMT_YUV420P9:
811  if (!avctx->bits_per_raw_sample)
812  s->bits_per_raw_sample = 9;
813  case AV_PIX_FMT_GRAY10:
821  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
822  s->bits_per_raw_sample = 10;
823  case AV_PIX_FMT_GRAY12:
830  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
831  s->bits_per_raw_sample = 12;
832  case AV_PIX_FMT_GRAY14:
836  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
837  s->bits_per_raw_sample = 14;
838  s->packed_at_lsb = 1;
839  case AV_PIX_FMT_GRAY16:
846  case AV_PIX_FMT_GRAYF16:
847  case AV_PIX_FMT_YAF16:
848  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
849  s->bits_per_raw_sample = 16;
850  } else if (!s->bits_per_raw_sample) {
851  s->bits_per_raw_sample = avctx->bits_per_raw_sample;
852  }
853  if (s->bits_per_raw_sample <= 8) {
854  av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
855  return AVERROR_INVALIDDATA;
856  }
857  s->version = FFMAX(s->version, 1);
858  case AV_PIX_FMT_GRAY8:
859  case AV_PIX_FMT_YA8:
860  case AV_PIX_FMT_YUV444P:
861  case AV_PIX_FMT_YUV440P:
862  case AV_PIX_FMT_YUV422P:
863  case AV_PIX_FMT_YUV420P:
864  case AV_PIX_FMT_YUV411P:
865  case AV_PIX_FMT_YUV410P:
866  case AV_PIX_FMT_YUVA444P:
867  case AV_PIX_FMT_YUVA422P:
868  case AV_PIX_FMT_YUVA420P:
869  s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
870  s->colorspace = 0;
871  s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
872  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
873  s->bits_per_raw_sample = 8;
874  else if (!s->bits_per_raw_sample)
875  s->bits_per_raw_sample = 8;
876  break;
877  case AV_PIX_FMT_RGB32:
878  s->colorspace = 1;
879  s->transparency = 1;
880  s->chroma_planes = 1;
881  s->bits_per_raw_sample = 8;
882  break;
883  case AV_PIX_FMT_RGBA64:
884  s->colorspace = 1;
885  s->transparency = 1;
886  s->chroma_planes = 1;
887  s->bits_per_raw_sample = 16;
888  s->use32bit = 1;
889  s->version = FFMAX(s->version, 1);
890  break;
891  case AV_PIX_FMT_RGB48:
892  s->colorspace = 1;
893  s->chroma_planes = 1;
894  s->bits_per_raw_sample = 16;
895  s->use32bit = 1;
896  s->version = FFMAX(s->version, 1);
897  break;
898  case AV_PIX_FMT_0RGB32:
899  s->colorspace = 1;
900  s->chroma_planes = 1;
901  s->bits_per_raw_sample = 8;
902  break;
903  case AV_PIX_FMT_GBRP9:
904  if (!avctx->bits_per_raw_sample)
905  s->bits_per_raw_sample = 9;
906  case AV_PIX_FMT_GBRP10:
907  case AV_PIX_FMT_GBRAP10:
908  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
909  s->bits_per_raw_sample = 10;
910  case AV_PIX_FMT_GBRP12:
911  case AV_PIX_FMT_GBRAP12:
912  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
913  s->bits_per_raw_sample = 12;
914  case AV_PIX_FMT_GBRP14:
915  case AV_PIX_FMT_GBRAP14:
916  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
917  s->bits_per_raw_sample = 14;
918  case AV_PIX_FMT_GBRP16:
919  case AV_PIX_FMT_GBRAP16:
920  case AV_PIX_FMT_GBRPF16:
921  case AV_PIX_FMT_GBRAPF16:
922  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
923  s->bits_per_raw_sample = 16;
924  case AV_PIX_FMT_GBRPF32:
925  case AV_PIX_FMT_GBRAPF32:
926  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
927  s->bits_per_raw_sample = 32;
928  else if (!s->bits_per_raw_sample)
929  s->bits_per_raw_sample = avctx->bits_per_raw_sample;
930  s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
931  s->colorspace = 1;
932  s->chroma_planes = 1;
933  if (s->bits_per_raw_sample >= 16) {
934  s->use32bit = 1;
935  }
936  s->version = FFMAX(s->version, 1);
937  break;
938  default:
939  av_log(avctx, AV_LOG_ERROR, "format %s not supported\n",
941  return AVERROR(ENOSYS);
942  }
943  s->flt = !!(desc->flags & AV_PIX_FMT_FLAG_FLOAT);
944  if (s->flt)
945  s->version = FFMAX(s->version, 4);
946  av_assert0(s->bits_per_raw_sample >= 8);
947 
948  if (s->remap_mode < 0)
949  s->remap_mode = s->flt ? 2 : 0;
950  if (s->remap_mode == 0 && s->bits_per_raw_sample == 32) {
951  av_log(avctx, AV_LOG_ERROR, "32bit requires remap\n");
952  return AVERROR(EINVAL);
953  }
954  if (s->remap_mode == 2 &&
955  !((s->bits_per_raw_sample == 16 || s->bits_per_raw_sample == 32 || s->bits_per_raw_sample == 64) && s->flt)) {
956  av_log(avctx, AV_LOG_ERROR, "remap 2 is for float16/32/64 only\n");
957  return AVERROR(EINVAL);
958  }
959 
960  return av_pix_fmt_get_chroma_sub_sample(pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
961 }
962 
964 {
965  int ret;
966  FFV1Context *s = avctx->priv_data;
967 
968  if ((ret = ff_ffv1_common_init(avctx, s)) < 0)
969  return ret;
970 
971  if (s->ac == 1) // Compatbility with common command line usage
972  s->ac = AC_RANGE_CUSTOM_TAB;
973  else if (s->ac == AC_RANGE_DEFAULT_TAB_FORCE)
974  s->ac = AC_RANGE_DEFAULT_TAB;
975 
977  if (ret < 0)
978  return ret;
979 
980  if (s->bits_per_raw_sample > (s->version > 3 ? 16 : 8) && !s->remap_mode) {
981  if (s->ac == AC_GOLOMB_RICE) {
982  av_log(avctx, AV_LOG_INFO,
983  "high bits_per_raw_sample, forcing range coder\n");
984  s->ac = AC_RANGE_CUSTOM_TAB;
985  }
986  }
987 
988 
989  ret = ff_ffv1_encode_init(avctx);
990  if (ret < 0)
991  return ret;
992 
993  if (s->version > 1) {
994  if ((ret = ff_ffv1_encode_determine_slices(avctx)) < 0)
995  return ret;
996 
997  if ((ret = ff_ffv1_write_extradata(avctx)) < 0)
998  return ret;
999  }
1000 
1001  if ((ret = ff_ffv1_init_slice_contexts(s)) < 0)
1002  return ret;
1003  s->slice_count = s->max_slice_count;
1004 
1005  for (int j = 0; j < s->slice_count; j++) {
1006  for (int i = 0; i < s->plane_count; i++) {
1007  PlaneContext *const p = &s->slices[j].plane[i];
1008 
1009  p->quant_table_index = s->context_model;
1010  p->context_count = s->context_count[p->quant_table_index];
1011  }
1012 
1013  ff_build_rac_states(&s->slices[j].c, 0.05 * (1LL << 32), 256 - 8);
1014 
1015  s->slices[j].remap = s->remap_mode;
1016  }
1017 
1018  if ((ret = ff_ffv1_init_slices_state(s)) < 0)
1019  return ret;
1020 
1021 #define STATS_OUT_SIZE 1024 * 1024 * 6
1022  if (avctx->flags & AV_CODEC_FLAG_PASS1) {
1024  if (!avctx->stats_out)
1025  return AVERROR(ENOMEM);
1026  for (int i = 0; i < s->quant_table_count; i++)
1027  for (int j = 0; j < s->max_slice_count; j++) {
1028  FFV1SliceContext *sc = &s->slices[j];
1029  av_assert0(!sc->rc_stat2[i]);
1030  sc->rc_stat2[i] = av_mallocz(s->context_count[i] *
1031  sizeof(*sc->rc_stat2[i]));
1032  if (!sc->rc_stat2[i])
1033  return AVERROR(ENOMEM);
1034  }
1035  }
1036 
1037  return 0;
1038 }
1039 
1041 {
1042  RangeCoder *c = &sc->c;
1043  uint8_t state[CONTEXT_SIZE];
1044  int j;
1045  memset(state, 128, sizeof(state));
1046 
1047  put_symbol(c, state, sc->sx, 0);
1048  put_symbol(c, state, sc->sy, 0);
1049  put_symbol(c, state, 0, 0);
1050  put_symbol(c, state, 0, 0);
1051  for (j=0; j<f->plane_count; j++) {
1052  put_symbol(c, state, sc->plane[j].quant_table_index, 0);
1053  av_assert0(sc->plane[j].quant_table_index == f->context_model);
1054  }
1055  if (!(f->cur_enc_frame->flags & AV_FRAME_FLAG_INTERLACED))
1056  put_symbol(c, state, 3, 0);
1057  else
1058  put_symbol(c, state, 1 + !(f->cur_enc_frame->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST), 0);
1059  put_symbol(c, state, f->cur_enc_frame->sample_aspect_ratio.num, 0);
1060  put_symbol(c, state, f->cur_enc_frame->sample_aspect_ratio.den, 0);
1061  if (f->version > 3) {
1062  put_rac(c, state, sc->slice_coding_mode == 1);
1063  if (sc->slice_coding_mode == 1)
1065  put_symbol(c, state, sc->slice_coding_mode, 0);
1066  if (sc->slice_coding_mode != 1 && f->colorspace == 1) {
1067  put_symbol(c, state, sc->slice_rct_by_coef, 0);
1068  put_symbol(c, state, sc->slice_rct_ry_coef, 0);
1069  }
1070  put_symbol(c, state, sc->remap, 0);
1071  }
1072 }
1073 
1075  const uint8_t *src[3], const int stride[3], int w, int h)
1076 {
1077 #define NB_Y_COEFF 15
1078  static const int rct_y_coeff[15][2] = {
1079  {0, 0}, // 4G
1080  {1, 1}, // R + 2G + B
1081  {2, 2}, // 2R + 2B
1082  {0, 2}, // 2G + 2B
1083  {2, 0}, // 2R + 2G
1084  {4, 0}, // 4R
1085  {0, 4}, // 4B
1086 
1087  {0, 3}, // 1G + 3B
1088  {3, 0}, // 3R + 1G
1089  {3, 1}, // 3R + B
1090  {1, 3}, // R + 3B
1091  {1, 2}, // R + G + 2B
1092  {2, 1}, // 2R + G + B
1093  {0, 1}, // 3G + B
1094  {1, 0}, // R + 3G
1095  };
1096 
1097  int stat[NB_Y_COEFF] = {0};
1098  int x, y, i, p, best;
1099  int16_t *sample[3];
1100  int lbd = f->bits_per_raw_sample <= 8;
1101  int packed = !src[1];
1102  int transparency = f->transparency;
1103  int packed_size = (3 + transparency)*2;
1104 
1105  for (y = 0; y < h; y++) {
1106  int lastr=0, lastg=0, lastb=0;
1107  for (p = 0; p < 3; p++)
1108  sample[p] = sc->sample_buffer + p*w;
1109 
1110  for (x = 0; x < w; x++) {
1111  int b, g, r;
1112  int ab, ag, ar;
1113  if (lbd) {
1114  unsigned v = *((const uint32_t*)(src[0] + x*4 + stride[0]*y));
1115  b = v & 0xFF;
1116  g = (v >> 8) & 0xFF;
1117  r = (v >> 16) & 0xFF;
1118  } else if (packed) {
1119  const uint16_t *p = ((const uint16_t*)(src[0] + x*packed_size + stride[0]*y));
1120  r = p[0];
1121  g = p[1];
1122  b = p[2];
1123  } else if (f->use32bit || transparency) {
1124  g = *((const uint16_t *)(src[0] + x*2 + stride[0]*y));
1125  b = *((const uint16_t *)(src[1] + x*2 + stride[1]*y));
1126  r = *((const uint16_t *)(src[2] + x*2 + stride[2]*y));
1127  } else {
1128  b = *((const uint16_t*)(src[0] + x*2 + stride[0]*y));
1129  g = *((const uint16_t*)(src[1] + x*2 + stride[1]*y));
1130  r = *((const uint16_t*)(src[2] + x*2 + stride[2]*y));
1131  }
1132 
1133  ar = r - lastr;
1134  ag = g - lastg;
1135  ab = b - lastb;
1136  if (x && y) {
1137  int bg = ag - sample[0][x];
1138  int bb = ab - sample[1][x];
1139  int br = ar - sample[2][x];
1140 
1141  br -= bg;
1142  bb -= bg;
1143 
1144  for (i = 0; i<NB_Y_COEFF; i++) {
1145  stat[i] += FFABS(bg + ((br*rct_y_coeff[i][0] + bb*rct_y_coeff[i][1])>>2));
1146  }
1147 
1148  }
1149  sample[0][x] = ag;
1150  sample[1][x] = ab;
1151  sample[2][x] = ar;
1152 
1153  lastr = r;
1154  lastg = g;
1155  lastb = b;
1156  }
1157  }
1158 
1159  best = 0;
1160  for (i=1; i<NB_Y_COEFF; i++) {
1161  if (stat[i] < stat[best])
1162  best = i;
1163  }
1164 
1165  sc->slice_rct_by_coef = rct_y_coeff[best][1];
1166  sc->slice_rct_ry_coef = rct_y_coeff[best][0];
1167 }
1168 
1170 {
1171  int len = 1 << f->bits_per_raw_sample;
1172  int flip = sc->remap == 2 ? 0x7FFF : 0;
1173 
1174  for (int p= 0; p < 1 + 2*f->chroma_planes + f->transparency; p++) {
1175  int j = 0;
1176  int lu = 0;
1177  uint8_t state[2][32];
1178  int run = 0;
1179 
1180  memset(state, 128, sizeof(state));
1181  put_symbol(&sc->c, state[0], 0, 0);
1182  memset(state, 128, sizeof(state));
1183  for (int i= 0; i<len; i++) {
1184  int ri = i ^ ((i&0x8000) ? 0 : flip);
1185  int u = sc->fltmap[p][ri];
1186  sc->fltmap[p][ri] = j;
1187  j+= u;
1188 
1189  if (lu == u) {
1190  run ++;
1191  } else {
1192  put_symbol_inline(&sc->c, state[lu], run, 0, NULL, NULL);
1193  if (run == 0)
1194  lu = u;
1195  run = 0;
1196  }
1197  }
1198  if (run)
1199  put_symbol(&sc->c, state[lu], run, 0);
1200  }
1201 }
1202 
1204  const uint8_t *src[4],
1205  int w, int h, const int stride[4])
1206 {
1207  int x, y;
1208  int transparency = f->transparency;
1209  int i = 0;
1210 
1211  for (y = 0; y < h; y++) {
1212  for (x = 0; x < w; x++) {
1213  int b, g, r, av_uninit(a);
1214 
1215  g = *((const uint32_t *)(src[0] + x*4 + stride[0]*y));
1216  b = *((const uint32_t *)(src[1] + x*4 + stride[1]*y));
1217  r = *((const uint32_t *)(src[2] + x*4 + stride[2]*y));
1218  if (transparency)
1219  a = *((const uint32_t *)(src[3] + x*4 + stride[3]*y));
1220 
1221  if (sc->remap == 2) {
1222 #define FLIP(f) (((f)&0x80000000) ? (f) : (f)^0x7FFFFFFF);
1223  g = FLIP(g);
1224  b = FLIP(b);
1225  r = FLIP(r);
1226  }
1227  // We cannot build a histogram as we do for 16bit, we need a bit of magic here
1228  // Its possible to reduce the memory needed at the cost of more dereferencing
1229  sc->unit[0][i].val = g;
1230  sc->unit[0][i].ndx = x + y*w;
1231 
1232  sc->unit[1][i].val = b;
1233  sc->unit[1][i].ndx = x + y*w;
1234 
1235  sc->unit[2][i].val = r;
1236  sc->unit[2][i].ndx = x + y*w;
1237 
1238  if (transparency) {
1239  sc->unit[3][i].val = a;
1240  sc->unit[3][i].ndx = x + y*w;
1241  }
1242  i++;
1243  }
1244  }
1245 
1246  //TODO switch to radix sort
1247 #define CMP(A,B) ((A)->val - (int64_t)(B)->val)
1248  AV_QSORT(sc->unit[0], i, struct Unit, CMP);
1249  AV_QSORT(sc->unit[1], i, struct Unit, CMP);
1250  AV_QSORT(sc->unit[2], i, struct Unit, CMP);
1251  if (transparency)
1252  AV_QSORT(sc->unit[3], i, struct Unit, CMP);
1253 }
1254 
1255 typedef struct RemapEncoderState {
1256  uint8_t state[2][3][32];
1257  int mul[4096+1];
1259  int lu;
1260  int run;
1264  int i;
1266  int p;
1273 
1275 {
1276  dst->rc = src->rc;
1277  memcpy(dst->mul, src->mul, (src->mul_count + 1) * sizeof(src->mul[0]));
1278  memcpy(dst->state, src->state, sizeof(dst->state));
1279  dst->lu = src->lu;
1280  dst->run = src->run;
1281  dst->last_val = src->last_val;
1282  dst->compact_index = src->compact_index;
1283  dst->mul_count = src->mul_count;
1284  dst->i = src->i;
1285  dst->pixel_num = src->pixel_num;
1286  dst->p = src->p;
1287  dst->current_mul_index = src->current_mul_index;
1288  dst->run1final = src->run1final;
1289  dst->run1start_i = src->run1start_i;
1290  dst->run1start_last_val = src->run1start_last_val;
1291  dst->run1start_mul_index = src->run1start_mul_index;
1292 }
1293 
1295  RemapEncoderState *state_arg, int update, int final)
1296 {
1298 
1299  copy_state(&s, state_arg);
1300 
1301  if (s.i == 0) {
1302  memset(s.state, 128, sizeof(s.state));
1303  put_symbol(&s.rc, s.state[0][0], s.mul_count, 0);
1304  memset(s.state, 128, sizeof(s.state));
1305  s.last_val = -1;
1306  s.compact_index = -1;
1307  s.lu = 0;
1308  s.run = 0;
1309  s.current_mul_index = -1;
1310  s.run1final = 0;
1311  }
1312 
1313  for (; s.i < s.pixel_num+1; s.i++) {
1314  int current_mul = s.current_mul_index < 0 ? 1 : FFABS(s.mul[s.current_mul_index]);
1315  int64_t val;
1316  if (s.i == s.pixel_num) {
1317  if (s.last_val == 0xFFFFFFFF) {
1318  break;
1319  } else {
1320  val = s.last_val + ((1LL<<32) - s.last_val + current_mul - 1) / current_mul * current_mul;
1321  av_assert2(val >= (1LL<<32));
1322  val += s.lu * current_mul; //ensure a run1 ends
1323  }
1324  } else
1325  val = sc->unit[s.p][s.i].val;
1326 
1327  if (s.last_val != val) {
1328  int64_t delta = val - s.last_val;
1329  int64_t step = FFMAX(1, (delta + current_mul/2) / current_mul);
1330  av_assert2(s.last_val < val);
1331  av_assert2(current_mul > 0);
1332 
1333  delta -= step*current_mul;
1334  av_assert2(delta <= current_mul/2);
1335  av_assert2(delta > -current_mul);
1336 
1337  av_assert2(step > 0);
1338  if (s.lu) {
1339  if (!s.run) {
1340  s.run1start_i = s.i - 1;
1341  s.run1start_last_val = s.last_val;
1342  s.run1start_mul_index= s.current_mul_index;
1343  }
1344  if (step == 1) {
1345  if (s.run1final) {
1346  if (current_mul>1)
1347  put_symbol_inline(&s.rc, s.state[s.lu][1], delta, 1, NULL, NULL);
1348  }
1349  s.run ++;
1350  av_assert2(s.last_val + current_mul + delta == val);
1351  } else {
1352  if (s.run1final) {
1353  if (s.run == 0)
1354  s.lu ^= 1;
1355  s.i--; // we did not encode val so we need to backstep
1356  s.last_val += current_mul;
1357  } else {
1358  put_symbol_inline(&s.rc, s.state[s.lu][0], s.run, 0, NULL, NULL);
1359  s.i = s.run1start_i;
1360  s.last_val = s.run1start_last_val; // we could compute this instead of storing
1361  s.current_mul_index = s.run1start_mul_index;
1362  }
1363  s.run1final ^= 1;
1364 
1365  s.run = 0;
1366  continue;
1367  }
1368  } else {
1369  av_assert2(s.run == 0);
1370  av_assert2(s.run1final == 0);
1371  put_symbol_inline(&s.rc, s.state[s.lu][0], step - 1, 0, NULL, NULL);
1372 
1373  if (current_mul > 1)
1374  put_symbol_inline(&s.rc, s.state[s.lu][1], delta, 1, NULL, NULL);
1375  if (step == 1)
1376  s.lu ^= 1;
1377 
1378  av_assert2(s.last_val + step * current_mul + delta == val);
1379  }
1380  s.last_val = val;
1381  s.current_mul_index = ((s.last_val + 1) * s.mul_count) >> 32;
1382  if (!s.run || s.run1final) {
1383  av_assert2(s.mul[ s.current_mul_index ]);
1384  if (s.mul[ s.current_mul_index ] < 0) {
1385  av_assert2(s.i < s.pixel_num);
1386  s.mul[ s.current_mul_index ] *= -1;
1387  put_symbol_inline(&s.rc, s.state[0][2], s.mul[ s.current_mul_index ], 0, NULL, NULL);
1388  }
1389  s.compact_index ++;
1390  }
1391  }
1392  if (!s.run || s.run1final)
1393  if (final && s.i < s.pixel_num)
1394  sc->bitmap[s.p][sc->unit[s.p][s.i].ndx] = s.compact_index;
1395  }
1396 
1397  if (update) {
1398  copy_state(state_arg, &s);
1399  }
1400  return get_rac_count(&s.rc);
1401 }
1402 
1404  const uint8_t *src[4])
1405 {
1407  s.pixel_num = sc->slice_width * sc->slice_height;
1408 
1409  av_assert0 (s.pixel_num <= 65536);
1410 
1411  for (int p= 0; p < 1 + 2*f->chroma_planes + f->transparency; p++) {
1412  float score_tab[16] = {0};
1413  int64_t last_val = -1;
1414  int best_index = 0;
1415  s.rc = sc->c;
1416  s.i = 0;
1417  s.p = p;
1418 
1419  for(int v = 0; v< 512; v++) {
1420  if (v >= 0x378/8 && v <= 23 + 0x378/8) {
1421  s.mul[v] = -(0x800080 >> (v - 0x378/8));
1422  } else
1423  s.mul[v] = -1;
1424  }
1425  for (int i= 0; i<s.pixel_num; i++) {
1426  int64_t val = sc->unit[p][i].val;
1427  if (val != last_val) {
1428  av_assert2(last_val < val);
1429  for(int si= 0; si < FF_ARRAY_ELEMS(score_tab); si++) {
1430  int64_t delta = val - last_val;
1431  int mul;
1432  int64_t cost;
1433 
1434  if (last_val < 0) {
1435  mul = 1;
1436  } else if (si + 1 == FF_ARRAY_ELEMS(score_tab)) {
1437  mul = -s.mul[ (last_val + 1) >> (32-9) ];
1438  } else
1439  mul = 1<<si;
1440 
1441  cost = FFMAX((delta + mul/2) / mul, 1);
1442  score_tab[si] += log2(cost) + log2(fabs(delta - cost*mul)+1);
1443  }
1444  last_val = val;
1445  }
1446  }
1447  for(int si= 1; si < FF_ARRAY_ELEMS(score_tab); si++) {
1448  if (score_tab[si] < score_tab[ best_index ])
1449  best_index = si;
1450  }
1451  if (best_index + 1 < FF_ARRAY_ELEMS(score_tab)) {
1452  s.mul[0] = -1 << best_index;
1453  s.mul_count = 1;
1454  } else {
1455  s.mul_count = 512;
1456  }
1457  s.mul[s.mul_count] = 1;
1458 
1459  encode_float32_remap_segment(sc, &s, 1, 1);
1460 
1461  sc->c = s.rc;
1462  }
1463 }
1464 
1466  const uint8_t *src[4],
1467  int w, int h, const int stride[4], int ac)
1468 {
1469  int x, y, p, i;
1470  const int ring_size = f->context_model ? 3 : 2;
1471  int32_t *sample[4][3];
1472  const int pass1 = !!(f->avctx->flags & AV_CODEC_FLAG_PASS1);
1473  int bits = 16; //TODO explain this in the specifciation, we have 32bits in but really encode max 16
1474  int offset = 1 << bits;
1475  int transparency = f->transparency;
1476 
1477  sc->run_index = 0;
1478 
1479  memset(RENAME(sc->sample_buffer), 0, ring_size * MAX_PLANES *
1480  (w + 6) * sizeof(*RENAME(sc->sample_buffer)));
1481 
1482  for (y = 0; y < h; y++) {
1483  for (i = 0; i < ring_size; i++)
1484  for (p = 0; p < MAX_PLANES; p++)
1485  sample[p][i]= RENAME(sc->sample_buffer) + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
1486 
1487  for (x = 0; x < w; x++) {
1488  int b, g, r, av_uninit(a);
1489  g = sc->bitmap[0][x + w*y];
1490  b = sc->bitmap[1][x + w*y];
1491  r = sc->bitmap[2][x + w*y];
1492  if (transparency)
1493  a = sc->bitmap[3][x + w*y];
1494 
1495  if (sc->slice_coding_mode != 1) {
1496  b -= g;
1497  r -= g;
1498  g += (b * sc->slice_rct_by_coef + r * sc->slice_rct_ry_coef) >> 2;
1499  b += offset;
1500  r += offset;
1501  }
1502 
1503  sample[0][0][x] = g;
1504  sample[1][0][x] = b;
1505  sample[2][0][x] = r;
1506  sample[3][0][x] = a;
1507  }
1508  for (p = 0; p < 3 + transparency; p++) {
1509  int ret;
1510  sample[p][0][-1] = sample[p][1][0 ];
1511  sample[p][1][ w] = sample[p][1][w-1];
1512  ret = encode_line32(f, sc, f->avctx, w, sample[p], (p + 1) / 2,
1513  bits + (sc->slice_coding_mode != 1), ac, pass1);
1514  if (ret < 0)
1515  return ret;
1516  }
1517  }
1518  return 0;
1519 }
1520 
1521 
1522 static int encode_slice(AVCodecContext *c, void *arg)
1523 {
1524  FFV1SliceContext *sc = arg;
1525  FFV1Context *f = c->priv_data;
1526  int width = sc->slice_width;
1527  int height = sc->slice_height;
1528  int x = sc->slice_x;
1529  int y = sc->slice_y;
1530  const AVFrame *const p = f->cur_enc_frame;
1531  const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step;
1532  int ret;
1533  RangeCoder c_bak = sc->c;
1534  const int chroma_width = AV_CEIL_RSHIFT(width, f->chroma_h_shift);
1535  const int chroma_height = AV_CEIL_RSHIFT(height, f->chroma_v_shift);
1536  const uint8_t *planes[4] = {p->data[0] + ps*x + y*p->linesize[0],
1537  p->data[1] ? p->data[1] + ps*x + y*p->linesize[1] : NULL,
1538  p->data[2] ? p->data[2] + ps*x + y*p->linesize[2] : NULL,
1539  p->data[3] ? p->data[3] + ps*x + y*p->linesize[3] : NULL};
1540  int ac = f->ac;
1541 
1542  sc->slice_coding_mode = 0;
1543  if (f->version > 3 && f->colorspace == 1) {
1545  } else {
1546  sc->slice_rct_by_coef = 1;
1547  sc->slice_rct_ry_coef = 1;
1548  }
1549 
1550 retry:
1551  if (f->key_frame)
1553  if (f->version > 2) {
1554  encode_slice_header(f, sc);
1555  }
1556 
1557  if (sc->remap) {
1558  //Both the 16bit and 32bit remap do exactly the same thing but with 16bits we can
1559  //Implement this using a "histogram" while for 32bit that would be gb sized, thus a more
1560  //complex implementation sorting pairs is used.
1561  if (f->bits_per_raw_sample != 32) {
1562  if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8 && c->pix_fmt != AV_PIX_FMT_YAF16) {
1563  const int cx = x >> f->chroma_h_shift;
1564  const int cy = y >> f->chroma_v_shift;
1565 
1566  //TODO decide on the order for the encoded remaps and loads. with golomb rice it
1567  // easier to have all range coded ones together, otherwise it may be nicer to handle each plane as a whole?
1568 
1569  load_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 1);
1570 
1571  if (f->chroma_planes) {
1572  load_plane(f, sc, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1);
1573  load_plane(f, sc, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 2, 1);
1574  }
1575  if (f->transparency)
1576  load_plane(f, sc, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 3, 1);
1577  } else if (c->pix_fmt == AV_PIX_FMT_YA8 || c->pix_fmt == AV_PIX_FMT_YAF16) {
1578  load_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 2);
1579  load_plane(f, sc, p->data[0] + (ps>>1) + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 2);
1580  } else if (f->use32bit) {
1581  load_rgb_frame32(f, sc, planes, width, height, p->linesize);
1582  } else
1583  load_rgb_frame (f, sc, planes, width, height, p->linesize);
1584 
1586  } else {
1589  }
1590  }
1591 
1592  if (ac == AC_GOLOMB_RICE) {
1593  sc->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate(&sc->c, f->version > 2) : 0;
1594  init_put_bits(&sc->pb,
1595  sc->c.bytestream_start + sc->ac_byte_count,
1596  sc->c.bytestream_end - sc->c.bytestream_start - sc->ac_byte_count);
1597  }
1598 
1599  if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8 && c->pix_fmt != AV_PIX_FMT_YAF16) {
1600  const int cx = x >> f->chroma_h_shift;
1601  const int cy = y >> f->chroma_v_shift;
1602 
1603  ret = encode_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 0, 1, ac);
1604 
1605  if (f->chroma_planes) {
1606  ret |= encode_plane(f, sc, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1, 1, ac);
1607  ret |= encode_plane(f, sc, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1, 2, 1, ac);
1608  }
1609  if (f->transparency)
1610  ret |= encode_plane(f, sc, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2, 3, 1, ac);
1611  } else if (c->pix_fmt == AV_PIX_FMT_YA8 || c->pix_fmt == AV_PIX_FMT_YAF16) {
1612  ret = encode_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 0, 2, ac);
1613  ret |= encode_plane(f, sc, p->data[0] + (ps>>1) + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 1, 2, ac);
1614  } else if (f->bits_per_raw_sample == 32) {
1616  } else if (f->use32bit) {
1617  ret = encode_rgb_frame32(f, sc, planes, width, height, p->linesize, ac);
1618  } else {
1619  ret = encode_rgb_frame(f, sc, planes, width, height, p->linesize, ac);
1620  }
1621 
1622  if (ac != AC_GOLOMB_RICE) {
1623  sc->ac_byte_count = ff_rac_terminate(&sc->c, 1);
1624  } else {
1625  flush_put_bits(&sc->pb); // FIXME: nicer padding
1626  sc->ac_byte_count += put_bytes_output(&sc->pb);
1627  }
1628 
1629  if (ret < 0) {
1630  av_assert0(sc->slice_coding_mode == 0);
1631  if (f->version < 4) {
1632  av_log(c, AV_LOG_ERROR, "Buffer too small\n");
1633  return ret;
1634  }
1635  av_log(c, AV_LOG_DEBUG, "Coding slice as PCM\n");
1636  ac = 1;
1637  sc->slice_coding_mode = 1;
1638  sc->c = c_bak;
1639  goto retry;
1640  }
1641 
1642  return 0;
1643 }
1644 
1646 {
1647  FFV1Context *f = avctx->priv_data;
1648 
1649  size_t maxsize = avctx->width*avctx->height * (1 + f->transparency);
1650  if (f->chroma_planes)
1651  maxsize += AV_CEIL_RSHIFT(avctx->width, f->chroma_h_shift) * AV_CEIL_RSHIFT(f->height, f->chroma_v_shift) * 2;
1652  maxsize += f->slice_count * 800; //for slice header
1653  if (f->version > 3) {
1654  maxsize *= f->bits_per_raw_sample + 1;
1655  if (f->remap_mode)
1656  maxsize += f->slice_count * 70000 * (1 + 2*f->chroma_planes + f->transparency);
1657  } else {
1658  maxsize += f->slice_count * 2 * (avctx->width + avctx->height); //for bug with slices that code some pixels more than once
1659  maxsize *= 8*(2*f->bits_per_raw_sample + 5);
1660  }
1661  maxsize >>= 3;
1662  maxsize += FF_INPUT_BUFFER_MIN_SIZE;
1663 
1664  return maxsize;
1665 }
1666 
1668  const AVFrame *pict, int *got_packet)
1669 {
1670  FFV1Context *f = avctx->priv_data;
1671  RangeCoder *const c = &f->slices[0].c;
1672  uint8_t keystate = 128;
1673  uint8_t *buf_p;
1674  int i, ret;
1675  int64_t maxsize;
1676 
1677  if(!pict) {
1678  if (avctx->flags & AV_CODEC_FLAG_PASS1) {
1679  int j, k, m;
1680  char *p = avctx->stats_out;
1681  char *end = p + STATS_OUT_SIZE;
1682 
1683  memset(f->rc_stat, 0, sizeof(f->rc_stat));
1684  for (i = 0; i < f->quant_table_count; i++)
1685  memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
1686 
1687  av_assert0(f->slice_count == f->max_slice_count);
1688  for (j = 0; j < f->slice_count; j++) {
1689  const FFV1SliceContext *sc = &f->slices[j];
1690  for (i = 0; i < 256; i++) {
1691  f->rc_stat[i][0] += sc->rc_stat[i][0];
1692  f->rc_stat[i][1] += sc->rc_stat[i][1];
1693  }
1694  for (i = 0; i < f->quant_table_count; i++) {
1695  for (k = 0; k < f->context_count[i]; k++)
1696  for (m = 0; m < 32; m++) {
1697  f->rc_stat2[i][k][m][0] += sc->rc_stat2[i][k][m][0];
1698  f->rc_stat2[i][k][m][1] += sc->rc_stat2[i][k][m][1];
1699  }
1700  }
1701  }
1702 
1703  for (j = 0; j < 256; j++) {
1704  snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
1705  f->rc_stat[j][0], f->rc_stat[j][1]);
1706  p += strlen(p);
1707  }
1708  snprintf(p, end - p, "\n");
1709 
1710  for (i = 0; i < f->quant_table_count; i++) {
1711  for (j = 0; j < f->context_count[i]; j++)
1712  for (m = 0; m < 32; m++) {
1713  snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
1714  f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
1715  p += strlen(p);
1716  }
1717  }
1718  snprintf(p, end - p, "%d\n", f->gob_count);
1719  }
1720  return 0;
1721  }
1722 
1723  /* Maximum packet size */
1724  maxsize = ff_ffv1_encode_buffer_size(avctx);
1725 
1726  if (maxsize > INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32) {
1727  av_log(avctx, AV_LOG_WARNING, "Cannot allocate worst case packet size, the encoding could fail\n");
1728  maxsize = INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32;
1729  }
1730 
1731  if ((ret = ff_alloc_packet(avctx, pkt, maxsize)) < 0)
1732  return ret;
1733 
1735  ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
1736 
1737  f->cur_enc_frame = pict;
1738 
1739  if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
1740  put_rac(c, &keystate, 1);
1741  f->key_frame = 1;
1742  f->gob_count++;
1743  write_header(f);
1744  } else {
1745  put_rac(c, &keystate, 0);
1746  f->key_frame = 0;
1747  }
1748 
1749  if (f->ac == AC_RANGE_CUSTOM_TAB) {
1750  int i;
1751  for (i = 1; i < 256; i++) {
1752  c->one_state[i] = f->state_transition[i];
1753  c->zero_state[256 - i] = 256 - c->one_state[i];
1754  }
1755  }
1756 
1757  for (i = 0; i < f->slice_count; i++) {
1758  FFV1SliceContext *sc = &f->slices[i];
1759  uint8_t *start = pkt->data + pkt->size * (int64_t)i / f->slice_count;
1760  int len = pkt->size / f->slice_count;
1761  if (i) {
1762  ff_init_range_encoder(&sc->c, start, len);
1763  } else {
1766  sc->c.bytestream_end = sc->c.bytestream_start + len;
1767  }
1768  }
1769  avctx->execute(avctx, encode_slice, f->slices, NULL,
1770  f->slice_count, sizeof(*f->slices));
1771 
1772  buf_p = pkt->data;
1773  for (i = 0; i < f->slice_count; i++) {
1774  FFV1SliceContext *sc = &f->slices[i];
1775  int bytes = sc->ac_byte_count;
1776  if (i > 0 || f->version > 2) {
1777  av_assert0(bytes < pkt->size / f->slice_count);
1778  memmove(buf_p, sc->c.bytestream_start, bytes);
1779  av_assert0(bytes < (1 << 24));
1780  AV_WB24(buf_p + bytes, bytes);
1781  bytes += 3;
1782  }
1783  if (f->ec) {
1784  unsigned v;
1785  buf_p[bytes++] = 0;
1786  v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), f->crcref, buf_p, bytes) ^ (f->crcref ? 0x8CD88196 : 0);
1787  AV_WL32(buf_p + bytes, v);
1788  bytes += 4;
1789  }
1790  buf_p += bytes;
1791  }
1792 
1793  if (avctx->flags & AV_CODEC_FLAG_PASS1)
1794  avctx->stats_out[0] = '\0';
1795 
1796  f->picture_number++;
1797  pkt->size = buf_p - pkt->data;
1798  pkt->flags |= AV_PKT_FLAG_KEY * f->key_frame;
1799  *got_packet = 1;
1800 
1801  return 0;
1802 }
1803 
1805 {
1806  FFV1Context *const s = avctx->priv_data;
1807 
1808  av_freep(&avctx->stats_out);
1809  ff_ffv1_close(s);
1810 
1811  return 0;
1812 }
1813 
1814 #define OFFSET(x) offsetof(FFV1Context, x)
1815 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1816 static const AVOption options[] = {
1817  { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 2, VE },
1818  { "coder", "Coder type", OFFSET(ac), AV_OPT_TYPE_INT,
1819  { .i64 = 0 }, -2, 2, VE, .unit = "coder" },
1820  { "rice", "Golomb rice", 0, AV_OPT_TYPE_CONST,
1821  { .i64 = AC_GOLOMB_RICE }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1822  { "range_def", "Range with default table", 0, AV_OPT_TYPE_CONST,
1823  { .i64 = AC_RANGE_DEFAULT_TAB_FORCE }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1824  { "range_tab", "Range with custom table", 0, AV_OPT_TYPE_CONST,
1825  { .i64 = AC_RANGE_CUSTOM_TAB }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1826  { "ac", "Range with custom table (the ac option exists for compatibility and is deprecated)", 0, AV_OPT_TYPE_CONST,
1827  { .i64 = 1 }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1828  { "context", "Context model", OFFSET(context_model), AV_OPT_TYPE_INT,
1829  { .i64 = 0 }, 0, 1, VE },
1830  { "qtable", "Quantization table", OFFSET(qtable), AV_OPT_TYPE_INT,
1831  { .i64 = -1 }, -1, 2, VE , .unit = "qtable"},
1832  { "default", NULL, 0, AV_OPT_TYPE_CONST,
1833  { .i64 = QTABLE_DEFAULT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1834  { "8bit", NULL, 0, AV_OPT_TYPE_CONST,
1835  { .i64 = QTABLE_8BIT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1836  { "greater8bit", NULL, 0, AV_OPT_TYPE_CONST,
1837  { .i64 = QTABLE_GT8BIT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1838  { "remap_mode", "Remap Mode", OFFSET(remap_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 2, VE, .unit = "remap_mode" },
1839  { "auto", "Automatic", 0, AV_OPT_TYPE_CONST,
1840  { .i64 = -1 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1841  { "off", "Disabled", 0, AV_OPT_TYPE_CONST,
1842  { .i64 = 0 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1843  { "dualrle", "Dual RLE", 0, AV_OPT_TYPE_CONST,
1844  { .i64 = 1 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1845  { "flipdualrle", "Dual RLE", 0, AV_OPT_TYPE_CONST,
1846  { .i64 = 2 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1847 
1848 
1849  { NULL }
1850 };
1851 
1852 static const AVClass ffv1_class = {
1853  .class_name = "ffv1 encoder",
1854  .item_name = av_default_item_name,
1855  .option = options,
1856  .version = LIBAVUTIL_VERSION_INT,
1857 };
1858 
1860  .p.name = "ffv1",
1861  CODEC_LONG_NAME("FFmpeg video codec #1"),
1862  .p.type = AVMEDIA_TYPE_VIDEO,
1863  .p.id = AV_CODEC_ID_FFV1,
1864  .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
1867  .priv_data_size = sizeof(FFV1Context),
1870  .close = encode_close,
1871  CODEC_PIXFMTS(
1895  .color_ranges = AVCOL_RANGE_MPEG,
1896  .p.priv_class = &ffv1_class,
1898 };
load_rgb_frame
static void RENAME() load_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4])
Definition: ffv1enc_template.c:130
AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_YUVA422P16
Definition: pixfmt.h:579
set_micro_version
static void set_micro_version(FFV1Context *f)
Definition: ffv1enc.c:429
CODEC_PIXFMTS
#define CODEC_PIXFMTS(...)
Definition: codec_internal.h:386
AV_PIX_FMT_GBRAP16
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:551
encode_init_internal
static av_cold int encode_init_internal(AVCodecContext *avctx)
Definition: ffv1enc.c:963
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:215
FFV1SliceContext::slice_height
int slice_height
Definition: ffv1.h:78
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:71
ff_ffv1_encode_determine_slices
int ff_ffv1_encode_determine_slices(AVCodecContext *avctx)
Definition: ffv1enc.c:564
encode_line
static av_always_inline int RENAME() encode_line(FFV1Context *f, FFV1SliceContext *sc, void *logctx, int w, TYPE *sample[3], int plane_index, int bits, int ac, int pass1)
Definition: ffv1enc_template.c:26
av_clip
#define av_clip
Definition: common.h:100
update_vlc_state
static void update_vlc_state(VlcState *const state, const int v)
Definition: ffv1.h:219
FF_CODEC_CAP_INIT_CLEANUP
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: codec_internal.h:42
r
const char * r
Definition: vf_curves.c:127
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
AV_PIX_FMT_YA8
@ AV_PIX_FMT_YA8
8 bits gray, 8 bits alpha
Definition: pixfmt.h:140
AV_WL32
#define AV_WL32(p, v)
Definition: intreadwrite.h:422
put_bytes_output
static int put_bytes_output(const PutBitContext *s)
Definition: put_bits.h:89
encode_float32_remap
static void encode_float32_remap(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4])
Definition: ffv1enc.c:1403
u
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:251
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:3341
FFV1SliceContext::plane
PlaneContext * plane
Definition: ffv1.h:90
FF_CODEC_CAP_EOF_FLUSH
#define FF_CODEC_CAP_EOF_FLUSH
The encoder has AV_CODEC_CAP_DELAY set, but does not actually have delay - it only wants to be flushe...
Definition: codec_internal.h:89
int64_t
long long int64_t
Definition: coverity.c:34
put_symbol_inline
static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2])
Definition: ffv1enc.c:185
init_put_bits
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:62
AV_PIX_FMT_FLAG_FLOAT
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
Definition: pixdesc.h:158
AV_PIX_FMT_YUVA422P9
#define AV_PIX_FMT_YUVA422P9
Definition: pixfmt.h:571
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:410
pixdesc.h
step
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
Definition: rate_distortion.txt:58
AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P16
Definition: pixfmt.h:578
RemapEncoderState::run1start_i
int64_t run1start_i
Definition: ffv1enc.c:1269
w
uint8_t w
Definition: llviddspenc.c:38
AC_RANGE_DEFAULT_TAB_FORCE
#define AC_RANGE_DEFAULT_TAB_FORCE
Definition: ffv1.h:55
AVPacket::data
uint8_t * data
Definition: packet.h:535
AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:573
AVOption
AVOption.
Definition: opt.h:429
encode.h
b
#define b
Definition: input.c:42
RemapEncoderState::run1final
int run1final
Definition: ffv1enc.c:1268
MAX_QUANT_TABLE_SIZE
#define MAX_QUANT_TABLE_SIZE
Definition: ffv1.h:48
rangecoder.h
AVComponentDescriptor::step
int step
Number of elements between 2 horizontally consecutive pixels.
Definition: pixdesc.h:40
AV_PIX_FMT_YUV420P10
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:528
RemapEncoderState::current_mul_index
int current_mul_index
Definition: ffv1enc.c:1267
ff_ffv1_write_extradata
av_cold int ff_ffv1_write_extradata(AVCodecContext *avctx)
Definition: ffv1enc.c:445
FFCodec
Definition: codec_internal.h:127
FFV1SliceContext::pb
PutBitContext pb
Definition: ffv1.h:91
RangeCoder::bytestream_end
uint8_t * bytestream_end
Definition: rangecoder.h:44
contains_non_128
static int contains_non_128(uint8_t(*initial_state)[CONTEXT_SIZE], int nb_contexts)
Definition: ffv1enc.c:370
AV_PIX_FMT_YUV440P
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:106
FF_COMPLIANCE_EXPERIMENTAL
#define FF_COMPLIANCE_EXPERIMENTAL
Allow nonstandardized experimental things.
Definition: defs.h:62
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
RemapEncoderState::run1start_last_val
int64_t run1start_last_val
Definition: ffv1enc.c:1270
AC_RANGE_CUSTOM_TAB
#define AC_RANGE_CUSTOM_TAB
Definition: ffv1.h:54
AV_PIX_FMT_YUVA422P10
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:574
ring_size
static int ring_size(RingBuffer *ring)
Definition: async.c:105
AV_PKT_FLAG_KEY
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: packet.h:590
FF_INPUT_BUFFER_MIN_SIZE
#define FF_INPUT_BUFFER_MIN_SIZE
Used by some encoders as upper bound for the length of headers.
Definition: encode.h:33
FFV1SliceContext::slice_x
int slice_x
Definition: ffv1.h:79
put_symbol
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed)
Definition: ffv1enc.c:233
ff_ffv1_clear_slice_state
void ff_ffv1_clear_slice_state(const FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1.c:198
AV_PIX_FMT_GRAY9
#define AV_PIX_FMT_GRAY9
Definition: pixfmt.h:507
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:431
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:31
AV_FRAME_FLAG_TOP_FIELD_FIRST
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
Definition: frame.h:638
crc.h
state
static struct @488 state
RemapEncoderState::mul_count
int mul_count
Definition: ffv1enc.c:1263
ff_ffv1_init_slices_state
av_cold int ff_ffv1_init_slices_state(FFV1Context *f)
Definition: ffv1.c:110
AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_YUVA420P9
Definition: pixfmt.h:570
write_quant_tables
static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][MAX_QUANT_TABLE_SIZE])
Definition: ffv1enc.c:362
quant11
static const int8_t quant11[256]
Definition: ffv1enc.c:102
load_plane
static void load_plane(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src, int w, int h, int stride, int remap_index, int pixel_stride)
Definition: ffv1enc.c:323
FFCodec::p
AVCodec p
The public AVCodec.
Definition: codec_internal.h:131
AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:546
ff_init_range_encoder
av_cold void ff_init_range_encoder(RangeCoder *c, uint8_t *buf, int buf_size)
Definition: rangecoder.c:42
AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:544
AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUVA444P16
Definition: pixfmt.h:580
AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:526
encode_slice
static int encode_slice(AVCodecContext *c, void *arg)
Definition: ffv1enc.c:1522
AVCodecContext::flags
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:488
val
static double val(void *priv, double ch)
Definition: aeval.c:77
av_pix_fmt_get_chroma_sub_sample
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:3369
AV_PIX_FMT_GRAYF16
#define AV_PIX_FMT_GRAYF16
Definition: pixfmt.h:564
av_noinline
#define av_noinline
Definition: attributes.h:72
update
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int current_sample, int64_t nb_samples_notify, AVRational time_base)
Definition: af_silencedetect.c:78
NB_Y_COEFF
#define NB_Y_COEFF
MAX_SLICES
#define MAX_SLICES
Definition: d3d12va_hevc.c:33
CONTEXT_SIZE
#define CONTEXT_SIZE
Definition: ffv1.h:45
AV_PIX_FMT_GRAY16
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:511
FF_CODEC_ENCODE_CB
#define FF_CODEC_ENCODE_CB(func)
Definition: codec_internal.h:353
PlaneContext::context_count
int context_count
Definition: ffv1.h:66
AV_PIX_FMT_YUV444P10
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:531
avassert.h
put_golomb.h
exp golomb vlc writing stuff
pkt
AVPacket * pkt
Definition: movenc.c:60
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:209
FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a)
Definition: sinewin_tablegen.c:29
av_cold
#define av_cold
Definition: attributes.h:90
AV_PIX_FMT_YUV422P16
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:540
FFV1SliceContext::sample_buffer
int16_t * sample_buffer
Definition: ffv1.h:74
AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:548
RemapEncoderState::lu
int lu
Definition: ffv1enc.c:1259
s
#define s(width, name)
Definition: cbs_vp9.c:198
MAX_PLANES
#define MAX_PLANES
Definition: ffv1.h:44
AVCodecContext::stats_in
char * stats_in
pass2 encoding statistics input buffer Concatenated stuff from stats_out of pass1 should be placed he...
Definition: avcodec.h:1323
AV_PIX_FMT_GBRAP14
#define AV_PIX_FMT_GBRAP14
Definition: pixfmt.h:550
AV_PIX_FMT_GBRAP12
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:549
AV_PIX_FMT_YUVA420P
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:108
AV_PIX_FMT_YUV444P16
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:541
AV_CEIL_RSHIFT
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:60
g
const char * g
Definition: vf_curves.c:128
pix_fmt
static enum AVPixelFormat pix_fmt
Definition: demux_decode.c:41
FLIP
#define FLIP(f)
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
#define AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
This encoder can reorder user opaque values from input AVFrames and return them with corresponding ou...
Definition: codec.h:144
bits
uint8_t bits
Definition: vp3data.h:128
QTABLE_GT8BIT
@ QTABLE_GT8BIT
Definition: ffv1enc.h:31
AC_RANGE_DEFAULT_TAB
#define AC_RANGE_DEFAULT_TAB
Definition: ffv1.h:53
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:40
RemapEncoderState::compact_index
int compact_index
Definition: ffv1enc.c:1262
quant5
static const int8_t quant5[256]
Definition: ffv1enc.c:64
AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUVA444P12
Definition: pixfmt.h:577
AVCodecContext::bits_per_raw_sample
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:1556
AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:525
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:230
AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:539
AV_PIX_FMT_FLAG_ALPHA
#define AV_PIX_FMT_FLAG_ALPHA
The pixel format has an alpha channel.
Definition: pixdesc.h:147
FFV1SliceContext::rc_stat2
uint64_t(*[MAX_QUANT_TABLES] rc_stat2)[32][2]
Definition: ffv1.h:106
AV_PIX_FMT_GRAY14
#define AV_PIX_FMT_GRAY14
Definition: pixfmt.h:510
fold
static av_always_inline int fold(int diff, int bits)
Definition: ffv1.h:208
RemapEncoderState::pixel_num
int pixel_num
Definition: ffv1enc.c:1265
RemapEncoderState::mul
int mul[4096+1]
Definition: ffv1enc.c:1257
ff_ffv1_encode_setup_plane_info
av_cold int ff_ffv1_encode_setup_plane_info(AVCodecContext *avctx, enum AVPixelFormat pix_fmt)
Definition: ffv1enc.c:796
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:73
PutBitContext
Definition: put_bits.h:50
CODEC_LONG_NAME
#define CODEC_LONG_NAME(str)
Definition: codec_internal.h:326
sort_stt
static int sort_stt(FFV1Context *s, uint8_t stt[256])
Definition: ffv1enc.c:515
ver2_state
static const uint8_t ver2_state[256]
Definition: ffv1enc.c:121
arg
const char * arg
Definition: jacosubdec.c:67
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:74
AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GRAY10
Definition: pixfmt.h:508
if
if(ret)
Definition: filter_design.txt:179
encode_frame
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)
Definition: ffv1enc.c:1667
encode_close
static av_cold int encode_close(AVCodecContext *avctx)
Definition: ffv1enc.c:1804
quant_table
static const int16_t quant_table[64]
Definition: intrax8.c:511
AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:547
AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:518
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
FFV1SliceContext::sx
int sx
Definition: ffv1.h:81
ff_need_new_slices
int ff_need_new_slices(int width, int num_h_slices, int chroma_shift)
Definition: ffv1.c:120
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:75
fabs
static __device__ float fabs(float a)
Definition: cuda_runtime.h:182
NULL
#define NULL
Definition: coverity.c:32
AC_GOLOMB_RICE
#define AC_GOLOMB_RICE
Definition: ffv1.h:52
CMP
#define CMP(A, B)
run
uint8_t run
Definition: svq3.c:204
fs
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:200
FFV1SliceContext::Unit::val
uint32_t val
Definition: ffv1.h:115
ff_rac_terminate
int ff_rac_terminate(RangeCoder *c, int version)
Terminates the range coder.
Definition: rangecoder.c:109
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:239
AV_PIX_FMT_YUV440P10
#define AV_PIX_FMT_YUV440P10
Definition: pixfmt.h:530
options
Definition: swscale.c:42
PlaneContext
Definition: ffv1.h:64
AV_PIX_FMT_YUV422P10
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:529
AV_PIX_FMT_GRAY8
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:81
AV_PIX_FMT_GBRP9
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:543
AVCodecContext::level
int level
Encoding level descriptor.
Definition: avcodec.h:1631
AV_PIX_FMT_GBRPF16
#define AV_PIX_FMT_GBRPF16
Definition: pixfmt.h:559
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
VlcState
Definition: ffv1.h:57
VE
#define VE
Definition: ffv1enc.c:1815
ff_dlog
#define ff_dlog(a,...)
Definition: tableprint_vlc.h:28
FFV1SliceContext::slice_width
int slice_width
Definition: ffv1.h:77
options
static const AVOption options[]
Definition: ffv1enc.c:1816
AVCodecContext::stats_out
char * stats_out
pass1 encoding statistics output buffer
Definition: avcodec.h:1315
AV_CODEC_ID_FFV1
@ AV_CODEC_ID_FFV1
Definition: codec_id.h:85
qsort.h
RemapEncoderState::run
int run
Definition: ffv1enc.c:1260
f
f
Definition: af_crystalizer.c:122
init
int(* init)(AVBSFContext *ctx)
Definition: dts2pts.c:368
AV_CODEC_CAP_DR1
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
choose_rct_params
static void choose_rct_params(const FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[3], const int stride[3], int w, int h)
Definition: ffv1enc.c:1074
flip
static void flip(AVCodecContext *avctx, AVFrame *frame)
Definition: rawdec.c:131
AVPacket::size
int size
Definition: packet.h:536
AVCodecContext::gop_size
int gop_size
the number of pictures in a group of pictures, or 0 for intra_only
Definition: avcodec.h:1008
height
#define height
Definition: dsp.h:85
codec_internal.h
QTABLE_8BIT
@ QTABLE_8BIT
Definition: ffv1enc.h:30
dst
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
Definition: dsp.h:83
quant9_10bit
static const int8_t quant9_10bit[256]
Definition: ffv1enc.c:83
RemapEncoderState::rc
RangeCoder rc
Definition: ffv1enc.c:1258
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:424
print
static void print(AVTreeNode *t, int depth)
Definition: tree.c:45
AV_PIX_FMT_GBRPF32
#define AV_PIX_FMT_GBRPF32
Definition: pixfmt.h:561
AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:533
sample
#define sample
Definition: flacdsp_template.c:44
AV_PIX_FMT_RGB48
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:514
size
int size
Definition: twinvq_data.h:10344
ff_build_rac_states
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
Definition: rangecoder.c:68
planes
static const struct @489 planes[]
STATS_OUT_SIZE
#define STATS_OUT_SIZE
AV_PIX_FMT_YUV444P12
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:535
AV_WB24
#define AV_WB24(p, d)
Definition: intreadwrite.h:446
encode_plane
static int encode_plane(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src, int w, int h, int stride, int plane_index, int remap_index, int pixel_stride, int ac)
Definition: ffv1enc.c:274
RangeCoder::bytestream
uint8_t * bytestream
Definition: rangecoder.h:43
AV_CODEC_FLAG_PASS2
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
Definition: avcodec.h:294
AV_PIX_FMT_RGB32
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:500
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
AV_PIX_FMT_YUVA444P
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:174
FFV1SliceContext::slice_rct_by_coef
int slice_rct_by_coef
Definition: ffv1.h:85
av_crc_get_table
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:374
AV_CODEC_CAP_SLICE_THREADS
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:99
AV_PIX_FMT_YUVA444P10
#define AV_PIX_FMT_YUVA444P10
Definition: pixfmt.h:575
offset
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Definition: writing_filters.txt:86
find_best_state
static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256])
Definition: ffv1enc.c:140
attributes.h
FFV1SliceContext::rc_stat
uint64_t rc_stat[256][2]
Definition: ffv1.h:105
AVPacket::flags
int flags
A combination of AV_PKT_FLAG values.
Definition: packet.h:541
PlaneContext::quant_table_index
int quant_table_index
Definition: ffv1.h:65
AV_LOG_INFO
#define AV_LOG_INFO
Standard information.
Definition: log.h:220
FFV1SliceContext::c
RangeCoder c
Definition: ffv1.h:92
put_vlc_symbol
static void put_vlc_symbol(PutBitContext *pb, VlcState *const state, int v, int bits)
Definition: ffv1enc.c:240
FFV1SliceContext::unit
struct FFV1SliceContext::Unit unit[4][65536]
av_assert2
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:67
ffv1_class
static const AVClass ffv1_class
Definition: ffv1enc.c:1852
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
code
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
Definition: filter_design.txt:178
AV_QSORT
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
round
static av_always_inline av_const double round(double x)
Definition: libm.h:446
FFV1SliceContext::slice_rct_ry_coef
int slice_rct_ry_coef
Definition: ffv1.h:86
av_flatten
#define av_flatten
Definition: attributes.h:96
AV_PIX_FMT_GBRP12
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:545
av_malloc_array
#define av_malloc_array(a, b)
Definition: tableprint_vlc.h:32
encode_rgb_frame
static int RENAME() encode_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4], int ac)
Definition: ffv1enc_template.c:164
delta
float delta
Definition: vorbis_enc_data.h:430
av_always_inline
#define av_always_inline
Definition: attributes.h:49
ff_ffv1_common_init
av_cold int ff_ffv1_common_init(AVCodecContext *avctx, FFV1Context *s)
Definition: ffv1.c:36
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
ffv1.h
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:256
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:179
FFV1SliceContext
Definition: ffv1.h:73
len
int len
Definition: vorbis_enc_data.h:426
AV_CRC_32_IEEE
@ AV_CRC_32_IEEE
Definition: crc.h:52
AVCodecContext::height
int height
Definition: avcodec.h:595
AVCodecContext::pix_fmt
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:634
write_quant_table
static void write_quant_table(RangeCoder *c, int16_t *quant_table)
Definition: ffv1enc.c:347
AV_FRAME_FLAG_INTERLACED
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
Definition: frame.h:633
AVCOL_RANGE_MPEG
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
Definition: pixfmt.h:733
AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:527
load_rgb_float32_frame
static void load_rgb_float32_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4])
Definition: ffv1enc.c:1203
MAX_CONTEXT_INPUTS
#define MAX_CONTEXT_INPUTS
Definition: ffv1.h:50
log2
#define log2(x)
Definition: libm.h:406
RemapEncoderState::i
int i
Definition: ffv1enc.c:1264
avcodec.h
stride
#define stride
Definition: h264pred_template.c:536
AV_PIX_FMT_YAF16
#define AV_PIX_FMT_YAF16
Definition: pixfmt.h:567
av_uninit
#define av_uninit(x)
Definition: attributes.h:154
ret
ret
Definition: filter_design.txt:187
pred
static const float pred[4]
Definition: siprdata.h:259
FFSWAP
#define FFSWAP(type, a, b)
Definition: macros.h:52
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:80
ff_ffv1_encode_buffer_size
size_t ff_ffv1_encode_buffer_size(AVCodecContext *avctx)
Definition: ffv1enc.c:1645
AV_PIX_FMT_0RGB32
#define AV_PIX_FMT_0RGB32
Definition: pixfmt.h:504
quant5_10bit
static const int8_t quant5_10bit[256]
Definition: ffv1enc.c:45
FFV1SliceContext::slice_y
int slice_y
Definition: ffv1.h:80
AVCodecContext::strict_std_compliance
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:1360
AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUVA444P9
Definition: pixfmt.h:572
set_sr_golomb
static void set_sr_golomb(PutBitContext *pb, int i, int k, int limit, int esc_len)
write signed golomb rice code (ffv1).
Definition: put_golomb.h:143
ff_ffv1_close
av_cold void ff_ffv1_close(FFV1Context *s)
Definition: ffv1.c:227
AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:532
AV_INPUT_BUFFER_PADDING_SIZE
#define AV_INPUT_BUFFER_PADDING_SIZE
Definition: defs.h:40
put_rac
#define put_rac(C, S, B)
RemapEncoderState::last_val
int64_t last_val
Definition: ffv1enc.c:1261
U
#define U(x)
Definition: vpx_arith.h:37
AV_PIX_FMT_YUV422P14
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:537
ff_ffv1_allocate_initial_states
int ff_ffv1_allocate_initial_states(FFV1Context *f)
Definition: ffv1.c:183
AVCodecContext
main external API structure.
Definition: avcodec.h:431
RangeCoder::bytestream_start
uint8_t * bytestream_start
Definition: rangecoder.h:42
AVCodecContext::execute
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:1594
av_crc
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:392
AV_PIX_FMT_YUVA422P12
#define AV_PIX_FMT_YUVA422P12
Definition: pixfmt.h:576
OFFSET
#define OFFSET(x)
Definition: ffv1enc.c:1814
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Underlying C type is int.
Definition: opt.h:259
AV_PIX_FMT_GBRAPF32
#define AV_PIX_FMT_GBRAPF32
Definition: pixfmt.h:562
QTABLE_DEFAULT
@ QTABLE_DEFAULT
Definition: ffv1enc.h:29
FFV1SliceContext::remap
int remap
Definition: ffv1.h:87
AV_PIX_FMT_GBRAPF16
#define AV_PIX_FMT_GBRAPF16
Definition: pixfmt.h:560
FFV1SliceContext::fltmap
uint16_t fltmap[4][65536]
Definition: ffv1.h:111
AVPixFmtDescriptor::comp
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:105
get_rac_count
static int get_rac_count(RangeCoder *c)
Definition: rangecoder.h:79
copy_state
static void copy_state(RemapEncoderState *dst, const RemapEncoderState *src)
Definition: ffv1enc.c:1274
RemapEncoderState
Definition: ffv1enc.c:1255
AV_CODEC_CAP_DELAY
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: codec.h:76
FFV1SliceContext::sy
int sy
Definition: ffv1.h:81
ffv1enc.h
COST2
#define COST2(old, new)
av_clip_uint8
#define av_clip_uint8
Definition: common.h:106
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:78
ffv1enc_template.c
RemapEncoderState::p
int p
Definition: ffv1enc.c:1266
desc
const char * desc
Definition: libsvtav1.c:79
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:77
mem.h
FFV1SliceContext::bitmap
uint16_t bitmap[4][65536]
Definition: ffv1.h:110
flush_put_bits
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:143
ff_ffv1_encode_init
av_cold int ff_ffv1_encode_init(AVCodecContext *avctx)
Definition: ffv1enc.c:598
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
FFV1Context
Definition: ffv1.h:120
AVCodecContext::slices
int slices
Number of slices.
Definition: avcodec.h:1024
AVPacket
This structure stores compressed data.
Definition: packet.h:512
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:458
encode_float32_remap_segment
static int encode_float32_remap_segment(FFV1SliceContext *sc, RemapEncoderState *state_arg, int update, int final)
Definition: ffv1enc.c:1294
FFV1SliceContext::run_index
int run_index
Definition: ffv1.h:83
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
FFV1SliceContext::Unit::ndx
uint16_t ndx
Definition: ffv1.h:116
AV_PIX_FMT_YUV411P
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:80
AVCodecContext::width
int width
picture width / height.
Definition: avcodec.h:595
ff_ffv1_init_slice_contexts
av_cold int ff_ffv1_init_slice_contexts(FFV1Context *f)
Definition: ffv1.c:140
encode_histogram_remap
static void encode_histogram_remap(FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1enc.c:1169
int32_t
int32_t
Definition: audioconvert.c:56
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
Definition: frame.h:455
AV_PIX_FMT_YUV410P
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:79
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:61
AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV440P12
Definition: pixfmt.h:534
h
h
Definition: vp9dsp_template.c:2070
RangeCoder
Definition: mss3.c:63
AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:538
ff_ffv1_encoder
const FFCodec ff_ffv1_encoder
Definition: ffv1enc.c:1859
width
#define width
Definition: dsp.h:85
RemapEncoderState::state
uint8_t state[2][3][32]
Definition: ffv1enc.c:1256
write_header
static void write_header(FFV1Context *f)
Definition: ffv1enc.c:382
RENAME
#define RENAME(name)
Definition: ffv1enc.c:271
AV_PIX_FMT_GRAY12
#define AV_PIX_FMT_GRAY12
Definition: pixfmt.h:509
FFV1SliceContext::ac_byte_count
int ac_byte_count
number of bytes used for AC coding
Definition: ffv1.h:94
put_bits.h
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
Definition: opt.h:299
snprintf
#define snprintf
Definition: snprintf.h:34
av_log2
int av_log2(unsigned v)
Definition: intmath.c:26
FFV1SliceContext::slice_coding_mode
int slice_coding_mode
Definition: ffv1.h:84
ff_alloc_packet
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
Definition: encode.c:62
RemapEncoderState::run1start_mul_index
int run1start_mul_index
Definition: ffv1enc.c:1271
src
#define src
Definition: vp8dsp.c:248
encode_float32_rgb_frame
static int encode_float32_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4], int ac)
Definition: ffv1enc.c:1465
AV_PIX_FMT_YUVA422P
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:173
AV_PIX_FMT_YUV420P14
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:536
av_get_pix_fmt_name
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:3261
AV_CODEC_FLAG_PASS1
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:290
encode_slice_header
static void encode_slice_header(FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1enc.c:1040