FFmpeg
vf_colortemperature.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2021 Paul B Mahol
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include <float.h>
22 
23 #include "libavutil/opt.h"
24 #include "libavutil/imgutils.h"
25 #include "avfilter.h"
26 #include "drawutils.h"
27 #include "formats.h"
28 #include "internal.h"
29 #include "video.h"
30 
31 #define R 0
32 #define G 1
33 #define B 2
34 
35 typedef struct ColorTemperatureContext {
36  const AVClass *class;
37 
38  float temperature;
39  float mix;
40  float preserve;
41 
42  float color[3];
43 
44  int step;
45  int depth;
47 
49  int jobnr, int nb_jobs);
51 
52 static float saturate(float input)
53 {
54  return av_clipf(input, 0.f, 1.f);
55 }
56 
57 static void kelvin2rgb(float k, float *rgb)
58 {
59  float kelvin = k / 100.0f;
60 
61  if (kelvin <= 66.0f) {
62  rgb[0] = 1.0f;
63  rgb[1] = saturate(0.39008157876901960784f * logf(kelvin) - 0.63184144378862745098f);
64  } else {
65  const float t = fmaxf(kelvin - 60.0f, 0.0f);
66  rgb[0] = saturate(1.29293618606274509804f * powf(t, -0.1332047592f));
67  rgb[1] = saturate(1.12989086089529411765f * powf(t, -0.0755148492f));
68  }
69 
70  if (kelvin >= 66.0f)
71  rgb[2] = 1.0f;
72  else if (kelvin <= 19.0f)
73  rgb[2] = 0.0f;
74  else
75  rgb[2] = saturate(0.54320678911019607843f * logf(kelvin - 10.0f) - 1.19625408914f);
76 }
77 
78 static float lerpf(float v0, float v1, float f)
79 {
80  return v0 + (v1 - v0) * f;
81 }
82 
83 #define PROCESS() \
84  nr = r * color[0]; \
85  ng = g * color[1]; \
86  nb = b * color[2]; \
87  \
88  nr = lerpf(r, nr, mix); \
89  ng = lerpf(g, ng, mix); \
90  nb = lerpf(b, nb, mix); \
91  \
92  l0 = (FFMAX3(r, g, b) + FFMIN3(r, g, b)) + FLT_EPSILON; \
93  l1 = (FFMAX3(nr, ng, nb) + FFMIN3(nr, ng, nb)) + FLT_EPSILON; \
94  l = l0 / l1; \
95  \
96  r = nr * l; \
97  g = ng * l; \
98  b = nb * l; \
99  \
100  nr = lerpf(nr, r, preserve); \
101  ng = lerpf(ng, g, preserve); \
102  nb = lerpf(nb, b, preserve);
103 
104 static int temperature_slice8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
105 {
107  AVFrame *frame = arg;
108  const int width = frame->width;
109  const int height = frame->height;
110  const float mix = s->mix;
111  const float preserve = s->preserve;
112  const float *color = s->color;
113  const int slice_start = (height * jobnr) / nb_jobs;
114  const int slice_end = (height * (jobnr + 1)) / nb_jobs;
115  const int glinesize = frame->linesize[0];
116  const int blinesize = frame->linesize[1];
117  const int rlinesize = frame->linesize[2];
118  uint8_t *gptr = frame->data[0] + slice_start * glinesize;
119  uint8_t *bptr = frame->data[1] + slice_start * blinesize;
120  uint8_t *rptr = frame->data[2] + slice_start * rlinesize;
121 
122  for (int y = slice_start; y < slice_end; y++) {
123  for (int x = 0; x < width; x++) {
124  float g = gptr[x];
125  float b = bptr[x];
126  float r = rptr[x];
127  float nr, ng, nb;
128  float l0, l1, l;
129 
130  PROCESS()
131 
132  gptr[x] = av_clip_uint8(ng);
133  bptr[x] = av_clip_uint8(nb);
134  rptr[x] = av_clip_uint8(nr);
135  }
136 
137  gptr += glinesize;
138  bptr += blinesize;
139  rptr += rlinesize;
140  }
141 
142  return 0;
143 }
144 
145 static int temperature_slice16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
146 {
148  AVFrame *frame = arg;
149  const int depth = s->depth;
150  const int width = frame->width;
151  const int height = frame->height;
152  const float preserve = s->preserve;
153  const float mix = s->mix;
154  const float *color = s->color;
155  const int slice_start = (height * jobnr) / nb_jobs;
156  const int slice_end = (height * (jobnr + 1)) / nb_jobs;
157  const int glinesize = frame->linesize[0] / sizeof(uint16_t);
158  const int blinesize = frame->linesize[1] / sizeof(uint16_t);
159  const int rlinesize = frame->linesize[2] / sizeof(uint16_t);
160  uint16_t *gptr = (uint16_t *)frame->data[0] + slice_start * glinesize;
161  uint16_t *bptr = (uint16_t *)frame->data[1] + slice_start * blinesize;
162  uint16_t *rptr = (uint16_t *)frame->data[2] + slice_start * rlinesize;
163 
164  for (int y = slice_start; y < slice_end; y++) {
165  for (int x = 0; x < width; x++) {
166  float g = gptr[x];
167  float b = bptr[x];
168  float r = rptr[x];
169  float nr, ng, nb;
170  float l0, l1, l;
171 
172  PROCESS()
173 
174  gptr[x] = av_clip_uintp2_c(ng, depth);
175  bptr[x] = av_clip_uintp2_c(nb, depth);
176  rptr[x] = av_clip_uintp2_c(nr, depth);
177  }
178 
179  gptr += glinesize;
180  bptr += blinesize;
181  rptr += rlinesize;
182  }
183 
184  return 0;
185 }
186 
187 static int temperature_slice8p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
188 {
190  AVFrame *frame = arg;
191  const int step = s->step;
192  const int width = frame->width;
193  const int height = frame->height;
194  const float mix = s->mix;
195  const float preserve = s->preserve;
196  const float *color = s->color;
197  const uint8_t roffset = s->rgba_map[R];
198  const uint8_t goffset = s->rgba_map[G];
199  const uint8_t boffset = s->rgba_map[B];
200  const int slice_start = (height * jobnr) / nb_jobs;
201  const int slice_end = (height * (jobnr + 1)) / nb_jobs;
202  const int linesize = frame->linesize[0];
203  uint8_t *ptr = frame->data[0] + slice_start * linesize;
204 
205  for (int y = slice_start; y < slice_end; y++) {
206  for (int x = 0; x < width; x++) {
207  float g = ptr[x * step + goffset];
208  float b = ptr[x * step + boffset];
209  float r = ptr[x * step + roffset];
210  float nr, ng, nb;
211  float l0, l1, l;
212 
213  PROCESS()
214 
215  ptr[x * step + goffset] = av_clip_uint8(ng);
216  ptr[x * step + boffset] = av_clip_uint8(nb);
217  ptr[x * step + roffset] = av_clip_uint8(nr);
218  }
219 
220  ptr += linesize;
221  }
222 
223  return 0;
224 }
225 
226 static int temperature_slice16p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
227 {
229  AVFrame *frame = arg;
230  const int step = s->step;
231  const int depth = s->depth;
232  const int width = frame->width;
233  const int height = frame->height;
234  const float preserve = s->preserve;
235  const float mix = s->mix;
236  const float *color = s->color;
237  const uint8_t roffset = s->rgba_map[R];
238  const uint8_t goffset = s->rgba_map[G];
239  const uint8_t boffset = s->rgba_map[B];
240  const int slice_start = (height * jobnr) / nb_jobs;
241  const int slice_end = (height * (jobnr + 1)) / nb_jobs;
242  const int linesize = frame->linesize[0] / sizeof(uint16_t);
243  uint16_t *ptr = (uint16_t *)frame->data[0] + slice_start * linesize;
244 
245  for (int y = slice_start; y < slice_end; y++) {
246  for (int x = 0; x < width; x++) {
247  float g = ptr[x * step + goffset];
248  float b = ptr[x * step + boffset];
249  float r = ptr[x * step + roffset];
250  float nr, ng, nb;
251  float l0, l1, l;
252 
253  PROCESS()
254 
255  ptr[x * step + goffset] = av_clip_uintp2_c(ng, depth);
256  ptr[x * step + boffset] = av_clip_uintp2_c(nb, depth);
257  ptr[x * step + roffset] = av_clip_uintp2_c(nr, depth);
258  }
259 
260  ptr += linesize;
261  }
262 
263  return 0;
264 }
265 
267 {
268  AVFilterContext *ctx = inlink->dst;
270 
271  kelvin2rgb(s->temperature, s->color);
272 
273  ctx->internal->execute(ctx, s->do_slice, frame, NULL,
274  FFMIN(frame->height, ff_filter_get_nb_threads(ctx)));
275 
276  return ff_filter_frame(ctx->outputs[0], frame);
277 }
278 
280 {
281  static const enum AVPixelFormat pixel_fmts[] = {
294  };
295 
297 
298  formats = ff_make_format_list(pixel_fmts);
299  if (!formats)
300  return AVERROR(ENOMEM);
301 
302  return ff_set_common_formats(ctx, formats);
303 }
304 
306 {
307  AVFilterContext *ctx = inlink->dst;
310  int planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
311 
312  s->step = desc->nb_components;
313  if (inlink->format == AV_PIX_FMT_RGB0 ||
314  inlink->format == AV_PIX_FMT_0RGB ||
315  inlink->format == AV_PIX_FMT_BGR0 ||
316  inlink->format == AV_PIX_FMT_0BGR)
317  s->step = 4;
318 
319  s->depth = desc->comp[0].depth;
321  if (!planar)
323 
324  ff_fill_rgba_map(s->rgba_map, inlink->format);
325 
326  return 0;
327 }
328 
329 static const AVFilterPad inputs[] = {
330  {
331  .name = "default",
332  .type = AVMEDIA_TYPE_VIDEO,
333  .filter_frame = filter_frame,
334  .config_props = config_input,
335  .needs_writable = 1,
336  },
337  { NULL }
338 };
339 
340 static const AVFilterPad outputs[] = {
341  {
342  .name = "default",
343  .type = AVMEDIA_TYPE_VIDEO,
344  },
345  { NULL }
346 };
347 
348 #define OFFSET(x) offsetof(ColorTemperatureContext, x)
349 #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
350 
352  { "temperature", "set the temperature in Kelvin", OFFSET(temperature), AV_OPT_TYPE_FLOAT, {.dbl=6500}, 1000, 40000, VF },
353  { "mix", "set the mix with filtered output", OFFSET(mix), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, VF },
354  { "pl", "set the amount of preserving lightness", OFFSET(preserve), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 1, VF },
355  { NULL }
356 };
357 
358 AVFILTER_DEFINE_CLASS(colortemperature);
359 
361  .name = "colortemperature",
362  .description = NULL_IF_CONFIG_SMALL("Adjust color temperature of video."),
363  .priv_size = sizeof(ColorTemperatureContext),
364  .priv_class = &colortemperature_class,
366  .inputs = inputs,
367  .outputs = outputs,
370 };
#define NULL
Definition: coverity.c:32
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2573
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
AVOption.
Definition: opt.h:248
int(* do_slice)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs)
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:419
static int temperature_slice16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
const char * desc
Definition: libsvtav1.c:79
misc image utilities
Main libavfilter public API header.
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63)))#define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};static void cpy1(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, len);}static void cpy2(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 2 *len);}static void cpy4(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 4 *len);}static void cpy8(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;}void swri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len){int ch;int off=0;const int os=(out->planar?1:out->ch_count)*out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){int planes=in->planar?in->ch_count:1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){int planes=out->planar?out->ch_count:1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){int planes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
Definition: audioconvert.c:56
const char * g
Definition: vf_curves.c:117
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:389
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:415
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:394
static int temperature_slice8p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
GLfloat v0
Definition: opengl_enc.c:106
#define G
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:287
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
Definition: avfilter.h:126
const char * name
Pad name.
Definition: internal.h:60
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1094
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:88
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
static float saturate(float input)
AVOptions.
#define f(width, name)
Definition: cbs_vp9.c:255
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:414
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
static const AVOption colortemperature_options[]
#define height
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:390
A filter pad used for either input or output.
Definition: internal.h:54
#define av_clipf
Definition: common.h:170
int width
Definition: frame.h:376
int ff_set_common_formats(AVFilterContext *ctx, AVFilterFormats *formats)
A helper for query_formats() which sets all links to the same list of formats.
Definition: formats.c:588
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:117
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options...
Definition: avfilter.c:882
const char * r
Definition: vf_curves.c:116
void * priv
private data for use by the filter
Definition: avfilter.h:356
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:117
#define PROCESS()
const char * arg
Definition: jacosubdec.c:66
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:420
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:385
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:421
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
#define B
#define powf(x, y)
Definition: libm.h:50
uint64_t flags
Combination of AV_PIX_FMT_FLAG_...
Definition: pixdesc.h:106
uint8_t nb_components
The number of components each pixel has, (1-4)
Definition: pixdesc.h:83
#define b
Definition: input.c:41
static av_cold int query_formats(AVFilterContext *ctx)
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:418
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:802
#define FFMIN(a, b)
Definition: common.h:105
float fmaxf(float, float)
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
Definition: af_acrusher.c:336
#define width
static void kelvin2rgb(float k, float *rgb)
AVFormatContext * ctx
Definition: movenc.c:48
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define s(width, name)
Definition: cbs_vp9.c:257
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
#define OFFSET(x)
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:417
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
Definition: drawutils.c:35
misc drawing utilities
static float lerpf(float v0, float v1, float f)
AVFilter ff_vf_colortemperature
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:349
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
Describe the class of an AVClass context structure.
Definition: log.h:67
Filter definition.
Definition: avfilter.h:145
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
const char * name
Filter name.
Definition: avfilter.h:149
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
#define VF
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:353
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:416
#define flags(name, subs,...)
Definition: cbs_av1.c:561
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
Definition: avfilter.h:381
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
static const AVFilterPad inputs[]
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
int
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
static int temperature_slice16p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
AVFILTER_DEFINE_CLASS(colortemperature)
avfilter_execute_func * execute
Definition: internal.h:136
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
Definition: mpeg12dec.c:2033
#define av_clip_uint8
Definition: common.h:128
A list of supported formats for one end of a filter link.
Definition: formats.h:65
static int temperature_slice8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
An instance of a filter.
Definition: avfilter.h:341
int height
Definition: frame.h:376
formats
Definition: signature.h:48
#define R
static av_cold int config_input(AVFilterLink *inlink)
internal API functions
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
static const AVFilterPad outputs[]
int depth
Number of bits in the component.
Definition: pixdesc.h:58
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
Definition: rpzaenc.c:58
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
Definition: pixdesc.h:144
for(j=16;j >0;--j)
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.
Definition: common.h:302