49 int jobnr,
int nb_jobs);
59 float kelvin = k / 100.0f;
61 if (kelvin <= 66.0
f) {
63 rgb[1] =
saturate(0.39008157876901960784
f * logf(kelvin) - 0.63184144378862745098
f);
65 const float t =
fmaxf(kelvin - 60.0
f, 0.0
f);
66 rgb[0] =
saturate(1.29293618606274509804
f *
powf(t, -0.1332047592
f));
67 rgb[1] =
saturate(1.12989086089529411765
f *
powf(t, -0.0755148492
f));
72 else if (kelvin <= 19.0
f)
75 rgb[2] =
saturate(0.54320678911019607843
f * logf(kelvin - 10.0
f) - 1.19625408914
f);
78 static float lerpf(
float v0,
float v1,
float f)
80 return v0 + (v1 -
v0) * f;
88 nr = lerpf(r, nr, mix); \ 89 ng = lerpf(g, ng, mix); \ 90 nb = lerpf(b, nb, mix); \ 92 l0 = (FFMAX3(r, g, b) + FFMIN3(r, g, b)) + FLT_EPSILON; \ 93 l1 = (FFMAX3(nr, ng, nb) + FFMIN3(nr, ng, nb)) + FLT_EPSILON; \ 100 nr = lerpf(nr, r, preserve); \ 101 ng = lerpf(ng, g, preserve); \ 102 nb = lerpf(nb, b, preserve); 113 const int slice_start = (height * jobnr) / nb_jobs;
114 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
115 const int glinesize = frame->
linesize[0];
116 const int blinesize = frame->
linesize[1];
117 const int rlinesize = frame->
linesize[2];
118 uint8_t *gptr = frame->
data[0] + slice_start * glinesize;
119 uint8_t *bptr = frame->
data[1] + slice_start * blinesize;
120 uint8_t *rptr = frame->
data[2] + slice_start * rlinesize;
122 for (
int y = slice_start; y <
slice_end; y++) {
123 for (
int x = 0; x <
width; x++) {
155 const int slice_start = (height * jobnr) / nb_jobs;
156 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
157 const int glinesize = frame->
linesize[0] /
sizeof(uint16_t);
158 const int blinesize = frame->
linesize[1] /
sizeof(uint16_t);
159 const int rlinesize = frame->
linesize[2] /
sizeof(uint16_t);
160 uint16_t *gptr = (uint16_t *)frame->
data[0] + slice_start * glinesize;
161 uint16_t *bptr = (uint16_t *)frame->
data[1] + slice_start * blinesize;
162 uint16_t *rptr = (uint16_t *)frame->
data[2] + slice_start * rlinesize;
165 for (
int x = 0; x <
width; x++) {
200 const int slice_start = (height * jobnr) / nb_jobs;
201 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
202 const int linesize = frame->
linesize[0];
203 uint8_t *ptr = frame->
data[0] + slice_start * linesize;
205 for (
int y = slice_start; y <
slice_end; y++) {
206 for (
int x = 0; x <
width; x++) {
207 float g = ptr[x * step + goffset];
208 float b = ptr[x * step + boffset];
209 float r = ptr[x * step + roffset];
240 const int slice_start = (height * jobnr) / nb_jobs;
241 const int slice_end = (height * (jobnr + 1)) / nb_jobs;
242 const int linesize = frame->
linesize[0] /
sizeof(uint16_t);
243 uint16_t *ptr = (uint16_t *)frame->
data[0] + slice_start * linesize;
246 for (
int x = 0; x <
width; x++) {
247 float g = ptr[x * step + goffset];
248 float b = ptr[x * step + boffset];
249 float r = ptr[x * step + roffset];
348 #define OFFSET(x) offsetof(ColorTemperatureContext, x) 349 #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM 361 .
name =
"colortemperature",
364 .priv_class = &colortemperature_class,
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
This structure describes decoded (raw) audio or video data.
int(* do_slice)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs)
#define AV_PIX_FMT_GBRAP10
static int temperature_slice16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Main libavfilter public API header.
packed RGB 8:8:8, 24bpp, RGBRGB...
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63)))#define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};static void cpy1(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, len);}static void cpy2(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 2 *len);}static void cpy4(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 4 *len);}static void cpy8(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;}void swri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len){int ch;int off=0;const int os=(out->planar?1:out->ch_count)*out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){int planes=in->planar?in->ch_count:1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){int planes=out->planar?out->ch_count:1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){int planes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
#define AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_BGRA64
static int temperature_slice8p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
const char * name
Pad name.
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
static float saturate(float input)
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
static const AVOption colortemperature_options[]
A filter pad used for either input or output.
A link between two filters.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options...
void * priv
private data for use by the filter
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
#define AV_PIX_FMT_GBRAP12
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
#define AV_PIX_FMT_GBRAP16
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
uint64_t flags
Combination of AV_PIX_FMT_FLAG_...
uint8_t nb_components
The number of components each pixel has, (1-4)
static av_cold int query_formats(AVFilterContext *ctx)
#define AV_PIX_FMT_GBRP16
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
float fmaxf(float, float)
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
static void kelvin2rgb(float k, float *rgb)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
packed RGB 8:8:8, 24bpp, BGRBGR...
#define AV_PIX_FMT_GBRP14
int format
agreed upon media format
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
static float lerpf(float v0, float v1, float f)
AVFilter ff_vf_colortemperature
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Describe the class of an AVClass context structure.
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
const char * name
Filter name.
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
AVFilterLink ** outputs
array of pointers to output links
#define AV_PIX_FMT_GBRP12
#define flags(name, subs,...)
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static const AVFilterPad inputs[]
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
planar GBRA 4:4:4:4 32bpp
static int temperature_slice16p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
AVFILTER_DEFINE_CLASS(colortemperature)
avfilter_execute_func * execute
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
AVFilterContext * dst
dest filter
static int temperature_slice8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static av_cold int config_input(AVFilterLink *inlink)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
static const AVFilterPad outputs[]
int depth
Number of bits in the component.
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
AVPixelFormat
Pixel format.
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.