FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h263.c
Go to the documentation of this file.
1 /*
2  * H.263/MPEG-4 backend for encoder and decoder
3  * Copyright (c) 2000,2001 Fabrice Bellard
4  * H.263+ support.
5  * Copyright (c) 2001 Juan J. Sierralta P
6  * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 /**
26  * @file
27  * H.263/MPEG-4 codec.
28  */
29 
30 #include <limits.h>
31 
32 #include "avcodec.h"
33 #include "mpegvideo.h"
34 #include "h263.h"
35 #include "h263data.h"
36 #include "mathops.h"
37 #include "mpegutils.h"
38 #include "unary.h"
39 #include "flv.h"
40 #include "mpeg4video.h"
41 
42 
44  const int mb_xy = s->mb_y * s->mb_stride + s->mb_x;
45  //FIXME a lot of that is only needed for !low_delay
46  const int wrap = s->b8_stride;
47  const int xy = s->block_index[0];
48 
50 
51  if(s->mv_type != MV_TYPE_8X8){
52  int motion_x, motion_y;
53  if (s->mb_intra) {
54  motion_x = 0;
55  motion_y = 0;
56  } else if (s->mv_type == MV_TYPE_16X16) {
57  motion_x = s->mv[0][0][0];
58  motion_y = s->mv[0][0][1];
59  } else /*if (s->mv_type == MV_TYPE_FIELD)*/ {
60  int i;
61  motion_x = s->mv[0][0][0] + s->mv[0][1][0];
62  motion_y = s->mv[0][0][1] + s->mv[0][1][1];
63  motion_x = (motion_x>>1) | (motion_x&1);
64  for(i=0; i<2; i++){
65  s->p_field_mv_table[i][0][mb_xy][0]= s->mv[0][i][0];
66  s->p_field_mv_table[i][0][mb_xy][1]= s->mv[0][i][1];
67  }
68  s->current_picture.ref_index[0][4*mb_xy ] =
69  s->current_picture.ref_index[0][4*mb_xy + 1] = s->field_select[0][0];
70  s->current_picture.ref_index[0][4*mb_xy + 2] =
71  s->current_picture.ref_index[0][4*mb_xy + 3] = s->field_select[0][1];
72  }
73 
74  /* no update if 8X8 because it has been done during parsing */
75  s->current_picture.motion_val[0][xy][0] = motion_x;
76  s->current_picture.motion_val[0][xy][1] = motion_y;
77  s->current_picture.motion_val[0][xy + 1][0] = motion_x;
78  s->current_picture.motion_val[0][xy + 1][1] = motion_y;
79  s->current_picture.motion_val[0][xy + wrap][0] = motion_x;
80  s->current_picture.motion_val[0][xy + wrap][1] = motion_y;
81  s->current_picture.motion_val[0][xy + 1 + wrap][0] = motion_x;
82  s->current_picture.motion_val[0][xy + 1 + wrap][1] = motion_y;
83  }
84 
85  if(s->encoding){ //FIXME encoding MUST be cleaned up
86  if (s->mv_type == MV_TYPE_8X8)
88  else if(s->mb_intra)
90  else
92  }
93 }
94 
95 int ff_h263_pred_dc(MpegEncContext * s, int n, int16_t **dc_val_ptr)
96 {
97  int x, y, wrap, a, c, pred_dc;
98  int16_t *dc_val;
99 
100  /* find prediction */
101  if (n < 4) {
102  x = 2 * s->mb_x + (n & 1);
103  y = 2 * s->mb_y + ((n & 2) >> 1);
104  wrap = s->b8_stride;
105  dc_val = s->dc_val[0];
106  } else {
107  x = s->mb_x;
108  y = s->mb_y;
109  wrap = s->mb_stride;
110  dc_val = s->dc_val[n - 4 + 1];
111  }
112  /* B C
113  * A X
114  */
115  a = dc_val[(x - 1) + (y) * wrap];
116  c = dc_val[(x) + (y - 1) * wrap];
117 
118  /* No prediction outside GOB boundary */
119  if(s->first_slice_line && n!=3){
120  if(n!=2) c= 1024;
121  if(n!=1 && s->mb_x == s->resync_mb_x) a= 1024;
122  }
123  /* just DC prediction */
124  if (a != 1024 && c != 1024)
125  pred_dc = (a + c) >> 1;
126  else if (a != 1024)
127  pred_dc = a;
128  else
129  pred_dc = c;
130 
131  /* we assume pred is positive */
132  *dc_val_ptr = &dc_val[x + y * wrap];
133  return pred_dc;
134 }
135 
137  int qp_c;
138  const int linesize = s->linesize;
139  const int uvlinesize= s->uvlinesize;
140  const int xy = s->mb_y * s->mb_stride + s->mb_x;
141  uint8_t *dest_y = s->dest[0];
142  uint8_t *dest_cb= s->dest[1];
143  uint8_t *dest_cr= s->dest[2];
144 
145 // if(s->pict_type==AV_PICTURE_TYPE_B && !s->readable) return;
146 
147  /*
148  Diag Top
149  Left Center
150  */
151  if (!IS_SKIP(s->current_picture.mb_type[xy])) {
152  qp_c= s->qscale;
153  s->h263dsp.h263_v_loop_filter(dest_y + 8 * linesize, linesize, qp_c);
154  s->h263dsp.h263_v_loop_filter(dest_y + 8 * linesize + 8, linesize, qp_c);
155  }else
156  qp_c= 0;
157 
158  if(s->mb_y){
159  int qp_dt, qp_tt, qp_tc;
160 
161  if (IS_SKIP(s->current_picture.mb_type[xy - s->mb_stride]))
162  qp_tt=0;
163  else
164  qp_tt = s->current_picture.qscale_table[xy - s->mb_stride];
165 
166  if(qp_c)
167  qp_tc= qp_c;
168  else
169  qp_tc= qp_tt;
170 
171  if(qp_tc){
172  const int chroma_qp= s->chroma_qscale_table[qp_tc];
173  s->h263dsp.h263_v_loop_filter(dest_y, linesize, qp_tc);
174  s->h263dsp.h263_v_loop_filter(dest_y + 8, linesize, qp_tc);
175 
176  s->h263dsp.h263_v_loop_filter(dest_cb, uvlinesize, chroma_qp);
177  s->h263dsp.h263_v_loop_filter(dest_cr, uvlinesize, chroma_qp);
178  }
179 
180  if(qp_tt)
181  s->h263dsp.h263_h_loop_filter(dest_y - 8 * linesize + 8, linesize, qp_tt);
182 
183  if(s->mb_x){
184  if (qp_tt || IS_SKIP(s->current_picture.mb_type[xy - 1 - s->mb_stride]))
185  qp_dt= qp_tt;
186  else
187  qp_dt = s->current_picture.qscale_table[xy - 1 - s->mb_stride];
188 
189  if(qp_dt){
190  const int chroma_qp= s->chroma_qscale_table[qp_dt];
191  s->h263dsp.h263_h_loop_filter(dest_y - 8 * linesize, linesize, qp_dt);
192  s->h263dsp.h263_h_loop_filter(dest_cb - 8 * uvlinesize, uvlinesize, chroma_qp);
193  s->h263dsp.h263_h_loop_filter(dest_cr - 8 * uvlinesize, uvlinesize, chroma_qp);
194  }
195  }
196  }
197 
198  if(qp_c){
199  s->h263dsp.h263_h_loop_filter(dest_y + 8, linesize, qp_c);
200  if(s->mb_y + 1 == s->mb_height)
201  s->h263dsp.h263_h_loop_filter(dest_y + 8 * linesize + 8, linesize, qp_c);
202  }
203 
204  if(s->mb_x){
205  int qp_lc;
206  if (qp_c || IS_SKIP(s->current_picture.mb_type[xy - 1]))
207  qp_lc= qp_c;
208  else
209  qp_lc = s->current_picture.qscale_table[xy - 1];
210 
211  if(qp_lc){
212  s->h263dsp.h263_h_loop_filter(dest_y, linesize, qp_lc);
213  if(s->mb_y + 1 == s->mb_height){
214  const int chroma_qp= s->chroma_qscale_table[qp_lc];
215  s->h263dsp.h263_h_loop_filter(dest_y + 8 * linesize, linesize, qp_lc);
216  s->h263dsp.h263_h_loop_filter(dest_cb, uvlinesize, chroma_qp);
217  s->h263dsp.h263_h_loop_filter(dest_cr, uvlinesize, chroma_qp);
218  }
219  }
220  }
221 }
222 
223 void ff_h263_pred_acdc(MpegEncContext * s, int16_t *block, int n)
224 {
225  int x, y, wrap, a, c, pred_dc, scale, i;
226  int16_t *dc_val, *ac_val, *ac_val1;
227 
228  /* find prediction */
229  if (n < 4) {
230  x = 2 * s->mb_x + (n & 1);
231  y = 2 * s->mb_y + (n>> 1);
232  wrap = s->b8_stride;
233  dc_val = s->dc_val[0];
234  ac_val = s->ac_val[0][0];
235  scale = s->y_dc_scale;
236  } else {
237  x = s->mb_x;
238  y = s->mb_y;
239  wrap = s->mb_stride;
240  dc_val = s->dc_val[n - 4 + 1];
241  ac_val = s->ac_val[n - 4 + 1][0];
242  scale = s->c_dc_scale;
243  }
244 
245  ac_val += ((y) * wrap + (x)) * 16;
246  ac_val1 = ac_val;
247 
248  /* B C
249  * A X
250  */
251  a = dc_val[(x - 1) + (y) * wrap];
252  c = dc_val[(x) + (y - 1) * wrap];
253 
254  /* No prediction outside GOB boundary */
255  if(s->first_slice_line && n!=3){
256  if(n!=2) c= 1024;
257  if(n!=1 && s->mb_x == s->resync_mb_x) a= 1024;
258  }
259 
260  if (s->ac_pred) {
261  pred_dc = 1024;
262  if (s->h263_aic_dir) {
263  /* left prediction */
264  if (a != 1024) {
265  ac_val -= 16;
266  for(i=1;i<8;i++) {
267  block[s->idsp.idct_permutation[i << 3]] += ac_val[i];
268  }
269  pred_dc = a;
270  }
271  } else {
272  /* top prediction */
273  if (c != 1024) {
274  ac_val -= 16 * wrap;
275  for(i=1;i<8;i++) {
276  block[s->idsp.idct_permutation[i]] += ac_val[i + 8];
277  }
278  pred_dc = c;
279  }
280  }
281  } else {
282  /* just DC prediction */
283  if (a != 1024 && c != 1024)
284  pred_dc = (a + c) >> 1;
285  else if (a != 1024)
286  pred_dc = a;
287  else
288  pred_dc = c;
289  }
290 
291  /* we assume pred is positive */
292  block[0]=block[0]*scale + pred_dc;
293 
294  if (block[0] < 0)
295  block[0] = 0;
296  else
297  block[0] |= 1;
298 
299  /* Update AC/DC tables */
300  dc_val[(x) + (y) * wrap] = block[0];
301 
302  /* left copy */
303  for(i=1;i<8;i++)
304  ac_val1[i] = block[s->idsp.idct_permutation[i << 3]];
305  /* top copy */
306  for(i=1;i<8;i++)
307  ac_val1[8 + i] = block[s->idsp.idct_permutation[i]];
308 }
309 
310 int16_t *ff_h263_pred_motion(MpegEncContext * s, int block, int dir,
311  int *px, int *py)
312 {
313  int wrap;
314  int16_t *A, *B, *C, (*mot_val)[2];
315  static const int off[4]= {2, 1, 1, -1};
316 
317  wrap = s->b8_stride;
318  mot_val = s->current_picture.motion_val[dir] + s->block_index[block];
319 
320  A = mot_val[ - 1];
321  /* special case for first (slice) line */
322  if (s->first_slice_line && block<3) {
323  // we can't just change some MVs to simulate that as we need them for the B-frames (and ME)
324  // and if we ever support non rectangular objects than we need to do a few ifs here anyway :(
325  if(block==0){ //most common case
326  if(s->mb_x == s->resync_mb_x){ //rare
327  *px= *py = 0;
328  }else if(s->mb_x + 1 == s->resync_mb_x && s->h263_pred){ //rare
329  C = mot_val[off[block] - wrap];
330  if(s->mb_x==0){
331  *px = C[0];
332  *py = C[1];
333  }else{
334  *px = mid_pred(A[0], 0, C[0]);
335  *py = mid_pred(A[1], 0, C[1]);
336  }
337  }else{
338  *px = A[0];
339  *py = A[1];
340  }
341  }else if(block==1){
342  if(s->mb_x + 1 == s->resync_mb_x && s->h263_pred){ //rare
343  C = mot_val[off[block] - wrap];
344  *px = mid_pred(A[0], 0, C[0]);
345  *py = mid_pred(A[1], 0, C[1]);
346  }else{
347  *px = A[0];
348  *py = A[1];
349  }
350  }else{ /* block==2*/
351  B = mot_val[ - wrap];
352  C = mot_val[off[block] - wrap];
353  if(s->mb_x == s->resync_mb_x) //rare
354  A[0]=A[1]=0;
355 
356  *px = mid_pred(A[0], B[0], C[0]);
357  *py = mid_pred(A[1], B[1], C[1]);
358  }
359  } else {
360  B = mot_val[ - wrap];
361  C = mot_val[off[block] - wrap];
362  *px = mid_pred(A[0], B[0], C[0]);
363  *py = mid_pred(A[1], B[1], C[1]);
364  }
365  return *mot_val;
366 }
IDCTDSPContext idsp
Definition: mpegvideo.h:227
int8_t * ref_index[2]
Definition: mpegpicture.h:62
const char * s
Definition: avisynth_c.h:631
#define C
int16_t(*[3] ac_val)[16]
used for MPEG-4 AC prediction, all 3 arrays must be continuous
Definition: mpegvideo.h:191
#define MB_TYPE_INTRA
Definition: mpegutils.h:75
int16_t(*[2][2] p_field_mv_table)[2]
MV table (2MV per MB) interlaced P-frame encoding.
Definition: mpegvideo.h:251
mpegvideo header.
int qscale
QP.
Definition: mpegvideo.h:201
int16_t * ff_h263_pred_motion(MpegEncContext *s, int block, int dir, int *px, int *py)
Definition: h263.c:310
int encoding
true if we are encoding (vs decoding)
Definition: mpegvideo.h:111
int field_select[2][2]
Definition: mpegvideo.h:277
static int16_t block[64]
Definition: dct.c:113
uint8_t
Definition: vf_geq.c:46
H.263 tables.
Picture current_picture
copy of the current picture structure.
Definition: mpegvideo.h:177
int ff_h263_pred_dc(MpegEncContext *s, int n, int16_t **dc_val_ptr)
Definition: h263.c:95
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:126
#define A(x)
Definition: vp56_arith.h:28
int16_t * dc_val[3]
used for MPEG-4 DC prediction, all 3 arrays must be continuous
Definition: mpegvideo.h:184
H263DSPContext h263dsp
Definition: mpegvideo.h:234
uint8_t * mbskip_table
Definition: mpegpicture.h:59
int mb_skipped
MUST BE SET only during DECODING.
Definition: mpegvideo.h:192
#define wrap(func)
Definition: neontest.h:65
#define IS_SKIP(a)
Definition: mpegutils.h:83
int resync_mb_x
x position of last resync marker
Definition: mpegvideo.h:356
void ff_h263_loop_filter(MpegEncContext *s)
Definition: h263.c:136
int16_t(*[2] motion_val)[2]
Definition: mpegpicture.h:53
static void FUNC() pred_dc(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int log2_size, int c_idx)
int n
Definition: avisynth_c.h:547
uint8_t idct_permutation[64]
IDCT input permutation.
Definition: idctdsp.h:94
int block_index[6]
index to current MB in block based arrays with edges
Definition: mpegvideo.h:293
#define MV_TYPE_16X16
1 vector for the whole mb
Definition: mpegvideo.h:266
int first_slice_line
used in MPEG-4 too to handle resync markers
Definition: mpegvideo.h:433
Libavcodec external API header.
void ff_h263_update_motion_val(MpegEncContext *s)
Definition: h263.c:43
ptrdiff_t linesize
line size, in bytes, may be different from width
Definition: mpegvideo.h:131
#define MB_TYPE_16x16
Definition: avcodec.h:1243
#define mid_pred
Definition: mathops.h:96
ptrdiff_t uvlinesize
line size, for chroma in bytes, may be different from width
Definition: mpegvideo.h:132
int h263_pred
use MPEG-4/H.263 ac/dc predictions
Definition: mpegvideo.h:102
int mv[2][4][2]
motion vectors for a macroblock first coordinate : 0 = forward 1 = backward second " : depend...
Definition: mpegvideo.h:276
int b8_stride
2*mb_width+1 used for some 8x8 block arrays to allow simple addressing
Definition: mpegvideo.h:128
MpegEncContext.
Definition: mpegvideo.h:78
int8_t * qscale_table
Definition: mpegpicture.h:50
int mb_stride
mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 ...
Definition: mpegvideo.h:127
void ff_h263_pred_acdc(MpegEncContext *s, int16_t *block, int n)
Definition: h263.c:223
void(* h263_v_loop_filter)(uint8_t *src, int stride, int qscale)
Definition: h263dsp.h:28
uint8_t * dest[3]
Definition: mpegvideo.h:295
static double c[64]
#define MB_TYPE_8x8
Definition: avcodec.h:1246
const uint8_t * chroma_qscale_table
qscale -> chroma_qscale (H.263)
Definition: mpegvideo.h:187
void(* h263_h_loop_filter)(uint8_t *src, int stride, int qscale)
Definition: h263dsp.h:27
uint32_t * mb_type
types and macros are defined in mpegutils.h
Definition: mpegpicture.h:56
#define MV_TYPE_8X8
4 vectors (H.263, MPEG-4 4MV)
Definition: mpegvideo.h:267
int h263_aic_dir
AIC direction: 0 = left, 1 = top.
Definition: mpegvideo.h:376
#define MB_TYPE_L0
Definition: avcodec.h:1256