FFmpeg
af_firequalizer.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2016 Muhammad Faiz <mfcc64@gmail.com>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/opt.h"
22 #include "libavutil/eval.h"
23 #include "libavutil/avassert.h"
24 #include "libavcodec/avfft.h"
25 #include "avfilter.h"
26 #include "internal.h"
27 #include "audio.h"
28 
29 #define RDFT_BITS_MIN 4
30 #define RDFT_BITS_MAX 16
31 
32 enum WindowFunc {
44 };
45 
46 enum Scale {
52 };
53 
54 #define NB_GAIN_ENTRY_MAX 4096
55 typedef struct GainEntry {
56  double freq;
57  double gain;
58 } GainEntry;
59 
60 typedef struct OverlapIndex {
61  int buf_idx;
63 } OverlapIndex;
64 
65 typedef struct FIREqualizerContext {
66  const AVClass *class;
67 
76  int rdft_len;
78 
79  float *analysis_buf;
80  float *dump_buf;
82  float *kernel_buf;
83  float *cepstrum_buf;
84  float *conv_buf;
86  int fir_len;
88  int64_t next_pts;
90  int remaining;
91 
92  char *gain_cmd;
94  const char *gain;
95  const char *gain_entry;
96  double delay;
97  double accuracy;
98  int wfunc;
99  int fixed;
100  int multi;
102  int scale;
103  char *dumpfile;
105  int fft2;
107 
112 
113 #define OFFSET(x) offsetof(FIREqualizerContext, x)
114 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
115 #define TFLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
116 
117 static const AVOption firequalizer_options[] = {
118  { "gain", "set gain curve", OFFSET(gain), AV_OPT_TYPE_STRING, { .str = "gain_interpolate(f)" }, 0, 0, TFLAGS },
119  { "gain_entry", "set gain entry", OFFSET(gain_entry), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, TFLAGS },
120  { "delay", "set delay", OFFSET(delay), AV_OPT_TYPE_DOUBLE, { .dbl = 0.01 }, 0.0, 1e10, FLAGS },
121  { "accuracy", "set accuracy", OFFSET(accuracy), AV_OPT_TYPE_DOUBLE, { .dbl = 5.0 }, 0.0, 1e10, FLAGS },
122  { "wfunc", "set window function", OFFSET(wfunc), AV_OPT_TYPE_INT, { .i64 = WFUNC_HANN }, 0, NB_WFUNC-1, FLAGS, "wfunc" },
123  { "rectangular", "rectangular window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_RECTANGULAR }, 0, 0, FLAGS, "wfunc" },
124  { "hann", "hann window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HANN }, 0, 0, FLAGS, "wfunc" },
125  { "hamming", "hamming window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HAMMING }, 0, 0, FLAGS, "wfunc" },
126  { "blackman", "blackman window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BLACKMAN }, 0, 0, FLAGS, "wfunc" },
127  { "nuttall3", "3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL3 }, 0, 0, FLAGS, "wfunc" },
128  { "mnuttall3", "minimum 3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_MNUTTALL3 }, 0, 0, FLAGS, "wfunc" },
129  { "nuttall", "nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL }, 0, 0, FLAGS, "wfunc" },
130  { "bnuttall", "blackman-nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BNUTTALL }, 0, 0, FLAGS, "wfunc" },
131  { "bharris", "blackman-harris window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BHARRIS }, 0, 0, FLAGS, "wfunc" },
132  { "tukey", "tukey window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_TUKEY }, 0, 0, FLAGS, "wfunc" },
133  { "fixed", "set fixed frame samples", OFFSET(fixed), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
134  { "multi", "set multi channels mode", OFFSET(multi), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
135  { "zero_phase", "set zero phase mode", OFFSET(zero_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
136  { "scale", "set gain scale", OFFSET(scale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" },
137  { "linlin", "linear-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLIN }, 0, 0, FLAGS, "scale" },
138  { "linlog", "linear-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLOG }, 0, 0, FLAGS, "scale" },
139  { "loglin", "logarithmic-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLIN }, 0, 0, FLAGS, "scale" },
140  { "loglog", "logarithmic-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLOG }, 0, 0, FLAGS, "scale" },
141  { "dumpfile", "set dump file", OFFSET(dumpfile), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
142  { "dumpscale", "set dump scale", OFFSET(dumpscale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" },
143  { "fft2", "set 2-channels fft", OFFSET(fft2), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
144  { "min_phase", "set minimum phase mode", OFFSET(min_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
145  { NULL }
146 };
147 
148 AVFILTER_DEFINE_CLASS(firequalizer);
149 
151 {
152  av_rdft_end(s->analysis_rdft);
153  av_rdft_end(s->analysis_irdft);
154  av_rdft_end(s->rdft);
155  av_rdft_end(s->irdft);
156  av_fft_end(s->fft_ctx);
157  av_rdft_end(s->cepstrum_rdft);
158  av_rdft_end(s->cepstrum_irdft);
159  s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL;
160  s->fft_ctx = NULL;
161  s->cepstrum_rdft = NULL;
162  s->cepstrum_irdft = NULL;
163 
164  av_freep(&s->analysis_buf);
165  av_freep(&s->dump_buf);
166  av_freep(&s->kernel_tmp_buf);
167  av_freep(&s->kernel_buf);
168  av_freep(&s->cepstrum_buf);
169  av_freep(&s->conv_buf);
170  av_freep(&s->conv_idx);
171 }
172 
174 {
175  FIREqualizerContext *s = ctx->priv;
176 
177  common_uninit(s);
178  av_freep(&s->gain_cmd);
179  av_freep(&s->gain_entry_cmd);
180 }
181 
183 {
186  static const enum AVSampleFormat sample_fmts[] = {
189  };
190  int ret;
191 
193  if (!layouts)
194  return AVERROR(ENOMEM);
196  if (ret < 0)
197  return ret;
198 
200  if (!formats)
201  return AVERROR(ENOMEM);
203  if (ret < 0)
204  return ret;
205 
207  if (!formats)
208  return AVERROR(ENOMEM);
210 }
211 
212 static void fast_convolute(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, float *av_restrict conv_buf,
213  OverlapIndex *av_restrict idx, float *av_restrict data, int nsamples)
214 {
215  if (nsamples <= s->nsamples_max) {
216  float *buf = conv_buf + idx->buf_idx * s->rdft_len;
217  float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
218  int center = s->fir_len/2;
219  int k;
220 
221  memset(buf, 0, center * sizeof(*data));
222  memcpy(buf + center, data, nsamples * sizeof(*data));
223  memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data));
224  av_rdft_calc(s->rdft, buf);
225 
226  buf[0] *= kernel_buf[0];
227  buf[1] *= kernel_buf[s->rdft_len/2];
228  for (k = 1; k < s->rdft_len/2; k++) {
229  buf[2*k] *= kernel_buf[k];
230  buf[2*k+1] *= kernel_buf[k];
231  }
232 
233  av_rdft_calc(s->irdft, buf);
234  for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
235  buf[k] += obuf[k];
236  memcpy(data, buf, nsamples * sizeof(*data));
237  idx->buf_idx = !idx->buf_idx;
238  idx->overlap_idx = nsamples;
239  } else {
240  while (nsamples > s->nsamples_max * 2) {
241  fast_convolute(s, kernel_buf, conv_buf, idx, data, s->nsamples_max);
242  data += s->nsamples_max;
243  nsamples -= s->nsamples_max;
244  }
245  fast_convolute(s, kernel_buf, conv_buf, idx, data, nsamples/2);
246  fast_convolute(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2);
247  }
248 }
249 
250 static void fast_convolute_nonlinear(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf,
251  float *av_restrict conv_buf, OverlapIndex *av_restrict idx,
252  float *av_restrict data, int nsamples)
253 {
254  if (nsamples <= s->nsamples_max) {
255  float *buf = conv_buf + idx->buf_idx * s->rdft_len;
256  float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
257  int k;
258 
259  memcpy(buf, data, nsamples * sizeof(*data));
260  memset(buf + nsamples, 0, (s->rdft_len - nsamples) * sizeof(*data));
261  av_rdft_calc(s->rdft, buf);
262 
263  buf[0] *= kernel_buf[0];
264  buf[1] *= kernel_buf[1];
265  for (k = 2; k < s->rdft_len; k += 2) {
266  float re, im;
267  re = buf[k] * kernel_buf[k] - buf[k+1] * kernel_buf[k+1];
268  im = buf[k] * kernel_buf[k+1] + buf[k+1] * kernel_buf[k];
269  buf[k] = re;
270  buf[k+1] = im;
271  }
272 
273  av_rdft_calc(s->irdft, buf);
274  for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
275  buf[k] += obuf[k];
276  memcpy(data, buf, nsamples * sizeof(*data));
277  idx->buf_idx = !idx->buf_idx;
278  idx->overlap_idx = nsamples;
279  } else {
280  while (nsamples > s->nsamples_max * 2) {
281  fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, s->nsamples_max);
282  data += s->nsamples_max;
283  nsamples -= s->nsamples_max;
284  }
285  fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, nsamples/2);
286  fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2);
287  }
288 }
289 
290 static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, FFTComplex *av_restrict conv_buf,
291  OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples)
292 {
293  if (nsamples <= s->nsamples_max) {
294  FFTComplex *buf = conv_buf + idx->buf_idx * s->rdft_len;
295  FFTComplex *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
296  int center = s->fir_len/2;
297  int k;
298  float tmp;
299 
300  memset(buf, 0, center * sizeof(*buf));
301  for (k = 0; k < nsamples; k++) {
302  buf[center+k].re = data0[k];
303  buf[center+k].im = data1[k];
304  }
305  memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf));
306  av_fft_permute(s->fft_ctx, buf);
307  av_fft_calc(s->fft_ctx, buf);
308 
309  /* swap re <-> im, do backward fft using forward fft_ctx */
310  /* normalize with 0.5f */
311  tmp = buf[0].re;
312  buf[0].re = 0.5f * kernel_buf[0] * buf[0].im;
313  buf[0].im = 0.5f * kernel_buf[0] * tmp;
314  for (k = 1; k < s->rdft_len/2; k++) {
315  int m = s->rdft_len - k;
316  tmp = buf[k].re;
317  buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
318  buf[k].im = 0.5f * kernel_buf[k] * tmp;
319  tmp = buf[m].re;
320  buf[m].re = 0.5f * kernel_buf[k] * buf[m].im;
321  buf[m].im = 0.5f * kernel_buf[k] * tmp;
322  }
323  tmp = buf[k].re;
324  buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
325  buf[k].im = 0.5f * kernel_buf[k] * tmp;
326 
327  av_fft_permute(s->fft_ctx, buf);
328  av_fft_calc(s->fft_ctx, buf);
329 
330  for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) {
331  buf[k].re += obuf[k].re;
332  buf[k].im += obuf[k].im;
333  }
334 
335  /* swapped re <-> im */
336  for (k = 0; k < nsamples; k++) {
337  data0[k] = buf[k].im;
338  data1[k] = buf[k].re;
339  }
340  idx->buf_idx = !idx->buf_idx;
341  idx->overlap_idx = nsamples;
342  } else {
343  while (nsamples > s->nsamples_max * 2) {
344  fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, s->nsamples_max);
345  data0 += s->nsamples_max;
346  data1 += s->nsamples_max;
347  nsamples -= s->nsamples_max;
348  }
349  fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, nsamples/2);
350  fast_convolute2(s, kernel_buf, conv_buf, idx, data0 + nsamples/2, data1 + nsamples/2, nsamples - nsamples/2);
351  }
352 }
353 
354 static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch)
355 {
356  FIREqualizerContext *s = ctx->priv;
357  int rate = ctx->inputs[0]->sample_rate;
358  int xlog = s->dumpscale == SCALE_LOGLIN || s->dumpscale == SCALE_LOGLOG;
359  int ylog = s->dumpscale == SCALE_LINLOG || s->dumpscale == SCALE_LOGLOG;
360  int x;
361  int center = s->fir_len / 2;
362  double delay = s->zero_phase ? 0.0 : (double) center / rate;
363  double vx, ya, yb;
364 
365  if (!s->min_phase) {
366  s->analysis_buf[0] *= s->rdft_len/2;
367  for (x = 1; x <= center; x++) {
368  s->analysis_buf[x] *= s->rdft_len/2;
369  s->analysis_buf[s->analysis_rdft_len - x] *= s->rdft_len/2;
370  }
371  } else {
372  for (x = 0; x < s->fir_len; x++)
373  s->analysis_buf[x] *= s->rdft_len/2;
374  }
375 
376  if (ch)
377  fprintf(fp, "\n\n");
378 
379  fprintf(fp, "# time[%d] (time amplitude)\n", ch);
380 
381  if (!s->min_phase) {
382  for (x = center; x > 0; x--)
383  fprintf(fp, "%15.10f %15.10f\n", delay - (double) x / rate, (double) s->analysis_buf[s->analysis_rdft_len - x]);
384 
385  for (x = 0; x <= center; x++)
386  fprintf(fp, "%15.10f %15.10f\n", delay + (double)x / rate , (double) s->analysis_buf[x]);
387  } else {
388  for (x = 0; x < s->fir_len; x++)
389  fprintf(fp, "%15.10f %15.10f\n", (double)x / rate, (double) s->analysis_buf[x]);
390  }
391 
392  av_rdft_calc(s->analysis_rdft, s->analysis_buf);
393 
394  fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch);
395 
396  for (x = 0; x <= s->analysis_rdft_len/2; x++) {
397  int i = (x == s->analysis_rdft_len/2) ? 1 : 2 * x;
398  vx = (double)x * rate / s->analysis_rdft_len;
399  if (xlog)
400  vx = log2(0.05*vx);
401  ya = s->dump_buf[i];
402  yb = s->min_phase && (i > 1) ? hypotf(s->analysis_buf[i], s->analysis_buf[i+1]) : s->analysis_buf[i];
403  if (s->min_phase)
404  yb = fabs(yb);
405  if (ylog) {
406  ya = 20.0 * log10(fabs(ya));
407  yb = 20.0 * log10(fabs(yb));
408  }
409  fprintf(fp, "%17.10f %17.10f %17.10f\n", vx, ya, yb);
410  }
411 }
412 
413 static double entry_func(void *p, double freq, double gain)
414 {
415  AVFilterContext *ctx = p;
416  FIREqualizerContext *s = ctx->priv;
417 
418  if (s->nb_gain_entry >= NB_GAIN_ENTRY_MAX) {
419  av_log(ctx, AV_LOG_ERROR, "entry table overflow.\n");
420  s->gain_entry_err = AVERROR(EINVAL);
421  return 0;
422  }
423 
424  if (isnan(freq)) {
425  av_log(ctx, AV_LOG_ERROR, "nan frequency (%g, %g).\n", freq, gain);
426  s->gain_entry_err = AVERROR(EINVAL);
427  return 0;
428  }
429 
430  if (s->nb_gain_entry > 0 && freq <= s->gain_entry_tbl[s->nb_gain_entry - 1].freq) {
431  av_log(ctx, AV_LOG_ERROR, "unsorted frequency (%g, %g).\n", freq, gain);
432  s->gain_entry_err = AVERROR(EINVAL);
433  return 0;
434  }
435 
436  s->gain_entry_tbl[s->nb_gain_entry].freq = freq;
437  s->gain_entry_tbl[s->nb_gain_entry].gain = gain;
438  s->nb_gain_entry++;
439  return 0;
440 }
441 
442 static int gain_entry_compare(const void *key, const void *memb)
443 {
444  const double *freq = key;
445  const GainEntry *entry = memb;
446 
447  if (*freq < entry[0].freq)
448  return -1;
449  if (*freq > entry[1].freq)
450  return 1;
451  return 0;
452 }
453 
454 static double gain_interpolate_func(void *p, double freq)
455 {
456  AVFilterContext *ctx = p;
457  FIREqualizerContext *s = ctx->priv;
458  GainEntry *res;
459  double d0, d1, d;
460 
461  if (isnan(freq))
462  return freq;
463 
464  if (!s->nb_gain_entry)
465  return 0;
466 
467  if (freq <= s->gain_entry_tbl[0].freq)
468  return s->gain_entry_tbl[0].gain;
469 
470  if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq)
471  return s->gain_entry_tbl[s->nb_gain_entry-1].gain;
472 
473  res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare);
474  av_assert0(res);
475 
476  d = res[1].freq - res[0].freq;
477  d0 = freq - res[0].freq;
478  d1 = res[1].freq - freq;
479 
480  if (d0 && d1)
481  return (d0 * res[1].gain + d1 * res[0].gain) / d;
482 
483  if (d0)
484  return res[1].gain;
485 
486  return res[0].gain;
487 }
488 
489 static double cubic_interpolate_func(void *p, double freq)
490 {
491  AVFilterContext *ctx = p;
492  FIREqualizerContext *s = ctx->priv;
493  GainEntry *res;
494  double x, x2, x3;
495  double a, b, c, d;
496  double m0, m1, m2, msum, unit;
497 
498  if (!s->nb_gain_entry)
499  return 0;
500 
501  if (freq <= s->gain_entry_tbl[0].freq)
502  return s->gain_entry_tbl[0].gain;
503 
504  if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq)
505  return s->gain_entry_tbl[s->nb_gain_entry-1].gain;
506 
507  res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare);
508  av_assert0(res);
509 
510  unit = res[1].freq - res[0].freq;
511  m0 = res != s->gain_entry_tbl ?
512  unit * (res[0].gain - res[-1].gain) / (res[0].freq - res[-1].freq) : 0;
513  m1 = res[1].gain - res[0].gain;
514  m2 = res != s->gain_entry_tbl + s->nb_gain_entry - 2 ?
515  unit * (res[2].gain - res[1].gain) / (res[2].freq - res[1].freq) : 0;
516 
517  msum = fabs(m0) + fabs(m1);
518  m0 = msum > 0 ? (fabs(m0) * m1 + fabs(m1) * m0) / msum : 0;
519  msum = fabs(m1) + fabs(m2);
520  m1 = msum > 0 ? (fabs(m1) * m2 + fabs(m2) * m1) / msum : 0;
521 
522  d = res[0].gain;
523  c = m0;
524  b = 3 * res[1].gain - m1 - 2 * c - 3 * d;
525  a = res[1].gain - b - c - d;
526 
527  x = (freq - res[0].freq) / unit;
528  x2 = x * x;
529  x3 = x2 * x;
530 
531  return a * x3 + b * x2 + c * x + d;
532 }
533 
534 static const char *const var_names[] = {
535  "f",
536  "sr",
537  "ch",
538  "chid",
539  "chs",
540  "chlayout",
541  NULL
542 };
543 
544 enum VarOffset {
552 };
553 
554 static void generate_min_phase_kernel(FIREqualizerContext *s, float *rdft_buf)
555 {
556  int k, cepstrum_len = s->cepstrum_len, rdft_len = s->rdft_len;
557  double norm = 2.0 / cepstrum_len;
558  double minval = 1e-7 / rdft_len;
559 
560  memset(s->cepstrum_buf, 0, cepstrum_len * sizeof(*s->cepstrum_buf));
561  memcpy(s->cepstrum_buf, rdft_buf, rdft_len/2 * sizeof(*rdft_buf));
562  memcpy(s->cepstrum_buf + cepstrum_len - rdft_len/2, rdft_buf + rdft_len/2, rdft_len/2 * sizeof(*rdft_buf));
563 
564  av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf);
565 
566  s->cepstrum_buf[0] = log(FFMAX(s->cepstrum_buf[0], minval));
567  s->cepstrum_buf[1] = log(FFMAX(s->cepstrum_buf[1], minval));
568 
569  for (k = 2; k < cepstrum_len; k += 2) {
570  s->cepstrum_buf[k] = log(FFMAX(s->cepstrum_buf[k], minval));
571  s->cepstrum_buf[k+1] = 0;
572  }
573 
574  av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf);
575 
576  memset(s->cepstrum_buf + cepstrum_len/2 + 1, 0, (cepstrum_len/2 - 1) * sizeof(*s->cepstrum_buf));
577  for (k = 1; k < cepstrum_len/2; k++)
578  s->cepstrum_buf[k] *= 2;
579 
580  av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf);
581 
582  s->cepstrum_buf[0] = exp(s->cepstrum_buf[0] * norm) * norm;
583  s->cepstrum_buf[1] = exp(s->cepstrum_buf[1] * norm) * norm;
584  for (k = 2; k < cepstrum_len; k += 2) {
585  double mag = exp(s->cepstrum_buf[k] * norm) * norm;
586  double ph = s->cepstrum_buf[k+1] * norm;
587  s->cepstrum_buf[k] = mag * cos(ph);
588  s->cepstrum_buf[k+1] = mag * sin(ph);
589  }
590 
591  av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf);
592  memset(rdft_buf, 0, s->rdft_len * sizeof(*rdft_buf));
593  memcpy(rdft_buf, s->cepstrum_buf, s->fir_len * sizeof(*rdft_buf));
594 
595  if (s->dumpfile) {
596  memset(s->analysis_buf, 0, s->analysis_rdft_len * sizeof(*s->analysis_buf));
597  memcpy(s->analysis_buf, s->cepstrum_buf, s->fir_len * sizeof(*s->analysis_buf));
598  }
599 
600 }
601 
602 static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry)
603 {
604  FIREqualizerContext *s = ctx->priv;
605  AVFilterLink *inlink = ctx->inputs[0];
606  const char *gain_entry_func_names[] = { "entry", NULL };
607  const char *gain_func_names[] = { "gain_interpolate", "cubic_interpolate", NULL };
608  double (*gain_entry_funcs[])(void *, double, double) = { entry_func, NULL };
609  double (*gain_funcs[])(void *, double) = { gain_interpolate_func, cubic_interpolate_func, NULL };
610  double vars[VAR_NB];
611  AVExpr *gain_expr;
612  int ret, k, center, ch;
613  int xlog = s->scale == SCALE_LOGLIN || s->scale == SCALE_LOGLOG;
614  int ylog = s->scale == SCALE_LINLOG || s->scale == SCALE_LOGLOG;
615  FILE *dump_fp = NULL;
616 
617  s->nb_gain_entry = 0;
618  s->gain_entry_err = 0;
619  if (gain_entry) {
620  double result = 0.0;
621  ret = av_expr_parse_and_eval(&result, gain_entry, NULL, NULL, NULL, NULL,
622  gain_entry_func_names, gain_entry_funcs, ctx, 0, ctx);
623  if (ret < 0)
624  return ret;
625  if (s->gain_entry_err < 0)
626  return s->gain_entry_err;
627  }
628 
629  av_log(ctx, AV_LOG_DEBUG, "nb_gain_entry = %d.\n", s->nb_gain_entry);
630 
631  ret = av_expr_parse(&gain_expr, gain, var_names,
632  gain_func_names, gain_funcs, NULL, NULL, 0, ctx);
633  if (ret < 0)
634  return ret;
635 
636  if (s->dumpfile && (!s->dump_buf || !s->analysis_rdft || !(dump_fp = fopen(s->dumpfile, "w"))))
637  av_log(ctx, AV_LOG_WARNING, "dumping failed.\n");
638 
639  vars[VAR_CHS] = inlink->channels;
640  vars[VAR_CHLAYOUT] = inlink->channel_layout;
641  vars[VAR_SR] = inlink->sample_rate;
642  for (ch = 0; ch < inlink->channels; ch++) {
643  float *rdft_buf = s->kernel_tmp_buf + ch * s->rdft_len;
644  double result;
645  vars[VAR_CH] = ch;
646  vars[VAR_CHID] = av_channel_layout_extract_channel(inlink->channel_layout, ch);
647  vars[VAR_F] = 0.0;
648  if (xlog)
649  vars[VAR_F] = log2(0.05 * vars[VAR_F]);
650  result = av_expr_eval(gain_expr, vars, ctx);
651  s->analysis_buf[0] = ylog ? pow(10.0, 0.05 * result) : result;
652 
653  vars[VAR_F] = 0.5 * inlink->sample_rate;
654  if (xlog)
655  vars[VAR_F] = log2(0.05 * vars[VAR_F]);
656  result = av_expr_eval(gain_expr, vars, ctx);
657  s->analysis_buf[1] = ylog ? pow(10.0, 0.05 * result) : result;
658 
659  for (k = 1; k < s->analysis_rdft_len/2; k++) {
660  vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len);
661  if (xlog)
662  vars[VAR_F] = log2(0.05 * vars[VAR_F]);
663  result = av_expr_eval(gain_expr, vars, ctx);
664  s->analysis_buf[2*k] = ylog ? pow(10.0, 0.05 * result) : s->min_phase ? fabs(result) : result;
665  s->analysis_buf[2*k+1] = 0.0;
666  }
667 
668  if (s->dump_buf)
669  memcpy(s->dump_buf, s->analysis_buf, s->analysis_rdft_len * sizeof(*s->analysis_buf));
670 
671  av_rdft_calc(s->analysis_irdft, s->analysis_buf);
672  center = s->fir_len / 2;
673 
674  for (k = 0; k <= center; k++) {
675  double u = k * (M_PI/center);
676  double win;
677  switch (s->wfunc) {
678  case WFUNC_RECTANGULAR:
679  win = 1.0;
680  break;
681  case WFUNC_HANN:
682  win = 0.5 + 0.5 * cos(u);
683  break;
684  case WFUNC_HAMMING:
685  win = 0.53836 + 0.46164 * cos(u);
686  break;
687  case WFUNC_BLACKMAN:
688  win = 0.42 + 0.5 * cos(u) + 0.08 * cos(2*u);
689  break;
690  case WFUNC_NUTTALL3:
691  win = 0.40897 + 0.5 * cos(u) + 0.09103 * cos(2*u);
692  break;
693  case WFUNC_MNUTTALL3:
694  win = 0.4243801 + 0.4973406 * cos(u) + 0.0782793 * cos(2*u);
695  break;
696  case WFUNC_NUTTALL:
697  win = 0.355768 + 0.487396 * cos(u) + 0.144232 * cos(2*u) + 0.012604 * cos(3*u);
698  break;
699  case WFUNC_BNUTTALL:
700  win = 0.3635819 + 0.4891775 * cos(u) + 0.1365995 * cos(2*u) + 0.0106411 * cos(3*u);
701  break;
702  case WFUNC_BHARRIS:
703  win = 0.35875 + 0.48829 * cos(u) + 0.14128 * cos(2*u) + 0.01168 * cos(3*u);
704  break;
705  case WFUNC_TUKEY:
706  win = (u <= 0.5 * M_PI) ? 1.0 : (0.5 + 0.5 * cos(2*u - M_PI));
707  break;
708  default:
709  av_assert0(0);
710  }
711  s->analysis_buf[k] *= (2.0/s->analysis_rdft_len) * (2.0/s->rdft_len) * win;
712  if (k)
713  s->analysis_buf[s->analysis_rdft_len - k] = s->analysis_buf[k];
714  }
715 
716  memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf));
717  memcpy(rdft_buf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf));
718  memcpy(rdft_buf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf));
719  if (s->min_phase)
720  generate_min_phase_kernel(s, rdft_buf);
721  av_rdft_calc(s->rdft, rdft_buf);
722 
723  for (k = 0; k < s->rdft_len; k++) {
724  if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) {
725  av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n");
726  av_expr_free(gain_expr);
727  if (dump_fp)
728  fclose(dump_fp);
729  return AVERROR(EINVAL);
730  }
731  }
732 
733  if (!s->min_phase) {
734  rdft_buf[s->rdft_len-1] = rdft_buf[1];
735  for (k = 0; k < s->rdft_len/2; k++)
736  rdft_buf[k] = rdft_buf[2*k];
737  rdft_buf[s->rdft_len/2] = rdft_buf[s->rdft_len-1];
738  }
739 
740  if (dump_fp)
741  dump_fir(ctx, dump_fp, ch);
742 
743  if (!s->multi)
744  break;
745  }
746 
747  memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->channels : 1) * s->rdft_len * sizeof(*s->kernel_buf));
748  av_expr_free(gain_expr);
749  if (dump_fp)
750  fclose(dump_fp);
751  return 0;
752 }
753 
754 #define SELECT_GAIN(s) (s->gain_cmd ? s->gain_cmd : s->gain)
755 #define SELECT_GAIN_ENTRY(s) (s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry)
756 
758 {
759  AVFilterContext *ctx = inlink->dst;
760  FIREqualizerContext *s = ctx->priv;
761  int rdft_bits;
762 
763  common_uninit(s);
764 
765  s->next_pts = 0;
766  s->frame_nsamples_max = 0;
767 
768  s->fir_len = FFMAX(2 * (int)(inlink->sample_rate * s->delay) + 1, 3);
769  s->remaining = s->fir_len - 1;
770 
771  for (rdft_bits = RDFT_BITS_MIN; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
772  s->rdft_len = 1 << rdft_bits;
773  s->nsamples_max = s->rdft_len - s->fir_len + 1;
774  if (s->nsamples_max * 2 >= s->fir_len)
775  break;
776  }
777 
778  if (rdft_bits > RDFT_BITS_MAX) {
779  av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n");
780  return AVERROR(EINVAL);
781  }
782 
783  if (!(s->rdft = av_rdft_init(rdft_bits, DFT_R2C)) || !(s->irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
784  return AVERROR(ENOMEM);
785 
786  if (s->fft2 && !s->multi && inlink->channels > 1 && !(s->fft_ctx = av_fft_init(rdft_bits, 0)))
787  return AVERROR(ENOMEM);
788 
789  if (s->min_phase) {
790  int cepstrum_bits = rdft_bits + 2;
791  if (cepstrum_bits > RDFT_BITS_MAX) {
792  av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n");
793  return AVERROR(EINVAL);
794  }
795 
796  cepstrum_bits = FFMIN(RDFT_BITS_MAX, cepstrum_bits + 1);
797  s->cepstrum_rdft = av_rdft_init(cepstrum_bits, DFT_R2C);
798  s->cepstrum_irdft = av_rdft_init(cepstrum_bits, IDFT_C2R);
799  if (!s->cepstrum_rdft || !s->cepstrum_irdft)
800  return AVERROR(ENOMEM);
801 
802  s->cepstrum_len = 1 << cepstrum_bits;
803  s->cepstrum_buf = av_malloc_array(s->cepstrum_len, sizeof(*s->cepstrum_buf));
804  if (!s->cepstrum_buf)
805  return AVERROR(ENOMEM);
806  }
807 
808  for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
809  s->analysis_rdft_len = 1 << rdft_bits;
810  if (inlink->sample_rate <= s->accuracy * s->analysis_rdft_len)
811  break;
812  }
813 
814  if (rdft_bits > RDFT_BITS_MAX) {
815  av_log(ctx, AV_LOG_ERROR, "too small accuracy, please increase it.\n");
816  return AVERROR(EINVAL);
817  }
818 
819  if (!(s->analysis_irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
820  return AVERROR(ENOMEM);
821 
822  if (s->dumpfile) {
823  s->analysis_rdft = av_rdft_init(rdft_bits, DFT_R2C);
824  s->dump_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->dump_buf));
825  }
826 
827  s->analysis_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->analysis_buf));
828  s->kernel_tmp_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_tmp_buf));
829  s->kernel_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_buf));
830  s->conv_buf = av_calloc(2 * s->rdft_len * inlink->channels, sizeof(*s->conv_buf));
831  s->conv_idx = av_calloc(inlink->channels, sizeof(*s->conv_idx));
832  if (!s->analysis_buf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx)
833  return AVERROR(ENOMEM);
834 
835  av_log(ctx, AV_LOG_DEBUG, "sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n",
836  inlink->sample_rate, inlink->channels, s->analysis_rdft_len, s->rdft_len, s->fir_len, s->nsamples_max);
837 
838  if (s->fixed)
839  inlink->min_samples = inlink->max_samples = inlink->partial_buf_size = s->nsamples_max;
840 
842 }
843 
845 {
846  AVFilterContext *ctx = inlink->dst;
847  FIREqualizerContext *s = ctx->priv;
848  int ch;
849 
850  if (!s->min_phase) {
851  for (ch = 0; ch + 1 < inlink->channels && s->fft_ctx; ch += 2) {
852  fast_convolute2(s, s->kernel_buf, (FFTComplex *)(s->conv_buf + 2 * ch * s->rdft_len),
853  s->conv_idx + ch, (float *) frame->extended_data[ch],
854  (float *) frame->extended_data[ch+1], frame->nb_samples);
855  }
856 
857  for ( ; ch < inlink->channels; ch++) {
858  fast_convolute(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
859  s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
860  (float *) frame->extended_data[ch], frame->nb_samples);
861  }
862  } else {
863  for (ch = 0; ch < inlink->channels; ch++) {
864  fast_convolute_nonlinear(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
865  s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
866  (float *) frame->extended_data[ch], frame->nb_samples);
867  }
868  }
869 
870  s->next_pts = AV_NOPTS_VALUE;
871  if (frame->pts != AV_NOPTS_VALUE) {
872  s->next_pts = frame->pts + av_rescale_q(frame->nb_samples, av_make_q(1, inlink->sample_rate), inlink->time_base);
873  if (s->zero_phase && !s->min_phase)
874  frame->pts -= av_rescale_q(s->fir_len/2, av_make_q(1, inlink->sample_rate), inlink->time_base);
875  }
876  s->frame_nsamples_max = FFMAX(s->frame_nsamples_max, frame->nb_samples);
877  return ff_filter_frame(ctx->outputs[0], frame);
878 }
879 
880 static int request_frame(AVFilterLink *outlink)
881 {
882  AVFilterContext *ctx = outlink->src;
883  FIREqualizerContext *s= ctx->priv;
884  int ret;
885 
886  ret = ff_request_frame(ctx->inputs[0]);
887  if (ret == AVERROR_EOF && s->remaining > 0 && s->frame_nsamples_max > 0) {
888  AVFrame *frame = ff_get_audio_buffer(outlink, FFMIN(s->remaining, s->frame_nsamples_max));
889 
890  if (!frame)
891  return AVERROR(ENOMEM);
892 
893  av_samples_set_silence(frame->extended_data, 0, frame->nb_samples, outlink->channels, frame->format);
894  frame->pts = s->next_pts;
895  s->remaining -= frame->nb_samples;
896  ret = filter_frame(ctx->inputs[0], frame);
897  }
898 
899  return ret;
900 }
901 
902 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
903  char *res, int res_len, int flags)
904 {
905  FIREqualizerContext *s = ctx->priv;
906  int ret = AVERROR(ENOSYS);
907 
908  if (!strcmp(cmd, "gain")) {
909  char *gain_cmd;
910 
911  if (SELECT_GAIN(s) && !strcmp(SELECT_GAIN(s), args)) {
912  av_log(ctx, AV_LOG_DEBUG, "equal gain, do not rebuild.\n");
913  return 0;
914  }
915 
916  gain_cmd = av_strdup(args);
917  if (!gain_cmd)
918  return AVERROR(ENOMEM);
919 
920  ret = generate_kernel(ctx, gain_cmd, SELECT_GAIN_ENTRY(s));
921  if (ret >= 0) {
922  av_freep(&s->gain_cmd);
923  s->gain_cmd = gain_cmd;
924  } else {
925  av_freep(&gain_cmd);
926  }
927  } else if (!strcmp(cmd, "gain_entry")) {
928  char *gain_entry_cmd;
929 
930  if (SELECT_GAIN_ENTRY(s) && !strcmp(SELECT_GAIN_ENTRY(s), args)) {
931  av_log(ctx, AV_LOG_DEBUG, "equal gain_entry, do not rebuild.\n");
932  return 0;
933  }
934 
935  gain_entry_cmd = av_strdup(args);
936  if (!gain_entry_cmd)
937  return AVERROR(ENOMEM);
938 
939  ret = generate_kernel(ctx, SELECT_GAIN(s), gain_entry_cmd);
940  if (ret >= 0) {
941  av_freep(&s->gain_entry_cmd);
942  s->gain_entry_cmd = gain_entry_cmd;
943  } else {
944  av_freep(&gain_entry_cmd);
945  }
946  }
947 
948  return ret;
949 }
950 
952  {
953  .name = "default",
954  .config_props = config_input,
955  .filter_frame = filter_frame,
956  .type = AVMEDIA_TYPE_AUDIO,
957  .needs_writable = 1,
958  },
959  { NULL }
960 };
961 
963  {
964  .name = "default",
965  .request_frame = request_frame,
966  .type = AVMEDIA_TYPE_AUDIO,
967  },
968  { NULL }
969 };
970 
972  .name = "firequalizer",
973  .description = NULL_IF_CONFIG_SMALL("Finite Impulse Response Equalizer."),
974  .uninit = uninit,
975  .query_formats = query_formats,
976  .process_command = process_command,
977  .priv_size = sizeof(FIREqualizerContext),
980  .priv_class = &firequalizer_class,
981 };
FIREqualizerContext::cepstrum_len
int cepstrum_len
Definition: af_firequalizer.c:77
formats
formats
Definition: signature.h:48
av_fft_end
av_cold void av_fft_end(FFTContext *s)
Definition: avfft.c:48
ff_get_audio_buffer
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
Definition: audio.c:86
AV_SAMPLE_FMT_FLTP
@ AV_SAMPLE_FMT_FLTP
float, planar
Definition: samplefmt.h:69
GainEntry::freq
double freq
Definition: af_firequalizer.c:56
FIREqualizerContext::gain_cmd
char * gain_cmd
Definition: af_firequalizer.c:92
AVFilterChannelLayouts
A list of supported channel layouts.
Definition: formats.h:86
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:187
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
generate_kernel
static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry)
Definition: af_firequalizer.c:602
ff_make_format_list
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:286
u
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:264
ff_filter_frame
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:978
sample_fmts
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:953
layouts
enum MovChannelLayoutTag * layouts
Definition: mov_chan.c:434
AVERROR_EOF
#define AVERROR_EOF
End of file.
Definition: error.h:55
fft2
static void fft2(FFTComplex *z)
Definition: tx_template.c:505
inlink
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
Definition: filter_design.txt:212
gain_interpolate_func
static double gain_interpolate_func(void *p, double freq)
Definition: af_firequalizer.c:454
FIREqualizerContext::analysis_irdft
RDFTContext * analysis_irdft
Definition: af_firequalizer.c:69
ff_all_channel_counts
AVFilterChannelLayouts * ff_all_channel_counts(void)
Construct an AVFilterChannelLayouts coding for any channel layout, with known or unknown disposition.
Definition: formats.c:429
im
float im
Definition: fft.c:82
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:303
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:27
filter_frame
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
Definition: af_firequalizer.c:844
AVOption
AVOption.
Definition: opt.h:248
b
#define b
Definition: input.c:41
FIREqualizerContext::frame_nsamples_max
int frame_nsamples_max
Definition: af_firequalizer.c:89
data
const char data[16]
Definition: mxf.c:142
OverlapIndex::buf_idx
int buf_idx
Definition: af_firequalizer.c:61
ff_request_frame
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
Definition: avfilter.c:395
av_fft_permute
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc().
Definition: avfft.c:38
FIREqualizerContext::rdft_len
int rdft_len
Definition: af_firequalizer.c:76
VarOffset
VarOffset
Definition: af_firequalizer.c:544
AVFilter::name
const char * name
Filter name.
Definition: avfilter.h:149
query_formats
static int query_formats(AVFilterContext *ctx)
Definition: af_firequalizer.c:182
SCALE_LOGLOG
@ SCALE_LOGLOG
Definition: af_firequalizer.c:50
FIREqualizerContext::wfunc
int wfunc
Definition: af_firequalizer.c:98
FIREqualizerContext::cepstrum_irdft
RDFTContext * cepstrum_irdft
Definition: af_firequalizer.c:74
SELECT_GAIN_ENTRY
#define SELECT_GAIN_ENTRY(s)
Definition: af_firequalizer.c:755
FIREqualizerContext::nb_gain_entry
int nb_gain_entry
Definition: af_firequalizer.c:108
AVFilterFormats
A list of supported formats for one end of a filter link.
Definition: formats.h:65
FIREqualizerContext
Definition: af_firequalizer.c:65
WFUNC_RECTANGULAR
@ WFUNC_RECTANGULAR
Definition: af_firequalizer.c:33
win
static float win(SuperEqualizerContext *s, float n, int N)
Definition: af_superequalizer.c:119
av_expr_parse
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
Definition: eval.c:685
NB_GAIN_ENTRY_MAX
#define NB_GAIN_ENTRY_MAX
Definition: af_firequalizer.c:54
VAR_CHLAYOUT
@ VAR_CHLAYOUT
Definition: af_firequalizer.c:550
WFUNC_BLACKMAN
@ WFUNC_BLACKMAN
Definition: af_firequalizer.c:36
generate_min_phase_kernel
static void generate_min_phase_kernel(FIREqualizerContext *s, float *rdft_buf)
Definition: af_firequalizer.c:554
firequalizer_outputs
static const AVFilterPad firequalizer_outputs[]
Definition: af_firequalizer.c:962
ff_af_firequalizer
const AVFilter ff_af_firequalizer
Definition: af_firequalizer.c:971
firequalizer_inputs
static const AVFilterPad firequalizer_inputs[]
Definition: af_firequalizer.c:951
WindowFunc
WindowFunc
Definition: af_firequalizer.c:32
VAR_SR
@ VAR_SR
Definition: af_firequalizer.c:546
GainEntry::gain
double gain
Definition: af_firequalizer.c:57
RDFT_BITS_MAX
#define RDFT_BITS_MAX
Definition: af_firequalizer.c:30
request_frame
static int request_frame(AVFilterLink *outlink)
Definition: af_firequalizer.c:880
IDFT_C2R
@ IDFT_C2R
Definition: avfft.h:73
FIREqualizerContext::conv_idx
OverlapIndex * conv_idx
Definition: af_firequalizer.c:85
cubic_interpolate_func
static double cubic_interpolate_func(void *p, double freq)
Definition: af_firequalizer.c:489
av_expr_free
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
Definition: eval.c:336
AVFilterPad
A filter pad used for either input or output.
Definition: internal.h:54
SELECT_GAIN
#define SELECT_GAIN(s)
Definition: af_firequalizer.c:754
avassert.h
FIREqualizerContext::scale
int scale
Definition: af_firequalizer.c:102
VAR_CHID
@ VAR_CHID
Definition: af_firequalizer.c:548
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:181
av_cold
#define av_cold
Definition: attributes.h:90
inputs
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
Definition: filter_design.txt:243
ff_set_common_formats
int ff_set_common_formats(AVFilterContext *ctx, AVFilterFormats *formats)
A helper for query_formats() which sets all links to the same list of formats.
Definition: formats.c:580
WFUNC_NUTTALL
@ WFUNC_NUTTALL
Definition: af_firequalizer.c:39
uninit
static av_cold void uninit(AVFilterContext *ctx)
Definition: af_firequalizer.c:173
s
#define s(width, name)
Definition: cbs_vp9.c:257
AV_OPT_TYPE_DOUBLE
@ AV_OPT_TYPE_DOUBLE
Definition: opt.h:227
AVMEDIA_TYPE_AUDIO
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
WFUNC_NUTTALL3
@ WFUNC_NUTTALL3
Definition: af_firequalizer.c:37
outputs
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:202
FIREqualizerContext::min_phase
int min_phase
Definition: af_firequalizer.c:106
ctx
AVFormatContext * ctx
Definition: movenc.c:48
av_expr_eval
double av_expr_eval(AVExpr *e, const double *const_values, void *opaque)
Evaluate a previously parsed expression.
Definition: eval.c:766
WFUNC_BHARRIS
@ WFUNC_BHARRIS
Definition: af_firequalizer.c:41
OverlapIndex::overlap_idx
int overlap_idx
Definition: af_firequalizer.c:62
av_rescale_q
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
Definition: mathematics.c:142
AVExpr
Definition: eval.c:157
key
const char * key
Definition: hwcontext_opencl.c:168
av_rdft_calc
void av_rdft_calc(RDFTContext *s, FFTSample *data)
if
if(ret)
Definition: filter_design.txt:179
SCALE_LINLIN
@ SCALE_LINLIN
Definition: af_firequalizer.c:47
FIREqualizerContext::analysis_rdft_len
int analysis_rdft_len
Definition: af_firequalizer.c:75
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:67
result
and forward the result(frame or status change) to the corresponding input. If nothing is possible
fabs
static __device__ float fabs(float a)
Definition: cuda_runtime.h:182
NULL
#define NULL
Definition: coverity.c:32
FIREqualizerContext::gain_entry_err
int gain_entry_err
Definition: af_firequalizer.c:109
vars
static const uint8_t vars[2][12]
Definition: camellia.c:179
FLAGS
#define FLAGS
Definition: af_firequalizer.c:114
WFUNC_HAMMING
@ WFUNC_HAMMING
Definition: af_firequalizer.c:35
isnan
#define isnan(x)
Definition: libm.h:340
FIREqualizerContext::fft_ctx
FFTContext * fft_ctx
Definition: af_firequalizer.c:72
GainEntry
Definition: af_firequalizer.c:55
FIREqualizerContext::zero_phase
int zero_phase
Definition: af_firequalizer.c:101
entry_func
static double entry_func(void *p, double freq, double gain)
Definition: af_firequalizer.c:413
FIREqualizerContext::gain
const char * gain
Definition: af_firequalizer.c:94
AVFILTER_DEFINE_CLASS
AVFILTER_DEFINE_CLASS(firequalizer)
isinf
#define isinf(x)
Definition: libm.h:317
DFT_R2C
@ DFT_R2C
Definition: avfft.h:72
avfft.h
OFFSET
#define OFFSET(x)
Definition: af_firequalizer.c:113
fp
#define fp
Definition: regdef.h:44
exp
int8_t exp
Definition: eval.c:72
var_names
static const char *const var_names[]
Definition: af_firequalizer.c:534
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
VAR_CHS
@ VAR_CHS
Definition: af_firequalizer.c:549
FIREqualizerContext::gain_entry_cmd
char * gain_entry_cmd
Definition: af_firequalizer.c:93
eval.h
RDFT_BITS_MIN
#define RDFT_BITS_MIN
Definition: af_firequalizer.c:29
TFLAGS
#define TFLAGS
Definition: af_firequalizer.c:115
av_rdft_init
RDFTContext * av_rdft_init(int nbits, enum RDFTransformType trans)
Set up a real FFT.
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
av_expr_parse_and_eval
int av_expr_parse_and_eval(double *d, const char *s, const char *const *const_names, const double *const_values, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), void *opaque, int log_offset, void *log_ctx)
Parse and evaluate an expression.
Definition: eval.c:776
FIREqualizerContext::analysis_buf
float * analysis_buf
Definition: af_firequalizer.c:79
fast_convolute2
static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, FFTComplex *av_restrict conv_buf, OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples)
Definition: af_firequalizer.c:290
FFMAX
#define FFMAX(a, b)
Definition: common.h:103
AV_SAMPLE_FMT_NONE
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:59
av_make_q
static AVRational av_make_q(int num, int den)
Create an AVRational.
Definition: rational.h:71
AV_NOPTS_VALUE
#define AV_NOPTS_VALUE
Undefined timestamp value.
Definition: avutil.h:248
WFUNC_TUKEY
@ WFUNC_TUKEY
Definition: af_firequalizer.c:42
FIREqualizerContext::fir_len
int fir_len
Definition: af_firequalizer.c:86
FFTComplex::im
FFTSample im
Definition: avfft.h:38
FFTComplex::re
FFTSample re
Definition: avfft.h:38
firequalizer_options
static const AVOption firequalizer_options[]
Definition: af_firequalizer.c:117
VAR_NB
@ VAR_NB
Definition: af_firequalizer.c:551
FFMIN
#define FFMIN(a, b)
Definition: common.h:105
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
FIREqualizerContext::kernel_tmp_buf
float * kernel_tmp_buf
Definition: af_firequalizer.c:81
FIREqualizerContext::cepstrum_rdft
RDFTContext * cepstrum_rdft
Definition: af_firequalizer.c:73
M_PI
#define M_PI
Definition: mathematics.h:52
internal.h
FIREqualizerContext::cepstrum_buf
float * cepstrum_buf
Definition: af_firequalizer.c:83
FIREqualizerContext::remaining
int remaining
Definition: af_firequalizer.c:90
VAR_CH
@ VAR_CH
Definition: af_firequalizer.c:547
WFUNC_HANN
@ WFUNC_HANN
Definition: af_firequalizer.c:34
FFTContext
Definition: fft.h:83
i
int i
Definition: input.c:407
av_channel_layout_extract_channel
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout.
Definition: channel_layout.c:271
FIREqualizerContext::conv_buf
float * conv_buf
Definition: af_firequalizer.c:84
SCALE_LINLOG
@ SCALE_LINLOG
Definition: af_firequalizer.c:48
av_malloc_array
#define av_malloc_array(a, b)
Definition: tableprint_vlc.h:32
RDFTContext
Definition: rdft.h:28
FIREqualizerContext::dump_buf
float * dump_buf
Definition: af_firequalizer.c:80
AVSampleFormat
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
FIREqualizerContext::gain_entry_tbl
GainEntry gain_entry_tbl[NB_GAIN_ENTRY_MAX]
Definition: af_firequalizer.c:110
Scale
Scale
Definition: af_firequalizer.c:46
VAR_F
@ VAR_F
Definition: af_firequalizer.c:545
AVFilterPad::name
const char * name
Pad name.
Definition: internal.h:60
process_command
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
Definition: af_firequalizer.c:902
fast_convolute
static void fast_convolute(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, float *av_restrict conv_buf, OverlapIndex *av_restrict idx, float *av_restrict data, int nsamples)
Definition: af_firequalizer.c:212
FIREqualizerContext::kernel_buf
float * kernel_buf
Definition: af_firequalizer.c:82
log2
#define log2(x)
Definition: libm.h:404
av_samples_set_silence
int av_samples_set_silence(uint8_t **audio_data, int offset, int nb_samples, int nb_channels, enum AVSampleFormat sample_fmt)
Fill an audio buffer with silence.
Definition: samplefmt.c:237
FIREqualizerContext::next_pts
int64_t next_pts
Definition: af_firequalizer.c:88
AVFilter
Filter definition.
Definition: avfilter.h:145
ret
ret
Definition: filter_design.txt:187
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:264
SCALE_LOGLIN
@ SCALE_LOGLIN
Definition: af_firequalizer.c:49
FIREqualizerContext::accuracy
double accuracy
Definition: af_firequalizer.c:97
av_fft_init
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT.
Definition: avfft.c:28
NB_WFUNC
@ NB_WFUNC
Definition: af_firequalizer.c:43
ff_all_samplerates
AVFilterFormats * ff_all_samplerates(void)
Definition: formats.c:414
av_calloc
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
Definition: mem.c:251
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:225
avfilter.h
FIREqualizerContext::fixed
int fixed
Definition: af_firequalizer.c:99
FIREqualizerContext::dumpscale
int dumpscale
Definition: af_firequalizer.c:104
FIREqualizerContext::nsamples_max
int nsamples_max
Definition: af_firequalizer.c:87
AVFilterContext
An instance of a filter.
Definition: avfilter.h:333
FIREqualizerContext::rdft
RDFTContext * rdft
Definition: af_firequalizer.c:70
common_uninit
static void common_uninit(FIREqualizerContext *s)
Definition: af_firequalizer.c:150
av_strdup
char * av_strdup(const char *s)
Duplicate a string.
Definition: mem.c:259
WFUNC_BNUTTALL
@ WFUNC_BNUTTALL
Definition: af_firequalizer.c:40
audio.h
fast_convolute_nonlinear
static void fast_convolute_nonlinear(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, float *av_restrict conv_buf, OverlapIndex *av_restrict idx, float *av_restrict data, int nsamples)
Definition: af_firequalizer.c:250
gain_entry_compare
static int gain_entry_compare(const void *key, const void *memb)
Definition: af_firequalizer.c:442
FIREqualizerContext::gain_entry
const char * gain_entry
Definition: af_firequalizer.c:95
AV_OPT_TYPE_BOOL
@ AV_OPT_TYPE_BOOL
Definition: opt.h:242
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
FIREqualizerContext::analysis_rdft
RDFTContext * analysis_rdft
Definition: af_firequalizer.c:68
d
d
Definition: ffmpeg_filter.c:156
fixed
#define fixed(width, name, value)
Definition: cbs_av1.c:566
flags
#define flags(name, subs,...)
Definition: cbs_av1.c:561
av_rdft_end
void av_rdft_end(RDFTContext *s)
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:28
FIREqualizerContext::fft2
int fft2
Definition: af_firequalizer.c:105
ff_set_common_samplerates
int ff_set_common_samplerates(AVFilterContext *ctx, AVFilterFormats *samplerates)
Definition: formats.c:568
NB_SCALE
@ NB_SCALE
Definition: af_firequalizer.c:51
config_input
static int config_input(AVFilterLink *inlink)
Definition: af_firequalizer.c:757
OverlapIndex
Definition: af_firequalizer.c:60
AV_OPT_TYPE_STRING
@ AV_OPT_TYPE_STRING
Definition: opt.h:229
FIREqualizerContext::delay
double delay
Definition: af_firequalizer.c:96
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Definition: opt.h:234
av_fft_calc
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init().
Definition: avfft.c:43
dump_fir
static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch)
Definition: af_firequalizer.c:354
FFTComplex
Definition: avfft.h:37
re
float re
Definition: fft.c:82
FIREqualizerContext::irdft
RDFTContext * irdft
Definition: af_firequalizer.c:71
ff_set_common_channel_layouts
int ff_set_common_channel_layouts(AVFilterContext *ctx, AVFilterChannelLayouts *channel_layouts)
A helper for query_formats() which sets all links to the same list of channel layouts/sample rates.
Definition: formats.c:561
FIREqualizerContext::multi
int multi
Definition: af_firequalizer.c:100
WFUNC_MNUTTALL3
@ WFUNC_MNUTTALL3
Definition: af_firequalizer.c:38
FIREqualizerContext::dumpfile
char * dumpfile
Definition: af_firequalizer.c:103