FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
adpcm.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2001-2003 The FFmpeg project
3  *
4  * first version by Francois Revol (revol@free.fr)
5  * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6  * by Mike Melanson (melanson@pcisys.net)
7  * CD-ROM XA ADPCM codec by BERO
8  * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9  * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10  * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11  * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12  * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13  * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14  * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15  *
16  * This file is part of FFmpeg.
17  *
18  * FFmpeg is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU Lesser General Public
20  * License as published by the Free Software Foundation; either
21  * version 2.1 of the License, or (at your option) any later version.
22  *
23  * FFmpeg is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26  * Lesser General Public License for more details.
27  *
28  * You should have received a copy of the GNU Lesser General Public
29  * License along with FFmpeg; if not, write to the Free Software
30  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31  */
32 #include "avcodec.h"
33 #include "get_bits.h"
34 #include "bytestream.h"
35 #include "adpcm.h"
36 #include "adpcm_data.h"
37 #include "internal.h"
38 
39 /**
40  * @file
41  * ADPCM decoders
42  * Features and limitations:
43  *
44  * Reference documents:
45  * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46  * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47  * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48  * http://openquicktime.sourceforge.net/
49  * XAnim sources (xa_codec.c) http://xanim.polter.net/
50  * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51  * SoX source code http://sox.sourceforge.net/
52  *
53  * CD-ROM XA:
54  * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55  * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56  * readstr http://www.geocities.co.jp/Playtown/2004/
57  */
58 
59 /* These are for CD-ROM XA ADPCM */
60 static const int xa_adpcm_table[5][2] = {
61  { 0, 0 },
62  { 60, 0 },
63  { 115, -52 },
64  { 98, -55 },
65  { 122, -60 }
66 };
67 
68 static const int ea_adpcm_table[] = {
69  0, 240, 460, 392,
70  0, 0, -208, -220,
71  0, 1, 3, 4,
72  7, 8, 10, 11,
73  0, -1, -3, -4
74 };
75 
76 // padded to zero where table size is less then 16
77 static const int swf_index_tables[4][16] = {
78  /*2*/ { -1, 2 },
79  /*3*/ { -1, -1, 2, 4 },
80  /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81  /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
82 };
83 
84 /* end of tables */
85 
86 typedef struct ADPCMDecodeContext {
88  int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
91 
93 {
94  ADPCMDecodeContext *c = avctx->priv_data;
95  unsigned int min_channels = 1;
96  unsigned int max_channels = 2;
97 
98  switch(avctx->codec->id) {
101  min_channels = 2;
102  break;
108  max_channels = 6;
109  break;
111  min_channels = 2;
112  max_channels = 8;
113  break;
115  max_channels = 8;
116  break;
120  max_channels = 14;
121  break;
122  }
123  if (avctx->channels < min_channels || avctx->channels > max_channels) {
124  av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
125  return AVERROR(EINVAL);
126  }
127 
128  switch(avctx->codec->id) {
130  c->status[0].step = c->status[1].step = 511;
131  break;
133  if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
134  return AVERROR_INVALIDDATA;
135  break;
137  if (avctx->extradata && avctx->extradata_size >= 8) {
138  c->status[0].predictor = AV_RL32(avctx->extradata);
139  c->status[1].predictor = AV_RL32(avctx->extradata + 4);
140  }
141  break;
143  if (avctx->extradata && avctx->extradata_size >= 2)
144  c->vqa_version = AV_RL16(avctx->extradata);
145  break;
146  default:
147  break;
148  }
149 
150  switch(avctx->codec->id) {
168  break;
170  avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
172  break;
173  default:
174  avctx->sample_fmt = AV_SAMPLE_FMT_S16;
175  }
176 
177  return 0;
178 }
179 
180 static inline int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
181 {
182  int step_index;
183  int predictor;
184  int sign, delta, diff, step;
185 
186  step = ff_adpcm_step_table[c->step_index];
187  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
188  step_index = av_clip(step_index, 0, 88);
189 
190  sign = nibble & 8;
191  delta = nibble & 7;
192  /* perform direct multiplication instead of series of jumps proposed by
193  * the reference ADPCM implementation since modern CPUs can do the mults
194  * quickly enough */
195  diff = ((2 * delta + 1) * step) >> shift;
196  predictor = c->predictor;
197  if (sign) predictor -= diff;
198  else predictor += diff;
199 
200  c->predictor = av_clip_int16(predictor);
201  c->step_index = step_index;
202 
203  return (int16_t)c->predictor;
204 }
205 
207 {
208  int nibble, step_index, predictor, sign, delta, diff, step, shift;
209 
210  shift = bps - 1;
211  nibble = get_bits_le(gb, bps),
212  step = ff_adpcm_step_table[c->step_index];
213  step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
214  step_index = av_clip(step_index, 0, 88);
215 
216  sign = nibble & (1 << shift);
217  delta = av_mod_uintp2(nibble, shift);
218  diff = ((2 * delta + 1) * step) >> shift;
219  predictor = c->predictor;
220  if (sign) predictor -= diff;
221  else predictor += diff;
222 
223  c->predictor = av_clip_int16(predictor);
224  c->step_index = step_index;
225 
226  return (int16_t)c->predictor;
227 }
228 
229 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
230 {
231  int step_index;
232  int predictor;
233  int diff, step;
234 
235  step = ff_adpcm_step_table[c->step_index];
236  step_index = c->step_index + ff_adpcm_index_table[nibble];
237  step_index = av_clip(step_index, 0, 88);
238 
239  diff = step >> 3;
240  if (nibble & 4) diff += step;
241  if (nibble & 2) diff += step >> 1;
242  if (nibble & 1) diff += step >> 2;
243 
244  if (nibble & 8)
245  predictor = c->predictor - diff;
246  else
247  predictor = c->predictor + diff;
248 
249  c->predictor = av_clip_int16(predictor);
250  c->step_index = step_index;
251 
252  return c->predictor;
253 }
254 
255 static inline int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
256 {
257  int predictor;
258 
259  predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
260  predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
261 
262  c->sample2 = c->sample1;
263  c->sample1 = av_clip_int16(predictor);
264  c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
265  if (c->idelta < 16) c->idelta = 16;
266  if (c->idelta > INT_MAX/768) {
267  av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
268  c->idelta = INT_MAX/768;
269  }
270 
271  return c->sample1;
272 }
273 
274 static inline int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
275 {
276  int step_index, predictor, sign, delta, diff, step;
277 
279  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
280  step_index = av_clip(step_index, 0, 48);
281 
282  sign = nibble & 8;
283  delta = nibble & 7;
284  diff = ((2 * delta + 1) * step) >> 3;
285  predictor = c->predictor;
286  if (sign) predictor -= diff;
287  else predictor += diff;
288 
289  c->predictor = av_clip_intp2(predictor, 11);
290  c->step_index = step_index;
291 
292  return c->predictor << 4;
293 }
294 
295 static inline int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
296 {
297  int sign, delta, diff;
298  int new_step;
299 
300  sign = nibble & 8;
301  delta = nibble & 7;
302  /* perform direct multiplication instead of series of jumps proposed by
303  * the reference ADPCM implementation since modern CPUs can do the mults
304  * quickly enough */
305  diff = ((2 * delta + 1) * c->step) >> 3;
306  /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
307  c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
308  c->predictor = av_clip_int16(c->predictor);
309  /* calculate new step and clamp it to range 511..32767 */
310  new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
311  c->step = av_clip(new_step, 511, 32767);
312 
313  return (int16_t)c->predictor;
314 }
315 
316 static inline int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
317 {
318  int sign, delta, diff;
319 
320  sign = nibble & (1<<(size-1));
321  delta = nibble & ((1<<(size-1))-1);
322  diff = delta << (7 + c->step + shift);
323 
324  /* clamp result */
325  c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
326 
327  /* calculate new step */
328  if (delta >= (2*size - 3) && c->step < 3)
329  c->step++;
330  else if (delta == 0 && c->step > 0)
331  c->step--;
332 
333  return (int16_t) c->predictor;
334 }
335 
337 {
338  if(!c->step) {
339  c->predictor = 0;
340  c->step = 127;
341  }
342 
343  c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
344  c->predictor = av_clip_int16(c->predictor);
345  c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
346  c->step = av_clip(c->step, 127, 24567);
347  return c->predictor;
348 }
349 
350 static inline int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
351 {
352  c->predictor += ff_adpcm_mtaf_stepsize[c->step][nibble];
353  c->predictor = av_clip_int16(c->predictor);
354  c->step += ff_adpcm_index_table[nibble];
355  c->step = av_clip_uintp2(c->step, 5);
356  return c->predictor;
357 }
358 
359 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
360  const uint8_t *in, ADPCMChannelStatus *left,
361  ADPCMChannelStatus *right, int channels, int sample_offset)
362 {
363  int i, j;
364  int shift,filter,f0,f1;
365  int s_1,s_2;
366  int d,s,t;
367 
368  out0 += sample_offset;
369  if (channels == 1)
370  out1 = out0 + 28;
371  else
372  out1 += sample_offset;
373 
374  for(i=0;i<4;i++) {
375  shift = 12 - (in[4+i*2] & 15);
376  filter = in[4+i*2] >> 4;
377  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
378  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
379  filter=0;
380  }
381  f0 = xa_adpcm_table[filter][0];
382  f1 = xa_adpcm_table[filter][1];
383 
384  s_1 = left->sample1;
385  s_2 = left->sample2;
386 
387  for(j=0;j<28;j++) {
388  d = in[16+i+j*4];
389 
390  t = sign_extend(d, 4);
391  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
392  s_2 = s_1;
393  s_1 = av_clip_int16(s);
394  out0[j] = s_1;
395  }
396 
397  if (channels == 2) {
398  left->sample1 = s_1;
399  left->sample2 = s_2;
400  s_1 = right->sample1;
401  s_2 = right->sample2;
402  }
403 
404  shift = 12 - (in[5+i*2] & 15);
405  filter = in[5+i*2] >> 4;
406  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
407  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
408  filter=0;
409  }
410 
411  f0 = xa_adpcm_table[filter][0];
412  f1 = xa_adpcm_table[filter][1];
413 
414  for(j=0;j<28;j++) {
415  d = in[16+i+j*4];
416 
417  t = sign_extend(d >> 4, 4);
418  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
419  s_2 = s_1;
420  s_1 = av_clip_int16(s);
421  out1[j] = s_1;
422  }
423 
424  if (channels == 2) {
425  right->sample1 = s_1;
426  right->sample2 = s_2;
427  } else {
428  left->sample1 = s_1;
429  left->sample2 = s_2;
430  }
431 
432  out0 += 28 * (3 - channels);
433  out1 += 28 * (3 - channels);
434  }
435 
436  return 0;
437 }
438 
439 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
440 {
441  ADPCMDecodeContext *c = avctx->priv_data;
442  GetBitContext gb;
443  const int *table;
444  int k0, signmask, nb_bits, count;
445  int size = buf_size*8;
446  int i;
447 
448  init_get_bits(&gb, buf, size);
449 
450  //read bits & initial values
451  nb_bits = get_bits(&gb, 2)+2;
452  table = swf_index_tables[nb_bits-2];
453  k0 = 1 << (nb_bits-2);
454  signmask = 1 << (nb_bits-1);
455 
456  while (get_bits_count(&gb) <= size - 22*avctx->channels) {
457  for (i = 0; i < avctx->channels; i++) {
458  *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
459  c->status[i].step_index = get_bits(&gb, 6);
460  }
461 
462  for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
463  int i;
464 
465  for (i = 0; i < avctx->channels; i++) {
466  // similar to IMA adpcm
467  int delta = get_bits(&gb, nb_bits);
468  int step = ff_adpcm_step_table[c->status[i].step_index];
469  int vpdiff = 0; // vpdiff = (delta+0.5)*step/4
470  int k = k0;
471 
472  do {
473  if (delta & k)
474  vpdiff += step;
475  step >>= 1;
476  k >>= 1;
477  } while(k);
478  vpdiff += step;
479 
480  if (delta & signmask)
481  c->status[i].predictor -= vpdiff;
482  else
483  c->status[i].predictor += vpdiff;
484 
485  c->status[i].step_index += table[delta & (~signmask)];
486 
487  c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
488  c->status[i].predictor = av_clip_int16(c->status[i].predictor);
489 
490  *samples++ = c->status[i].predictor;
491  }
492  }
493  }
494 }
495 
496 /**
497  * Get the number of samples that will be decoded from the packet.
498  * In one case, this is actually the maximum number of samples possible to
499  * decode with the given buf_size.
500  *
501  * @param[out] coded_samples set to the number of samples as coded in the
502  * packet, or 0 if the codec does not encode the
503  * number of samples in each frame.
504  * @param[out] approx_nb_samples set to non-zero if the number of samples
505  * returned is an approximation.
506  */
508  int buf_size, int *coded_samples, int *approx_nb_samples)
509 {
510  ADPCMDecodeContext *s = avctx->priv_data;
511  int nb_samples = 0;
512  int ch = avctx->channels;
513  int has_coded_samples = 0;
514  int header_size;
515 
516  *coded_samples = 0;
517  *approx_nb_samples = 0;
518 
519  if(ch <= 0)
520  return 0;
521 
522  switch (avctx->codec->id) {
523  /* constant, only check buf_size */
525  if (buf_size < 76 * ch)
526  return 0;
527  nb_samples = 128;
528  break;
530  if (buf_size < 34 * ch)
531  return 0;
532  nb_samples = 64;
533  break;
534  /* simple 4-bit adpcm */
542  nb_samples = buf_size * 2 / ch;
543  break;
544  }
545  if (nb_samples)
546  return nb_samples;
547 
548  /* simple 4-bit adpcm, with header */
549  header_size = 0;
550  switch (avctx->codec->id) {
553  case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
554  case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
555  case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
556  }
557  if (header_size > 0)
558  return (buf_size - header_size) * 2 / ch;
559 
560  /* more complex formats */
561  switch (avctx->codec->id) {
563  has_coded_samples = 1;
564  *coded_samples = bytestream2_get_le32(gb);
565  *coded_samples -= *coded_samples % 28;
566  nb_samples = (buf_size - 12) / 30 * 28;
567  break;
569  has_coded_samples = 1;
570  *coded_samples = bytestream2_get_le32(gb);
571  nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
572  break;
574  nb_samples = (buf_size - ch) / ch * 2;
575  break;
579  /* maximum number of samples */
580  /* has internal offsets and a per-frame switch to signal raw 16-bit */
581  has_coded_samples = 1;
582  switch (avctx->codec->id) {
584  header_size = 4 + 9 * ch;
585  *coded_samples = bytestream2_get_le32(gb);
586  break;
588  header_size = 4 + 5 * ch;
589  *coded_samples = bytestream2_get_le32(gb);
590  break;
592  header_size = 4 + 5 * ch;
593  *coded_samples = bytestream2_get_be32(gb);
594  break;
595  }
596  *coded_samples -= *coded_samples % 28;
597  nb_samples = (buf_size - header_size) * 2 / ch;
598  nb_samples -= nb_samples % 28;
599  *approx_nb_samples = 1;
600  break;
602  if (avctx->block_align > 0)
603  buf_size = FFMIN(buf_size, avctx->block_align);
604  nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
605  break;
607  if (avctx->block_align > 0)
608  buf_size = FFMIN(buf_size, avctx->block_align);
609  if (buf_size < 4 * ch)
610  return AVERROR_INVALIDDATA;
611  nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
612  break;
614  if (avctx->block_align > 0)
615  buf_size = FFMIN(buf_size, avctx->block_align);
616  nb_samples = (buf_size - 4 * ch) * 2 / ch;
617  break;
619  {
620  int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
621  int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
622  if (avctx->block_align > 0)
623  buf_size = FFMIN(buf_size, avctx->block_align);
624  if (buf_size < 4 * ch)
625  return AVERROR_INVALIDDATA;
626  nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
627  break;
628  }
630  if (avctx->block_align > 0)
631  buf_size = FFMIN(buf_size, avctx->block_align);
632  nb_samples = (buf_size - 6 * ch) * 2 / ch;
633  break;
635  if (avctx->block_align > 0)
636  buf_size = FFMIN(buf_size, avctx->block_align);
637  nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch;
638  break;
642  {
643  int samples_per_byte;
644  switch (avctx->codec->id) {
645  case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
646  case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
647  case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
648  }
649  if (!s->status[0].step_index) {
650  if (buf_size < ch)
651  return AVERROR_INVALIDDATA;
652  nb_samples++;
653  buf_size -= ch;
654  }
655  nb_samples += buf_size * samples_per_byte / ch;
656  break;
657  }
659  {
660  int buf_bits = buf_size * 8 - 2;
661  int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
662  int block_hdr_size = 22 * ch;
663  int block_size = block_hdr_size + nbits * ch * 4095;
664  int nblocks = buf_bits / block_size;
665  int bits_left = buf_bits - nblocks * block_size;
666  nb_samples = nblocks * 4096;
667  if (bits_left >= block_hdr_size)
668  nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
669  break;
670  }
673  if (avctx->extradata) {
674  nb_samples = buf_size * 14 / (8 * ch);
675  break;
676  }
677  has_coded_samples = 1;
678  bytestream2_skip(gb, 4); // channel size
679  *coded_samples = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ?
680  bytestream2_get_le32(gb) :
681  bytestream2_get_be32(gb);
682  buf_size -= 8 + 36 * ch;
683  buf_size /= ch;
684  nb_samples = buf_size / 8 * 14;
685  if (buf_size % 8 > 1)
686  nb_samples += (buf_size % 8 - 1) * 2;
687  *approx_nb_samples = 1;
688  break;
690  nb_samples = buf_size / (9 * ch) * 16;
691  break;
693  nb_samples = (buf_size / 128) * 224 / ch;
694  break;
697  nb_samples = buf_size / (16 * ch) * 28;
698  break;
699  }
700 
701  /* validate coded sample count */
702  if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
703  return AVERROR_INVALIDDATA;
704 
705  return nb_samples;
706 }
707 
708 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
709  int *got_frame_ptr, AVPacket *avpkt)
710 {
711  AVFrame *frame = data;
712  const uint8_t *buf = avpkt->data;
713  int buf_size = avpkt->size;
714  ADPCMDecodeContext *c = avctx->priv_data;
715  ADPCMChannelStatus *cs;
716  int n, m, channel, i;
717  int16_t *samples;
718  int16_t **samples_p;
719  int st; /* stereo */
720  int count1, count2;
721  int nb_samples, coded_samples, approx_nb_samples, ret;
722  GetByteContext gb;
723 
724  bytestream2_init(&gb, buf, buf_size);
725  nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
726  if (nb_samples <= 0) {
727  av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
728  return AVERROR_INVALIDDATA;
729  }
730 
731  /* get output buffer */
732  frame->nb_samples = nb_samples;
733  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
734  return ret;
735  samples = (int16_t *)frame->data[0];
736  samples_p = (int16_t **)frame->extended_data;
737 
738  /* use coded_samples when applicable */
739  /* it is always <= nb_samples, so the output buffer will be large enough */
740  if (coded_samples) {
741  if (!approx_nb_samples && coded_samples != nb_samples)
742  av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
743  frame->nb_samples = nb_samples = coded_samples;
744  }
745 
746  st = avctx->channels == 2 ? 1 : 0;
747 
748  switch(avctx->codec->id) {
750  /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
751  Channel data is interleaved per-chunk. */
752  for (channel = 0; channel < avctx->channels; channel++) {
753  int predictor;
754  int step_index;
755  cs = &(c->status[channel]);
756  /* (pppppp) (piiiiiii) */
757 
758  /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
759  predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
760  step_index = predictor & 0x7F;
761  predictor &= ~0x7F;
762 
763  if (cs->step_index == step_index) {
764  int diff = predictor - cs->predictor;
765  if (diff < 0)
766  diff = - diff;
767  if (diff > 0x7f)
768  goto update;
769  } else {
770  update:
771  cs->step_index = step_index;
772  cs->predictor = predictor;
773  }
774 
775  if (cs->step_index > 88u){
776  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
777  channel, cs->step_index);
778  return AVERROR_INVALIDDATA;
779  }
780 
781  samples = samples_p[channel];
782 
783  for (m = 0; m < 64; m += 2) {
784  int byte = bytestream2_get_byteu(&gb);
785  samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
786  samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
787  }
788  }
789  break;
791  for(i=0; i<avctx->channels; i++){
792  cs = &(c->status[i]);
793  cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
794 
795  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
796  if (cs->step_index > 88u){
797  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
798  i, cs->step_index);
799  return AVERROR_INVALIDDATA;
800  }
801  }
802 
803  if (avctx->bits_per_coded_sample != 4) {
804  int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
805  int block_size = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
806  uint8_t temp[20] = { 0 };
808 
809  for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
810  for (i = 0; i < avctx->channels; i++) {
811  int j;
812 
813  cs = &c->status[i];
814  samples = &samples_p[i][1 + n * samples_per_block];
815  for (j = 0; j < block_size; j++) {
816  temp[j] = buf[4 * avctx->channels + block_size * n * avctx->channels +
817  (j % 4) + (j / 4) * (avctx->channels * 4) + i * 4];
818  }
819  ret = init_get_bits8(&g, (const uint8_t *)&temp, block_size);
820  if (ret < 0)
821  return ret;
822  for (m = 0; m < samples_per_block; m++) {
823  samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
824  avctx->bits_per_coded_sample);
825  }
826  }
827  }
828  bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
829  } else {
830  for (n = 0; n < (nb_samples - 1) / 8; n++) {
831  for (i = 0; i < avctx->channels; i++) {
832  cs = &c->status[i];
833  samples = &samples_p[i][1 + n * 8];
834  for (m = 0; m < 8; m += 2) {
835  int v = bytestream2_get_byteu(&gb);
836  samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
837  samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
838  }
839  }
840  }
841  }
842  break;
844  for (i = 0; i < avctx->channels; i++)
845  c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
846 
847  for (i = 0; i < avctx->channels; i++) {
848  c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
849  if (c->status[i].step_index > 88u) {
850  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
851  i, c->status[i].step_index);
852  return AVERROR_INVALIDDATA;
853  }
854  }
855 
856  for (i = 0; i < avctx->channels; i++) {
857  samples = (int16_t *)frame->data[i];
858  cs = &c->status[i];
859  for (n = nb_samples >> 1; n > 0; n--) {
860  int v = bytestream2_get_byteu(&gb);
861  *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
862  *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
863  }
864  }
865  break;
867  {
868  int block_predictor;
869 
870  block_predictor = bytestream2_get_byteu(&gb);
871  if (block_predictor > 6) {
872  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
873  block_predictor);
874  return AVERROR_INVALIDDATA;
875  }
876  c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
877  c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
878  if (st) {
879  block_predictor = bytestream2_get_byteu(&gb);
880  if (block_predictor > 6) {
881  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
882  block_predictor);
883  return AVERROR_INVALIDDATA;
884  }
885  c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
886  c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
887  }
888  c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
889  if (st){
890  c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
891  }
892 
893  c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
894  if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
895  c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
896  if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
897 
898  *samples++ = c->status[0].sample2;
899  if (st) *samples++ = c->status[1].sample2;
900  *samples++ = c->status[0].sample1;
901  if (st) *samples++ = c->status[1].sample1;
902  for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
903  int byte = bytestream2_get_byteu(&gb);
904  *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
905  *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
906  }
907  break;
908  }
910  for (channel = 0; channel < avctx->channels; channel+=2) {
911  bytestream2_skipu(&gb, 4);
912  c->status[channel ].step = bytestream2_get_le16u(&gb);
913  c->status[channel + 1].step = bytestream2_get_le16u(&gb);
914  c->status[channel ].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
915  bytestream2_skipu(&gb, 2);
916  c->status[channel + 1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
917  bytestream2_skipu(&gb, 2);
918  for (n = 0; n < nb_samples; n+=2) {
919  int v = bytestream2_get_byteu(&gb);
920  samples_p[channel][n ] = adpcm_mtaf_expand_nibble(&c->status[channel], v & 0x0F);
921  samples_p[channel][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel], v >> 4 );
922  }
923  for (n = 0; n < nb_samples; n+=2) {
924  int v = bytestream2_get_byteu(&gb);
925  samples_p[channel + 1][n ] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v & 0x0F);
926  samples_p[channel + 1][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v >> 4 );
927  }
928  }
929  break;
931  for (channel = 0; channel < avctx->channels; channel++) {
932  cs = &c->status[channel];
933  cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
934  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
935  if (cs->step_index > 88u){
936  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
937  channel, cs->step_index);
938  return AVERROR_INVALIDDATA;
939  }
940  }
941  for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
942  int v = bytestream2_get_byteu(&gb);
943  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
944  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
945  }
946  break;
948  {
949  int last_byte = 0;
950  int nibble;
951  int decode_top_nibble_next = 0;
952  int diff_channel;
953  const int16_t *samples_end = samples + avctx->channels * nb_samples;
954 
955  bytestream2_skipu(&gb, 10);
956  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
957  c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
958  c->status[0].step_index = bytestream2_get_byteu(&gb);
959  c->status[1].step_index = bytestream2_get_byteu(&gb);
960  if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
961  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
962  c->status[0].step_index, c->status[1].step_index);
963  return AVERROR_INVALIDDATA;
964  }
965  /* sign extend the predictors */
966  diff_channel = c->status[1].predictor;
967 
968  /* DK3 ADPCM support macro */
969 #define DK3_GET_NEXT_NIBBLE() \
970  if (decode_top_nibble_next) { \
971  nibble = last_byte >> 4; \
972  decode_top_nibble_next = 0; \
973  } else { \
974  last_byte = bytestream2_get_byteu(&gb); \
975  nibble = last_byte & 0x0F; \
976  decode_top_nibble_next = 1; \
977  }
978 
979  while (samples < samples_end) {
980 
981  /* for this algorithm, c->status[0] is the sum channel and
982  * c->status[1] is the diff channel */
983 
984  /* process the first predictor of the sum channel */
986  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
987 
988  /* process the diff channel predictor */
990  adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
991 
992  /* process the first pair of stereo PCM samples */
993  diff_channel = (diff_channel + c->status[1].predictor) / 2;
994  *samples++ = c->status[0].predictor + c->status[1].predictor;
995  *samples++ = c->status[0].predictor - c->status[1].predictor;
996 
997  /* process the second predictor of the sum channel */
999  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1000 
1001  /* process the second pair of stereo PCM samples */
1002  diff_channel = (diff_channel + c->status[1].predictor) / 2;
1003  *samples++ = c->status[0].predictor + c->status[1].predictor;
1004  *samples++ = c->status[0].predictor - c->status[1].predictor;
1005  }
1006 
1007  if ((bytestream2_tell(&gb) & 1))
1008  bytestream2_skip(&gb, 1);
1009  break;
1010  }
1012  for (channel = 0; channel < avctx->channels; channel++) {
1013  cs = &c->status[channel];
1014  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1015  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1016  if (cs->step_index > 88u){
1017  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1018  channel, cs->step_index);
1019  return AVERROR_INVALIDDATA;
1020  }
1021  }
1022 
1023  for (n = nb_samples >> (1 - st); n > 0; n--) {
1024  int v1, v2;
1025  int v = bytestream2_get_byteu(&gb);
1026  /* nibbles are swapped for mono */
1027  if (st) {
1028  v1 = v >> 4;
1029  v2 = v & 0x0F;
1030  } else {
1031  v2 = v >> 4;
1032  v1 = v & 0x0F;
1033  }
1034  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
1035  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
1036  }
1037  break;
1039  for (channel = 0; channel < avctx->channels; channel++) {
1040  cs = &c->status[channel];
1041  samples = samples_p[channel];
1042  bytestream2_skip(&gb, 4);
1043  for (n = 0; n < nb_samples; n += 2) {
1044  int v = bytestream2_get_byteu(&gb);
1045  *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
1046  *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
1047  }
1048  }
1049  break;
1051  while (bytestream2_get_bytes_left(&gb) > 0) {
1052  int v = bytestream2_get_byteu(&gb);
1053  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
1054  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1055  }
1056  break;
1058  while (bytestream2_get_bytes_left(&gb) > 0) {
1059  int v = bytestream2_get_byteu(&gb);
1060  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
1061  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
1062  }
1063  break;
1065  for (channel = 0; channel < avctx->channels; channel++) {
1066  cs = &c->status[channel];
1067  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1068  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1069  if (cs->step_index > 88u){
1070  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1071  channel, cs->step_index);
1072  return AVERROR_INVALIDDATA;
1073  }
1074  }
1075  for (n = 0; n < nb_samples / 2; n++) {
1076  int byte[2];
1077 
1078  byte[0] = bytestream2_get_byteu(&gb);
1079  if (st)
1080  byte[1] = bytestream2_get_byteu(&gb);
1081  for(channel = 0; channel < avctx->channels; channel++) {
1082  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
1083  }
1084  for(channel = 0; channel < avctx->channels; channel++) {
1085  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
1086  }
1087  }
1088  break;
1090  if (c->vqa_version == 3) {
1091  for (channel = 0; channel < avctx->channels; channel++) {
1092  int16_t *smp = samples_p[channel];
1093 
1094  for (n = nb_samples / 2; n > 0; n--) {
1095  int v = bytestream2_get_byteu(&gb);
1096  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1097  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1098  }
1099  }
1100  } else {
1101  for (n = nb_samples / 2; n > 0; n--) {
1102  for (channel = 0; channel < avctx->channels; channel++) {
1103  int v = bytestream2_get_byteu(&gb);
1104  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1105  samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1106  }
1107  samples += avctx->channels;
1108  }
1109  }
1110  bytestream2_seek(&gb, 0, SEEK_END);
1111  break;
1112  case AV_CODEC_ID_ADPCM_XA:
1113  {
1114  int16_t *out0 = samples_p[0];
1115  int16_t *out1 = samples_p[1];
1116  int samples_per_block = 28 * (3 - avctx->channels) * 4;
1117  int sample_offset = 0;
1118  while (bytestream2_get_bytes_left(&gb) >= 128) {
1119  if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1120  &c->status[0], &c->status[1],
1121  avctx->channels, sample_offset)) < 0)
1122  return ret;
1123  bytestream2_skipu(&gb, 128);
1124  sample_offset += samples_per_block;
1125  }
1126  break;
1127  }
1129  for (i=0; i<=st; i++) {
1130  c->status[i].step_index = bytestream2_get_le32u(&gb);
1131  if (c->status[i].step_index > 88u) {
1132  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1133  i, c->status[i].step_index);
1134  return AVERROR_INVALIDDATA;
1135  }
1136  }
1137  for (i=0; i<=st; i++)
1138  c->status[i].predictor = bytestream2_get_le32u(&gb);
1139 
1140  for (n = nb_samples >> (1 - st); n > 0; n--) {
1141  int byte = bytestream2_get_byteu(&gb);
1142  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
1143  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1144  }
1145  break;
1147  for (n = nb_samples >> (1 - st); n > 0; n--) {
1148  int byte = bytestream2_get_byteu(&gb);
1149  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
1150  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1151  }
1152  break;
1153  case AV_CODEC_ID_ADPCM_EA:
1154  {
1155  int previous_left_sample, previous_right_sample;
1156  int current_left_sample, current_right_sample;
1157  int next_left_sample, next_right_sample;
1158  int coeff1l, coeff2l, coeff1r, coeff2r;
1159  int shift_left, shift_right;
1160 
1161  /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1162  each coding 28 stereo samples. */
1163 
1164  if(avctx->channels != 2)
1165  return AVERROR_INVALIDDATA;
1166 
1167  current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1168  previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1169  current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1170  previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1171 
1172  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1173  int byte = bytestream2_get_byteu(&gb);
1174  coeff1l = ea_adpcm_table[ byte >> 4 ];
1175  coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
1176  coeff1r = ea_adpcm_table[ byte & 0x0F];
1177  coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1178 
1179  byte = bytestream2_get_byteu(&gb);
1180  shift_left = 20 - (byte >> 4);
1181  shift_right = 20 - (byte & 0x0F);
1182 
1183  for (count2 = 0; count2 < 28; count2++) {
1184  byte = bytestream2_get_byteu(&gb);
1185  next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
1186  next_right_sample = sign_extend(byte, 4) << shift_right;
1187 
1188  next_left_sample = (next_left_sample +
1189  (current_left_sample * coeff1l) +
1190  (previous_left_sample * coeff2l) + 0x80) >> 8;
1191  next_right_sample = (next_right_sample +
1192  (current_right_sample * coeff1r) +
1193  (previous_right_sample * coeff2r) + 0x80) >> 8;
1194 
1195  previous_left_sample = current_left_sample;
1196  current_left_sample = av_clip_int16(next_left_sample);
1197  previous_right_sample = current_right_sample;
1198  current_right_sample = av_clip_int16(next_right_sample);
1199  *samples++ = current_left_sample;
1200  *samples++ = current_right_sample;
1201  }
1202  }
1203 
1204  bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1205 
1206  break;
1207  }
1209  {
1210  int coeff[2][2], shift[2];
1211 
1212  for(channel = 0; channel < avctx->channels; channel++) {
1213  int byte = bytestream2_get_byteu(&gb);
1214  for (i=0; i<2; i++)
1215  coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1216  shift[channel] = 20 - (byte & 0x0F);
1217  }
1218  for (count1 = 0; count1 < nb_samples / 2; count1++) {
1219  int byte[2];
1220 
1221  byte[0] = bytestream2_get_byteu(&gb);
1222  if (st) byte[1] = bytestream2_get_byteu(&gb);
1223  for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1224  for(channel = 0; channel < avctx->channels; channel++) {
1225  int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1226  sample = (sample +
1227  c->status[channel].sample1 * coeff[channel][0] +
1228  c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1229  c->status[channel].sample2 = c->status[channel].sample1;
1230  c->status[channel].sample1 = av_clip_int16(sample);
1231  *samples++ = c->status[channel].sample1;
1232  }
1233  }
1234  }
1235  bytestream2_seek(&gb, 0, SEEK_END);
1236  break;
1237  }
1240  case AV_CODEC_ID_ADPCM_EA_R3: {
1241  /* channel numbering
1242  2chan: 0=fl, 1=fr
1243  4chan: 0=fl, 1=rl, 2=fr, 3=rr
1244  6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1245  const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1246  int previous_sample, current_sample, next_sample;
1247  int coeff1, coeff2;
1248  int shift;
1249  unsigned int channel;
1250  uint16_t *samplesC;
1251  int count = 0;
1252  int offsets[6];
1253 
1254  for (channel=0; channel<avctx->channels; channel++)
1255  offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1256  bytestream2_get_le32(&gb)) +
1257  (avctx->channels + 1) * 4;
1258 
1259  for (channel=0; channel<avctx->channels; channel++) {
1260  bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1261  samplesC = samples_p[channel];
1262 
1263  if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1264  current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1265  previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1266  } else {
1267  current_sample = c->status[channel].predictor;
1268  previous_sample = c->status[channel].prev_sample;
1269  }
1270 
1271  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1272  int byte = bytestream2_get_byte(&gb);
1273  if (byte == 0xEE) { /* only seen in R2 and R3 */
1274  current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1275  previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1276 
1277  for (count2=0; count2<28; count2++)
1278  *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1279  } else {
1280  coeff1 = ea_adpcm_table[ byte >> 4 ];
1281  coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1282  shift = 20 - (byte & 0x0F);
1283 
1284  for (count2=0; count2<28; count2++) {
1285  if (count2 & 1)
1286  next_sample = sign_extend(byte, 4) << shift;
1287  else {
1288  byte = bytestream2_get_byte(&gb);
1289  next_sample = sign_extend(byte >> 4, 4) << shift;
1290  }
1291 
1292  next_sample += (current_sample * coeff1) +
1293  (previous_sample * coeff2);
1294  next_sample = av_clip_int16(next_sample >> 8);
1295 
1296  previous_sample = current_sample;
1297  current_sample = next_sample;
1298  *samplesC++ = current_sample;
1299  }
1300  }
1301  }
1302  if (!count) {
1303  count = count1;
1304  } else if (count != count1) {
1305  av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1306  count = FFMAX(count, count1);
1307  }
1308 
1309  if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1310  c->status[channel].predictor = current_sample;
1311  c->status[channel].prev_sample = previous_sample;
1312  }
1313  }
1314 
1315  frame->nb_samples = count * 28;
1316  bytestream2_seek(&gb, 0, SEEK_END);
1317  break;
1318  }
1320  for (channel=0; channel<avctx->channels; channel++) {
1321  int coeff[2][4], shift[4];
1322  int16_t *s = samples_p[channel];
1323  for (n = 0; n < 4; n++, s += 32) {
1324  int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1325  for (i=0; i<2; i++)
1326  coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1327  s[0] = val & ~0x0F;
1328 
1329  val = sign_extend(bytestream2_get_le16u(&gb), 16);
1330  shift[n] = 20 - (val & 0x0F);
1331  s[1] = val & ~0x0F;
1332  }
1333 
1334  for (m=2; m<32; m+=2) {
1335  s = &samples_p[channel][m];
1336  for (n = 0; n < 4; n++, s += 32) {
1337  int level, pred;
1338  int byte = bytestream2_get_byteu(&gb);
1339 
1340  level = sign_extend(byte >> 4, 4) << shift[n];
1341  pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1342  s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1343 
1344  level = sign_extend(byte, 4) << shift[n];
1345  pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1346  s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1347  }
1348  }
1349  }
1350  break;
1352  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1353  c->status[0].step_index = bytestream2_get_byteu(&gb);
1354  bytestream2_skipu(&gb, 5);
1355  if (c->status[0].step_index > 88u) {
1356  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1357  c->status[0].step_index);
1358  return AVERROR_INVALIDDATA;
1359  }
1360 
1361  for (n = nb_samples >> (1 - st); n > 0; n--) {
1362  int v = bytestream2_get_byteu(&gb);
1363 
1364  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1365  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1366  }
1367  break;
1369  for (i = 0; i < avctx->channels; i++) {
1370  c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1371  c->status[i].step_index = bytestream2_get_byteu(&gb);
1372  bytestream2_skipu(&gb, 1);
1373  if (c->status[i].step_index > 88u) {
1374  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1375  c->status[i].step_index);
1376  return AVERROR_INVALIDDATA;
1377  }
1378  }
1379 
1380  for (n = nb_samples >> (1 - st); n > 0; n--) {
1381  int v = bytestream2_get_byteu(&gb);
1382 
1383  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
1384  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
1385  }
1386  break;
1387  case AV_CODEC_ID_ADPCM_CT:
1388  for (n = nb_samples >> (1 - st); n > 0; n--) {
1389  int v = bytestream2_get_byteu(&gb);
1390  *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1391  *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1392  }
1393  break;
1397  if (!c->status[0].step_index) {
1398  /* the first byte is a raw sample */
1399  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1400  if (st)
1401  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1402  c->status[0].step_index = 1;
1403  nb_samples--;
1404  }
1405  if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1406  for (n = nb_samples >> (1 - st); n > 0; n--) {
1407  int byte = bytestream2_get_byteu(&gb);
1408  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1409  byte >> 4, 4, 0);
1410  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1411  byte & 0x0F, 4, 0);
1412  }
1413  } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1414  for (n = (nb_samples<<st) / 3; n > 0; n--) {
1415  int byte = bytestream2_get_byteu(&gb);
1416  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1417  byte >> 5 , 3, 0);
1418  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1419  (byte >> 2) & 0x07, 3, 0);
1420  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1421  byte & 0x03, 2, 0);
1422  }
1423  } else {
1424  for (n = nb_samples >> (2 - st); n > 0; n--) {
1425  int byte = bytestream2_get_byteu(&gb);
1426  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1427  byte >> 6 , 2, 2);
1428  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1429  (byte >> 4) & 0x03, 2, 2);
1430  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1431  (byte >> 2) & 0x03, 2, 2);
1432  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1433  byte & 0x03, 2, 2);
1434  }
1435  }
1436  break;
1437  case AV_CODEC_ID_ADPCM_SWF:
1438  adpcm_swf_decode(avctx, buf, buf_size, samples);
1439  bytestream2_seek(&gb, 0, SEEK_END);
1440  break;
1442  for (n = nb_samples >> (1 - st); n > 0; n--) {
1443  int v = bytestream2_get_byteu(&gb);
1444  *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1445  *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1446  }
1447  break;
1449  if (!c->has_status) {
1450  for (channel = 0; channel < avctx->channels; channel++)
1451  c->status[channel].step = 0;
1452  c->has_status = 1;
1453  }
1454  for (channel = 0; channel < avctx->channels; channel++) {
1455  samples = samples_p[channel];
1456  for (n = nb_samples >> 1; n > 0; n--) {
1457  int v = bytestream2_get_byteu(&gb);
1458  *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v & 0x0F);
1459  *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v >> 4 );
1460  }
1461  }
1462  break;
1463  case AV_CODEC_ID_ADPCM_AFC:
1464  {
1465  int samples_per_block;
1466  int blocks;
1467 
1468  if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1469  samples_per_block = avctx->extradata[0] / 16;
1470  blocks = nb_samples / avctx->extradata[0];
1471  } else {
1472  samples_per_block = nb_samples / 16;
1473  blocks = 1;
1474  }
1475 
1476  for (m = 0; m < blocks; m++) {
1477  for (channel = 0; channel < avctx->channels; channel++) {
1478  int prev1 = c->status[channel].sample1;
1479  int prev2 = c->status[channel].sample2;
1480 
1481  samples = samples_p[channel] + m * 16;
1482  /* Read in every sample for this channel. */
1483  for (i = 0; i < samples_per_block; i++) {
1484  int byte = bytestream2_get_byteu(&gb);
1485  int scale = 1 << (byte >> 4);
1486  int index = byte & 0xf;
1487  int factor1 = ff_adpcm_afc_coeffs[0][index];
1488  int factor2 = ff_adpcm_afc_coeffs[1][index];
1489 
1490  /* Decode 16 samples. */
1491  for (n = 0; n < 16; n++) {
1492  int32_t sampledat;
1493 
1494  if (n & 1) {
1495  sampledat = sign_extend(byte, 4);
1496  } else {
1497  byte = bytestream2_get_byteu(&gb);
1498  sampledat = sign_extend(byte >> 4, 4);
1499  }
1500 
1501  sampledat = ((prev1 * factor1 + prev2 * factor2) +
1502  ((sampledat * scale) << 11)) >> 11;
1503  *samples = av_clip_int16(sampledat);
1504  prev2 = prev1;
1505  prev1 = *samples++;
1506  }
1507  }
1508 
1509  c->status[channel].sample1 = prev1;
1510  c->status[channel].sample2 = prev2;
1511  }
1512  }
1513  bytestream2_seek(&gb, 0, SEEK_END);
1514  break;
1515  }
1516  case AV_CODEC_ID_ADPCM_THP:
1518  {
1519  int table[14][16];
1520  int ch;
1521 
1522 #define THP_GET16(g) \
1523  sign_extend( \
1524  avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
1525  bytestream2_get_le16u(&(g)) : \
1526  bytestream2_get_be16u(&(g)), 16)
1527 
1528  if (avctx->extradata) {
1530  if (avctx->extradata_size < 32 * avctx->channels) {
1531  av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1532  return AVERROR_INVALIDDATA;
1533  }
1534 
1535  bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1536  for (i = 0; i < avctx->channels; i++)
1537  for (n = 0; n < 16; n++)
1538  table[i][n] = THP_GET16(tb);
1539  } else {
1540  for (i = 0; i < avctx->channels; i++)
1541  for (n = 0; n < 16; n++)
1542  table[i][n] = THP_GET16(gb);
1543 
1544  if (!c->has_status) {
1545  /* Initialize the previous sample. */
1546  for (i = 0; i < avctx->channels; i++) {
1547  c->status[i].sample1 = THP_GET16(gb);
1548  c->status[i].sample2 = THP_GET16(gb);
1549  }
1550  c->has_status = 1;
1551  } else {
1552  bytestream2_skip(&gb, avctx->channels * 4);
1553  }
1554  }
1555 
1556  for (ch = 0; ch < avctx->channels; ch++) {
1557  samples = samples_p[ch];
1558 
1559  /* Read in every sample for this channel. */
1560  for (i = 0; i < (nb_samples + 13) / 14; i++) {
1561  int byte = bytestream2_get_byteu(&gb);
1562  int index = (byte >> 4) & 7;
1563  unsigned int exp = byte & 0x0F;
1564  int factor1 = table[ch][index * 2];
1565  int factor2 = table[ch][index * 2 + 1];
1566 
1567  /* Decode 14 samples. */
1568  for (n = 0; n < 14 && (i * 14 + n < nb_samples); n++) {
1569  int32_t sampledat;
1570 
1571  if (n & 1) {
1572  sampledat = sign_extend(byte, 4);
1573  } else {
1574  byte = bytestream2_get_byteu(&gb);
1575  sampledat = sign_extend(byte >> 4, 4);
1576  }
1577 
1578  sampledat = ((c->status[ch].sample1 * factor1
1579  + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
1580  *samples = av_clip_int16(sampledat);
1581  c->status[ch].sample2 = c->status[ch].sample1;
1582  c->status[ch].sample1 = *samples++;
1583  }
1584  }
1585  }
1586  break;
1587  }
1588  case AV_CODEC_ID_ADPCM_DTK:
1589  for (channel = 0; channel < avctx->channels; channel++) {
1590  samples = samples_p[channel];
1591 
1592  /* Read in every sample for this channel. */
1593  for (i = 0; i < nb_samples / 28; i++) {
1594  int byte, header;
1595  if (channel)
1596  bytestream2_skipu(&gb, 1);
1597  header = bytestream2_get_byteu(&gb);
1598  bytestream2_skipu(&gb, 3 - channel);
1599 
1600  /* Decode 28 samples. */
1601  for (n = 0; n < 28; n++) {
1602  int32_t sampledat, prev;
1603 
1604  switch (header >> 4) {
1605  case 1:
1606  prev = (c->status[channel].sample1 * 0x3c);
1607  break;
1608  case 2:
1609  prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1610  break;
1611  case 3:
1612  prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1613  break;
1614  default:
1615  prev = 0;
1616  }
1617 
1618  prev = av_clip_intp2((prev + 0x20) >> 6, 21);
1619 
1620  byte = bytestream2_get_byteu(&gb);
1621  if (!channel)
1622  sampledat = sign_extend(byte, 4);
1623  else
1624  sampledat = sign_extend(byte >> 4, 4);
1625 
1626  sampledat = (((sampledat << 12) >> (header & 0xf)) << 6) + prev;
1627  *samples++ = av_clip_int16(sampledat >> 6);
1628  c->status[channel].sample2 = c->status[channel].sample1;
1629  c->status[channel].sample1 = sampledat;
1630  }
1631  }
1632  if (!channel)
1633  bytestream2_seek(&gb, 0, SEEK_SET);
1634  }
1635  break;
1636  case AV_CODEC_ID_ADPCM_PSX:
1637  for (channel = 0; channel < avctx->channels; channel++) {
1638  samples = samples_p[channel];
1639 
1640  /* Read in every sample for this channel. */
1641  for (i = 0; i < nb_samples / 28; i++) {
1642  int filter, shift, flag, byte;
1643 
1644  filter = bytestream2_get_byteu(&gb);
1645  shift = filter & 0xf;
1646  filter = filter >> 4;
1647  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table))
1648  return AVERROR_INVALIDDATA;
1649  flag = bytestream2_get_byteu(&gb);
1650 
1651  /* Decode 28 samples. */
1652  for (n = 0; n < 28; n++) {
1653  int sample = 0, scale;
1654 
1655  if (flag < 0x07) {
1656  if (n & 1) {
1657  scale = sign_extend(byte >> 4, 4);
1658  } else {
1659  byte = bytestream2_get_byteu(&gb);
1660  scale = sign_extend(byte, 4);
1661  }
1662 
1663  scale = scale << 12;
1664  sample = (int)((scale >> shift) + (c->status[channel].sample1 * xa_adpcm_table[filter][0] + c->status[channel].sample2 * xa_adpcm_table[filter][1]) / 64);
1665  }
1666  *samples++ = av_clip_int16(sample);
1667  c->status[channel].sample2 = c->status[channel].sample1;
1668  c->status[channel].sample1 = sample;
1669  }
1670  }
1671  }
1672  break;
1673 
1674  default:
1675  return -1;
1676  }
1677 
1678  if (avpkt->size && bytestream2_tell(&gb) == 0) {
1679  av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
1680  return AVERROR_INVALIDDATA;
1681  }
1682 
1683  *got_frame_ptr = 1;
1684 
1685  if (avpkt->size < bytestream2_tell(&gb)) {
1686  av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
1687  return avpkt->size;
1688  }
1689 
1690  return bytestream2_tell(&gb);
1691 }
1692 
1693 static void adpcm_flush(AVCodecContext *avctx)
1694 {
1695  ADPCMDecodeContext *c = avctx->priv_data;
1696  c->has_status = 0;
1697 }
1698 
1699 
1707 
1708 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1709 AVCodec ff_ ## name_ ## _decoder = { \
1710  .name = #name_, \
1711  .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1712  .type = AVMEDIA_TYPE_AUDIO, \
1713  .id = id_, \
1714  .priv_data_size = sizeof(ADPCMDecodeContext), \
1715  .init = adpcm_decode_init, \
1716  .decode = adpcm_decode_frame, \
1717  .flush = adpcm_flush, \
1718  .capabilities = AV_CODEC_CAP_DR1, \
1719  .sample_fmts = sample_fmts_, \
1720 }
1721 
1722 /* Note: Do not forget to add new entries to the Makefile as well. */
1723 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1724 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
1725 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AICA, sample_fmts_s16p, adpcm_aica, "ADPCM Yamaha AICA");
1726 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1727 ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK");
1728 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1729 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1730 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1731 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1732 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1733 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1734 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1735 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1736 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DAT4, sample_fmts_s16, adpcm_ima_dat4, "ADPCM IMA Eurocom DAT4");
1737 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1738 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1739 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1740 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1741 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1742 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
1743 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1744 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical");
1745 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1746 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1747 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1748 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1749 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MTAF, sample_fmts_s16p, adpcm_mtaf, "ADPCM MTAF");
1750 ADPCM_DECODER(AV_CODEC_ID_ADPCM_PSX, sample_fmts_s16p, adpcm_psx, "ADPCM Playstation");
1751 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1752 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1753 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1754 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1755 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP_LE, sample_fmts_s16p, adpcm_thp_le, "ADPCM Nintendo THP (little-endian)");
1756 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo THP");
1757 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1758 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");
#define NULL
Definition: coverity.c:32
const struct AVCodec * codec
Definition: avcodec.h:1658
const char const char void * val
Definition: avisynth_c.h:634
const char * s
Definition: avisynth_c.h:631
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:184
static int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
Definition: adpcm.c:350
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
#define THP_GET16(g)
const int16_t ff_adpcm_afc_coeffs[2][16]
Definition: adpcm_data.c:109
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:247
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
else temp
Definition: vf_mcdeint.c:259
const char * g
Definition: vf_curves.c:108
int size
Definition: avcodec.h:1581
int flag
Definition: cpu.c:34
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:133
static enum AVSampleFormat sample_fmts_s16[]
Definition: adpcm.c:1700
#define sample
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
Definition: bytestream.h:87
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs...
Definition: avcodec.h:2447
static int get_sbits(GetBitContext *s, int n)
Definition: get_bits.h:232
static int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:255
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
const uint8_t ff_adpcm_AdaptCoeff1[]
Divided by 4 to fit in 8-bit integers.
Definition: adpcm_data.c:90
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2418
uint8_t
#define av_cold
Definition: attributes.h:82
static av_cold int adpcm_decode_init(AVCodecContext *avctx)
Definition: adpcm.c:92
float delta
static void adpcm_flush(AVCodecContext *avctx)
Definition: adpcm.c:1693
static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
Definition: adpcm.c:439
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1764
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, uint8_t clip)
Definition: cfhd.c:80
static const int xa_adpcm_table[5][2]
Definition: adpcm.c:60
ADPCM tables.
static AVFrame * frame
uint8_t * data
Definition: avcodec.h:1580
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:199
static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb, int buf_size, int *coded_samples, int *approx_nb_samples)
Get the number of samples that will be decoded from the packet.
Definition: adpcm.c:507
static av_always_inline void bytestream2_skipu(GetByteContext *g, unsigned int size)
Definition: bytestream.h:170
bitstream reader API header.
ptrdiff_t size
Definition: opengl_enc.c:101
static const uint8_t header[24]
Definition: sdr2.c:67
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:3042
#define av_log(a,...)
unsigned m
Definition: audioconvert.c:187
static void predictor(uint8_t *src, int size)
Definition: exr.c:252
enum AVCodecID id
Definition: avcodec.h:3556
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
ADPCM encoder/decoder common header.
static const int ea_adpcm_table[]
Definition: adpcm.c:68
#define AVERROR(e)
Definition: error.h:43
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:164
const int8_t *const ff_adpcm_index_tables[4]
Definition: adpcm_data.c:50
static const struct endianess table[]
const int16_t ff_adpcm_step_table[89]
This is the step table.
Definition: adpcm_data.c:61
static int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
Definition: adpcm.c:229
static av_always_inline unsigned int bytestream2_get_bytes_left(GetByteContext *g)
Definition: bytestream.h:154
GLsizei count
Definition: opengl_enc.c:109
static int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:274
#define FFMAX(a, b)
Definition: common.h:94
static int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
Definition: adpcm.c:206
int8_t exp
Definition: eval.c:64
const int8_t ff_adpcm_index_table[16]
Definition: adpcm_data.c:40
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int64_t nb_samples_notify, AVRational time_base)
const int16_t ff_adpcm_mtaf_stepsize[32][16]
Definition: adpcm_data.c:114
static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1, const uint8_t *in, ADPCMChannelStatus *left, ADPCMChannelStatus *right, int channels, int sample_offset)
Definition: adpcm.c:359
#define FFMIN(a, b)
Definition: common.h:96
const int8_t ff_adpcm_AdaptCoeff2[]
Divided by 4 to fit in 8-bit integers.
Definition: adpcm_data.c:95
int vqa_version
VQA version.
Definition: adpcm.c:88
int32_t
static const uint8_t ff_adpcm_ima_block_sizes[4]
Definition: adpcm_data.h:31
static enum AVSampleFormat sample_fmts_s16p[]
Definition: adpcm.c:1702
int n
Definition: avisynth_c.h:547
const int16_t ff_adpcm_oki_step_table[49]
Definition: adpcm_data.c:73
#define FF_ARRAY_ELEMS(a)
static const float pred[4]
Definition: siprdata.h:259
static const int swf_index_tables[4][16]
Definition: adpcm.c:77
static const uint8_t ff_adpcm_ima_block_samples[4]
Definition: adpcm_data.h:32
static av_always_inline int bytestream2_tell(GetByteContext *g)
Definition: bytestream.h:188
const int16_t ff_adpcm_AdaptationTable[]
Definition: adpcm_data.c:84
Libavcodec external API header.
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_WB16 unsigned int_TMPL byte
Definition: bytestream.h:87
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:437
main external API structure.
Definition: avcodec.h:1649
static int16_t adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
Definition: adpcm.c:336
#define DK3_GET_NEXT_NIBBLE()
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:928
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
static int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
Definition: adpcm.c:180
void * buf
Definition: avisynth_c.h:553
int extradata_size
Definition: avcodec.h:1765
int index
Definition: gxfenc.c:89
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:406
#define u(width,...)
ADPCMChannelStatus status[14]
Definition: adpcm.c:87
static av_const int sign_extend(int val, unsigned bits)
Definition: mathops.h:139
static int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
Definition: adpcm.c:316
static unsigned int get_bits_le(GetBitContext *s, int n)
Definition: get_bits.h:267
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:198
uint8_t level
Definition: svq3.c:193
const int8_t ff_adpcm_yamaha_difflookup[]
Definition: adpcm_data.c:104
common internal api header.
const int16_t ff_adpcm_yamaha_indexscale[]
Definition: adpcm_data.c:99
static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: adpcm.c:708
signed 16 bits
Definition: samplefmt.h:61
static double c[64]
unsigned bps
Definition: movenc.c:1368
void * priv_data
Definition: avcodec.h:1691
static av_always_inline int diff(const uint32_t a, const uint32_t b)
int channels
number of audio channels
Definition: avcodec.h:2411
static const double coeff[2][5]
Definition: vf_owdenoise.c:71
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
Definition: bytestream.h:208
static int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
Definition: adpcm.c:295
static enum AVSampleFormat sample_fmts_both[]
Definition: adpcm.c:1704
int16_t step_index
Definition: adpcm.h:35
signed 16 bits, planar
Definition: samplefmt.h:67
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:231
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
Definition: bytestream.h:87
This structure stores compressed data.
Definition: avcodec.h:1557
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:241
for(j=16;j >0;--j)
#define tb
Definition: regdef.h:68
#define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_)
Definition: adpcm.c:1708