FFmpeg
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/display.h"
30 #include "libavutil/imgutils.h"
32 #include "libavutil/stereo3d.h"
33 #include "libavutil/timecode.h"
34 #include "internal.h"
35 #include "cabac.h"
36 #include "cabac_functions.h"
37 #include "error_resilience.h"
38 #include "avcodec.h"
39 #include "h264.h"
40 #include "h264dec.h"
41 #include "h264data.h"
42 #include "h264chroma.h"
43 #include "h264_mvpred.h"
44 #include "h264_ps.h"
45 #include "golomb.h"
46 #include "mathops.h"
47 #include "mpegutils.h"
48 #include "rectangle.h"
49 #include "thread.h"
50 
51 static const uint8_t field_scan[16+1] = {
52  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
53  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
54  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
55  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
56 };
57 
58 static const uint8_t field_scan8x8[64+1] = {
59  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
60  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
61  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
62  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
63  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
64  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
65  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
66  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
67  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
68  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
69  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
70  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
71  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
72  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
73  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
74  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
75 };
76 
77 static const uint8_t field_scan8x8_cavlc[64+1] = {
78  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
79  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
80  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
81  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
82  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
83  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
84  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
85  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
86  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
87  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
88  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
89  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
90  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
91  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
92  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
93  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
94 };
95 
96 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
97 static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
98  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
99  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
100  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
101  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
102  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
103  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
104  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
105  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
106  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
107  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
108  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
109  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
110  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
111  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
112  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
113  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
114 };
115 
116 static void release_unused_pictures(H264Context *h, int remove_current)
117 {
118  int i;
119 
120  /* release non reference frames */
121  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
122  if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
123  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
124  ff_h264_unref_picture(h, &h->DPB[i]);
125  }
126  }
127 }
128 
129 static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
130 {
131  const H264Context *h = sl->h264;
132  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
133 
134  av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
135  // edge emu needs blocksize + filter length - 1
136  // (= 21x21 for H.264)
137  av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
138 
140  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
142  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
143 
144  if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
145  !sl->top_borders[0] || !sl->top_borders[1]) {
148  av_freep(&sl->top_borders[0]);
149  av_freep(&sl->top_borders[1]);
150 
153  sl->top_borders_allocated[0] = 0;
154  sl->top_borders_allocated[1] = 0;
155  return AVERROR(ENOMEM);
156  }
157 
158  return 0;
159 }
160 
162 {
163  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
164  const int mb_array_size = h->mb_stride * h->mb_height;
165  const int b4_stride = h->mb_width * 4 + 1;
166  const int b4_array_size = b4_stride * h->mb_height * 4;
167 
168  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
170  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
171  sizeof(uint32_t), av_buffer_allocz);
172  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
173  sizeof(int16_t), av_buffer_allocz);
174  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
175 
176  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
177  !h->ref_index_pool) {
178  av_buffer_pool_uninit(&h->qscale_table_pool);
179  av_buffer_pool_uninit(&h->mb_type_pool);
180  av_buffer_pool_uninit(&h->motion_val_pool);
181  av_buffer_pool_uninit(&h->ref_index_pool);
182  return AVERROR(ENOMEM);
183  }
184 
185  return 0;
186 }
187 
189 {
190  int i, ret = 0;
191 
192  av_assert0(!pic->f->data[0]);
193 
194  pic->tf.f = pic->f;
195  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
197  if (ret < 0)
198  goto fail;
199 
200  if (pic->needs_fg) {
201  pic->tf_grain.f = pic->f_grain;
202  pic->f_grain->format = pic->f->format;
203  pic->f_grain->width = pic->f->width;
204  pic->f_grain->height = pic->f->height;
205  ret = ff_thread_get_buffer(h->avctx, &pic->tf_grain, 0);
206  if (ret < 0)
207  goto fail;
208  }
209 
210  if (h->avctx->hwaccel) {
211  const AVHWAccel *hwaccel = h->avctx->hwaccel;
213  if (hwaccel->frame_priv_data_size) {
215  if (!pic->hwaccel_priv_buf)
216  return AVERROR(ENOMEM);
218  }
219  }
220  if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) {
221  int h_chroma_shift, v_chroma_shift;
223  &h_chroma_shift, &v_chroma_shift);
224 
225  for(i=0; i<AV_CEIL_RSHIFT(pic->f->height, v_chroma_shift); i++) {
226  memset(pic->f->data[1] + pic->f->linesize[1]*i,
227  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
228  memset(pic->f->data[2] + pic->f->linesize[2]*i,
229  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
230  }
231  }
232 
233  if (!h->qscale_table_pool) {
235  if (ret < 0)
236  goto fail;
237  }
238 
239  pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool);
240  pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool);
241  if (!pic->qscale_table_buf || !pic->mb_type_buf)
242  goto fail;
243 
244  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
245  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
246 
247  for (i = 0; i < 2; i++) {
248  pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool);
249  pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool);
250  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
251  goto fail;
252 
253  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
254  pic->ref_index[i] = pic->ref_index_buf[i]->data;
255  }
256 
257  pic->pps_buf = av_buffer_ref(h->ps.pps_ref);
258  if (!pic->pps_buf)
259  goto fail;
260  pic->pps = (const PPS*)pic->pps_buf->data;
261 
262  pic->mb_width = h->mb_width;
263  pic->mb_height = h->mb_height;
264  pic->mb_stride = h->mb_stride;
265 
266  return 0;
267 fail:
268  ff_h264_unref_picture(h, pic);
269  return (ret < 0) ? ret : AVERROR(ENOMEM);
270 }
271 
273 {
274  int i;
275 
276  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
277  if (!h->DPB[i].f->buf[0])
278  return i;
279  }
280  return AVERROR_INVALIDDATA;
281 }
282 
283 
284 #define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size))))
285 
286 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
287  (((pic) && (pic) >= (old_ctx)->DPB && \
288  (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
289  &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
290 
291 static void copy_picture_range(H264Picture **to, H264Picture **from, int count,
292  H264Context *new_base,
293  H264Context *old_base)
294 {
295  int i;
296 
297  for (i = 0; i < count; i++) {
298  av_assert1(!from[i] ||
299  IN_RANGE(from[i], old_base, 1) ||
300  IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT));
301  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
302  }
303 }
304 
306 
308  const AVCodecContext *src)
309 {
310  H264Context *h = dst->priv_data, *h1 = src->priv_data;
311  int inited = h->context_initialized, err = 0;
312  int need_reinit = 0;
313  int i, ret;
314 
315  if (dst == src)
316  return 0;
317 
318  if (inited && !h1->ps.sps)
319  return AVERROR_INVALIDDATA;
320 
321  if (inited &&
322  (h->width != h1->width ||
323  h->height != h1->height ||
324  h->mb_width != h1->mb_width ||
325  h->mb_height != h1->mb_height ||
326  !h->ps.sps ||
327  h->ps.sps->bit_depth_luma != h1->ps.sps->bit_depth_luma ||
328  h->ps.sps->chroma_format_idc != h1->ps.sps->chroma_format_idc ||
329  h->ps.sps->colorspace != h1->ps.sps->colorspace)) {
330  need_reinit = 1;
331  }
332 
333  /* copy block_offset since frame_start may not be called */
334  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
335 
336  // SPS/PPS
337  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.sps_list); i++) {
338  ret = av_buffer_replace(&h->ps.sps_list[i], h1->ps.sps_list[i]);
339  if (ret < 0)
340  return ret;
341  }
342  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.pps_list); i++) {
343  ret = av_buffer_replace(&h->ps.pps_list[i], h1->ps.pps_list[i]);
344  if (ret < 0)
345  return ret;
346  }
347 
348  ret = av_buffer_replace(&h->ps.pps_ref, h1->ps.pps_ref);
349  if (ret < 0)
350  return ret;
351  h->ps.pps = NULL;
352  h->ps.sps = NULL;
353  if (h1->ps.pps_ref) {
354  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
355  h->ps.sps = h->ps.pps->sps;
356  }
357 
358  if (need_reinit || !inited) {
359  h->width = h1->width;
360  h->height = h1->height;
361  h->mb_height = h1->mb_height;
362  h->mb_width = h1->mb_width;
363  h->mb_num = h1->mb_num;
364  h->mb_stride = h1->mb_stride;
365  h->b_stride = h1->b_stride;
366  h->x264_build = h1->x264_build;
367 
368  if (h->context_initialized || h1->context_initialized) {
369  if ((err = h264_slice_header_init(h)) < 0) {
370  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
371  return err;
372  }
373  }
374 
375  /* copy block_offset since frame_start may not be called */
376  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
377  }
378 
379  h->avctx->coded_height = h1->avctx->coded_height;
380  h->avctx->coded_width = h1->avctx->coded_width;
381  h->avctx->width = h1->avctx->width;
382  h->avctx->height = h1->avctx->height;
383  h->width_from_caller = h1->width_from_caller;
384  h->height_from_caller = h1->height_from_caller;
385  h->coded_picture_number = h1->coded_picture_number;
386  h->first_field = h1->first_field;
387  h->picture_structure = h1->picture_structure;
388  h->mb_aff_frame = h1->mb_aff_frame;
389  h->droppable = h1->droppable;
390 
391  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
392  ret = ff_h264_replace_picture(h, &h->DPB[i], &h1->DPB[i]);
393  if (ret < 0)
394  return ret;
395  }
396 
397  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
398  ret = ff_h264_replace_picture(h, &h->cur_pic, &h1->cur_pic);
399  if (ret < 0)
400  return ret;
401 
402  h->enable_er = h1->enable_er;
403  h->workaround_bugs = h1->workaround_bugs;
404  h->droppable = h1->droppable;
405 
406  // extradata/NAL handling
407  h->is_avc = h1->is_avc;
408  h->nal_length_size = h1->nal_length_size;
409 
410  memcpy(&h->poc, &h1->poc, sizeof(h->poc));
411 
412  memcpy(h->short_ref, h1->short_ref, sizeof(h->short_ref));
413  memcpy(h->long_ref, h1->long_ref, sizeof(h->long_ref));
414  memcpy(h->delayed_pic, h1->delayed_pic, sizeof(h->delayed_pic));
415  memcpy(h->last_pocs, h1->last_pocs, sizeof(h->last_pocs));
416 
417  h->next_output_pic = h1->next_output_pic;
418  h->next_outputed_poc = h1->next_outputed_poc;
419  h->poc_offset = h1->poc_offset;
420 
421  memcpy(h->mmco, h1->mmco, sizeof(h->mmco));
422  h->nb_mmco = h1->nb_mmco;
423  h->mmco_reset = h1->mmco_reset;
424  h->explicit_ref_marking = h1->explicit_ref_marking;
425  h->long_ref_count = h1->long_ref_count;
426  h->short_ref_count = h1->short_ref_count;
427 
428  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
429  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
430  copy_picture_range(h->delayed_pic, h1->delayed_pic,
431  MAX_DELAYED_PIC_COUNT + 2, h, h1);
432 
433  h->frame_recovered = h1->frame_recovered;
434 
435  ret = av_buffer_replace(&h->sei.a53_caption.buf_ref, h1->sei.a53_caption.buf_ref);
436  if (ret < 0)
437  return ret;
438 
439  for (i = 0; i < h->sei.unregistered.nb_buf_ref; i++)
440  av_buffer_unref(&h->sei.unregistered.buf_ref[i]);
441  h->sei.unregistered.nb_buf_ref = 0;
442 
443  if (h1->sei.unregistered.nb_buf_ref) {
444  ret = av_reallocp_array(&h->sei.unregistered.buf_ref,
445  h1->sei.unregistered.nb_buf_ref,
446  sizeof(*h->sei.unregistered.buf_ref));
447  if (ret < 0)
448  return ret;
449 
450  for (i = 0; i < h1->sei.unregistered.nb_buf_ref; i++) {
451  h->sei.unregistered.buf_ref[i] = av_buffer_ref(h1->sei.unregistered.buf_ref[i]);
452  if (!h->sei.unregistered.buf_ref[i])
453  return AVERROR(ENOMEM);
454  h->sei.unregistered.nb_buf_ref++;
455  }
456  }
457  h->sei.unregistered.x264_build = h1->sei.unregistered.x264_build;
458 
459  if (!h->cur_pic_ptr)
460  return 0;
461 
462  if (!h->droppable) {
464  h->poc.prev_poc_msb = h->poc.poc_msb;
465  h->poc.prev_poc_lsb = h->poc.poc_lsb;
466  }
467  h->poc.prev_frame_num_offset = h->poc.frame_num_offset;
468  h->poc.prev_frame_num = h->poc.frame_num;
469 
470  h->recovery_frame = h1->recovery_frame;
471 
472  return err;
473 }
474 
476  const AVCodecContext *src)
477 {
478  H264Context *h = dst->priv_data;
479  const H264Context *h1 = src->priv_data;
480 
481  h->is_avc = h1->is_avc;
482  h->nal_length_size = h1->nal_length_size;
483 
484  return 0;
485 }
486 
488 {
489  H264Picture *pic;
490  int i, ret;
491  const int pixel_shift = h->pixel_shift;
492 
493  if (!ff_thread_can_start_frame(h->avctx)) {
494  av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
495  return -1;
496  }
497 
499  h->cur_pic_ptr = NULL;
500 
502  if (i < 0) {
503  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
504  return i;
505  }
506  pic = &h->DPB[i];
507 
508  pic->reference = h->droppable ? 0 : h->picture_structure;
509  pic->f->coded_picture_number = h->coded_picture_number++;
510  pic->field_picture = h->picture_structure != PICT_FRAME;
511  pic->frame_num = h->poc.frame_num;
512  /*
513  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
514  * in later.
515  * See decode_nal_units().
516  */
517  pic->f->key_frame = 0;
518  pic->mmco_reset = 0;
519  pic->recovered = 0;
520  pic->invalid_gap = 0;
521  pic->sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
522 
523  pic->f->pict_type = h->slice_ctx[0].slice_type;
524 
525  pic->f->crop_left = h->crop_left;
526  pic->f->crop_right = h->crop_right;
527  pic->f->crop_top = h->crop_top;
528  pic->f->crop_bottom = h->crop_bottom;
529 
530  pic->needs_fg = h->sei.film_grain_characteristics.present && !h->avctx->hwaccel &&
531  !(h->avctx->export_side_data & AV_CODEC_EXPORT_DATA_FILM_GRAIN);
532 
533  if ((ret = alloc_picture(h, pic)) < 0)
534  return ret;
535 
536  h->cur_pic_ptr = pic;
537  ff_h264_unref_picture(h, &h->cur_pic);
538  if (CONFIG_ERROR_RESILIENCE) {
539  ff_h264_set_erpic(&h->slice_ctx[0].er.cur_pic, NULL);
540  }
541 
542  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
543  return ret;
544 
545  for (i = 0; i < h->nb_slice_ctx; i++) {
546  h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
547  h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
548  }
549 
550  if (CONFIG_ERROR_RESILIENCE && h->enable_er) {
551  ff_er_frame_start(&h->slice_ctx[0].er);
552  ff_h264_set_erpic(&h->slice_ctx[0].er.last_pic, NULL);
553  ff_h264_set_erpic(&h->slice_ctx[0].er.next_pic, NULL);
554  }
555 
556  for (i = 0; i < 16; i++) {
557  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
558  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
559  }
560  for (i = 0; i < 16; i++) {
561  h->block_offset[16 + i] =
562  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
563  h->block_offset[48 + 16 + i] =
564  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
565  }
566 
567  /* We mark the current picture as non-reference after allocating it, so
568  * that if we break out due to an error it can be released automatically
569  * in the next ff_mpv_frame_start().
570  */
571  h->cur_pic_ptr->reference = 0;
572 
573  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
574 
575  h->next_output_pic = NULL;
576 
577  h->postpone_filter = 0;
578 
579  h->mb_aff_frame = h->ps.sps->mb_aff && (h->picture_structure == PICT_FRAME);
580 
581  if (h->sei.unregistered.x264_build >= 0)
582  h->x264_build = h->sei.unregistered.x264_build;
583 
584  assert(h->cur_pic_ptr->long_ref == 0);
585 
586  return 0;
587 }
588 
590  uint8_t *src_y,
591  uint8_t *src_cb, uint8_t *src_cr,
592  int linesize, int uvlinesize,
593  int simple)
594 {
595  uint8_t *top_border;
596  int top_idx = 1;
597  const int pixel_shift = h->pixel_shift;
598  int chroma444 = CHROMA444(h);
599  int chroma422 = CHROMA422(h);
600 
601  src_y -= linesize;
602  src_cb -= uvlinesize;
603  src_cr -= uvlinesize;
604 
605  if (!simple && FRAME_MBAFF(h)) {
606  if (sl->mb_y & 1) {
607  if (!MB_MBAFF(sl)) {
608  top_border = sl->top_borders[0][sl->mb_x];
609  AV_COPY128(top_border, src_y + 15 * linesize);
610  if (pixel_shift)
611  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
612  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
613  if (chroma444) {
614  if (pixel_shift) {
615  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
616  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
617  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
618  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
619  } else {
620  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
621  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
622  }
623  } else if (chroma422) {
624  if (pixel_shift) {
625  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
626  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
627  } else {
628  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
629  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
630  }
631  } else {
632  if (pixel_shift) {
633  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
634  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
635  } else {
636  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
637  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
638  }
639  }
640  }
641  }
642  } else if (MB_MBAFF(sl)) {
643  top_idx = 0;
644  } else
645  return;
646  }
647 
648  top_border = sl->top_borders[top_idx][sl->mb_x];
649  /* There are two lines saved, the line above the top macroblock
650  * of a pair, and the line above the bottom macroblock. */
651  AV_COPY128(top_border, src_y + 16 * linesize);
652  if (pixel_shift)
653  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
654 
655  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
656  if (chroma444) {
657  if (pixel_shift) {
658  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
659  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
660  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
661  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
662  } else {
663  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
664  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
665  }
666  } else if (chroma422) {
667  if (pixel_shift) {
668  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
669  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
670  } else {
671  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
672  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
673  }
674  } else {
675  if (pixel_shift) {
676  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
677  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
678  } else {
679  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
680  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
681  }
682  }
683  }
684 }
685 
686 /**
687  * Initialize implicit_weight table.
688  * @param field 0/1 initialize the weight for interlaced MBAFF
689  * -1 initializes the rest
690  */
692 {
693  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
694 
695  for (i = 0; i < 2; i++) {
696  sl->pwt.luma_weight_flag[i] = 0;
697  sl->pwt.chroma_weight_flag[i] = 0;
698  }
699 
700  if (field < 0) {
701  if (h->picture_structure == PICT_FRAME) {
702  cur_poc = h->cur_pic_ptr->poc;
703  } else {
704  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
705  }
706  if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
707  sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2LL * cur_poc) {
708  sl->pwt.use_weight = 0;
709  sl->pwt.use_weight_chroma = 0;
710  return;
711  }
712  ref_start = 0;
713  ref_count0 = sl->ref_count[0];
714  ref_count1 = sl->ref_count[1];
715  } else {
716  cur_poc = h->cur_pic_ptr->field_poc[field];
717  ref_start = 16;
718  ref_count0 = 16 + 2 * sl->ref_count[0];
719  ref_count1 = 16 + 2 * sl->ref_count[1];
720  }
721 
722  sl->pwt.use_weight = 2;
723  sl->pwt.use_weight_chroma = 2;
724  sl->pwt.luma_log2_weight_denom = 5;
726 
727  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
728  int64_t poc0 = sl->ref_list[0][ref0].poc;
729  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
730  int w = 32;
731  if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
732  int poc1 = sl->ref_list[1][ref1].poc;
733  int td = av_clip_int8(poc1 - poc0);
734  if (td) {
735  int tb = av_clip_int8(cur_poc - poc0);
736  int tx = (16384 + (FFABS(td) >> 1)) / td;
737  int dist_scale_factor = (tb * tx + 32) >> 8;
738  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
739  w = 64 - dist_scale_factor;
740  }
741  }
742  if (field < 0) {
743  sl->pwt.implicit_weight[ref0][ref1][0] =
744  sl->pwt.implicit_weight[ref0][ref1][1] = w;
745  } else {
746  sl->pwt.implicit_weight[ref0][ref1][field] = w;
747  }
748  }
749  }
750 }
751 
752 /**
753  * initialize scan tables
754  */
756 {
757  int i;
758  for (i = 0; i < 16; i++) {
759 #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
760  h->zigzag_scan[i] = TRANSPOSE(ff_zigzag_scan[i]);
761  h->field_scan[i] = TRANSPOSE(field_scan[i]);
762 #undef TRANSPOSE
763  }
764  for (i = 0; i < 64; i++) {
765 #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
766  h->zigzag_scan8x8[i] = TRANSPOSE(ff_zigzag_direct[i]);
767  h->zigzag_scan8x8_cavlc[i] = TRANSPOSE(zigzag_scan8x8_cavlc[i]);
768  h->field_scan8x8[i] = TRANSPOSE(field_scan8x8[i]);
769  h->field_scan8x8_cavlc[i] = TRANSPOSE(field_scan8x8_cavlc[i]);
770 #undef TRANSPOSE
771  }
772  if (h->ps.sps->transform_bypass) { // FIXME same ugly
773  memcpy(h->zigzag_scan_q0 , ff_zigzag_scan , sizeof(h->zigzag_scan_q0 ));
774  memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
775  memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
776  memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
777  memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
778  memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
779  } else {
780  memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
781  memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
782  memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
783  memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
784  memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
785  memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
786  }
787 }
788 
789 static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
790 {
791 #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
792  (CONFIG_H264_D3D11VA_HWACCEL * 2) + \
793  CONFIG_H264_NVDEC_HWACCEL + \
794  CONFIG_H264_VAAPI_HWACCEL + \
795  CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \
796  CONFIG_H264_VDPAU_HWACCEL)
797  enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
798  const enum AVPixelFormat *choices = pix_fmts;
799  int i;
800 
801  switch (h->ps.sps->bit_depth_luma) {
802  case 9:
803  if (CHROMA444(h)) {
804  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
805  *fmt++ = AV_PIX_FMT_GBRP9;
806  } else
807  *fmt++ = AV_PIX_FMT_YUV444P9;
808  } else if (CHROMA422(h))
809  *fmt++ = AV_PIX_FMT_YUV422P9;
810  else
811  *fmt++ = AV_PIX_FMT_YUV420P9;
812  break;
813  case 10:
814  if (CHROMA444(h)) {
815  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
816  *fmt++ = AV_PIX_FMT_GBRP10;
817  } else
818  *fmt++ = AV_PIX_FMT_YUV444P10;
819  } else if (CHROMA422(h))
820  *fmt++ = AV_PIX_FMT_YUV422P10;
821  else
822  *fmt++ = AV_PIX_FMT_YUV420P10;
823  break;
824  case 12:
825  if (CHROMA444(h)) {
826  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
827  *fmt++ = AV_PIX_FMT_GBRP12;
828  } else
829  *fmt++ = AV_PIX_FMT_YUV444P12;
830  } else if (CHROMA422(h))
831  *fmt++ = AV_PIX_FMT_YUV422P12;
832  else
833  *fmt++ = AV_PIX_FMT_YUV420P12;
834  break;
835  case 14:
836  if (CHROMA444(h)) {
837  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
838  *fmt++ = AV_PIX_FMT_GBRP14;
839  } else
840  *fmt++ = AV_PIX_FMT_YUV444P14;
841  } else if (CHROMA422(h))
842  *fmt++ = AV_PIX_FMT_YUV422P14;
843  else
844  *fmt++ = AV_PIX_FMT_YUV420P14;
845  break;
846  case 8:
847 #if CONFIG_H264_VDPAU_HWACCEL
848  *fmt++ = AV_PIX_FMT_VDPAU;
849 #endif
850 #if CONFIG_H264_NVDEC_HWACCEL
851  *fmt++ = AV_PIX_FMT_CUDA;
852 #endif
853  if (CHROMA444(h)) {
854  if (h->avctx->colorspace == AVCOL_SPC_RGB)
855  *fmt++ = AV_PIX_FMT_GBRP;
856  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
857  *fmt++ = AV_PIX_FMT_YUVJ444P;
858  else
859  *fmt++ = AV_PIX_FMT_YUV444P;
860  } else if (CHROMA422(h)) {
861  if (h->avctx->color_range == AVCOL_RANGE_JPEG)
862  *fmt++ = AV_PIX_FMT_YUVJ422P;
863  else
864  *fmt++ = AV_PIX_FMT_YUV422P;
865  } else {
866 #if CONFIG_H264_DXVA2_HWACCEL
867  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
868 #endif
869 #if CONFIG_H264_D3D11VA_HWACCEL
870  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
871  *fmt++ = AV_PIX_FMT_D3D11;
872 #endif
873 #if CONFIG_H264_VAAPI_HWACCEL
874  *fmt++ = AV_PIX_FMT_VAAPI;
875 #endif
876 #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
877  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
878 #endif
879  if (h->avctx->codec->pix_fmts)
880  choices = h->avctx->codec->pix_fmts;
881  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
882  *fmt++ = AV_PIX_FMT_YUVJ420P;
883  else
884  *fmt++ = AV_PIX_FMT_YUV420P;
885  }
886  break;
887  default:
888  av_log(h->avctx, AV_LOG_ERROR,
889  "Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma);
890  return AVERROR_INVALIDDATA;
891  }
892 
893  *fmt = AV_PIX_FMT_NONE;
894 
895  for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
896  if (choices[i] == h->avctx->pix_fmt && !force_callback)
897  return choices[i];
898  return ff_thread_get_format(h->avctx, choices);
899 }
900 
901 /* export coded and cropped frame dimensions to AVCodecContext */
903 {
904  const SPS *sps = (const SPS*)h->ps.sps;
905  int cr = sps->crop_right;
906  int cl = sps->crop_left;
907  int ct = sps->crop_top;
908  int cb = sps->crop_bottom;
909  int width = h->width - (cr + cl);
910  int height = h->height - (ct + cb);
911  av_assert0(sps->crop_right + sps->crop_left < (unsigned)h->width);
912  av_assert0(sps->crop_top + sps->crop_bottom < (unsigned)h->height);
913 
914  /* handle container cropping */
915  if (h->width_from_caller > 0 && h->height_from_caller > 0 &&
916  !sps->crop_top && !sps->crop_left &&
917  FFALIGN(h->width_from_caller, 16) == FFALIGN(width, 16) &&
918  FFALIGN(h->height_from_caller, 16) == FFALIGN(height, 16) &&
919  h->width_from_caller <= width &&
920  h->height_from_caller <= height) {
921  width = h->width_from_caller;
922  height = h->height_from_caller;
923  cl = 0;
924  ct = 0;
925  cr = h->width - width;
926  cb = h->height - height;
927  } else {
928  h->width_from_caller = 0;
929  h->height_from_caller = 0;
930  }
931 
932  h->avctx->coded_width = h->width;
933  h->avctx->coded_height = h->height;
934  h->avctx->width = width;
935  h->avctx->height = height;
936  h->crop_right = cr;
937  h->crop_left = cl;
938  h->crop_top = ct;
939  h->crop_bottom = cb;
940 }
941 
943 {
944  const SPS *sps = h->ps.sps;
945  int i, ret;
946 
947  if (!sps) {
949  goto fail;
950  }
951 
952  ff_set_sar(h->avctx, sps->sar);
953  av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt,
954  &h->chroma_x_shift, &h->chroma_y_shift);
955 
956  if (sps->timing_info_present_flag) {
957  int64_t den = sps->time_scale;
958  if (h->x264_build < 44U)
959  den *= 2;
960  av_reduce(&h->avctx->framerate.den, &h->avctx->framerate.num,
961  sps->num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
962  }
963 
965 
966  h->first_field = 0;
967  h->prev_interlaced_frame = 1;
968 
971  if (ret < 0) {
972  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
973  goto fail;
974  }
975 
976  if (sps->bit_depth_luma < 8 || sps->bit_depth_luma > 14 ||
977  sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13
978  ) {
979  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
980  sps->bit_depth_luma);
982  goto fail;
983  }
984 
985  h->cur_bit_depth_luma =
986  h->avctx->bits_per_raw_sample = sps->bit_depth_luma;
987  h->cur_chroma_format_idc = sps->chroma_format_idc;
988  h->pixel_shift = sps->bit_depth_luma > 8;
989  h->chroma_format_idc = sps->chroma_format_idc;
990  h->bit_depth_luma = sps->bit_depth_luma;
991 
992  ff_h264dsp_init(&h->h264dsp, sps->bit_depth_luma,
993  sps->chroma_format_idc);
994  ff_h264chroma_init(&h->h264chroma, sps->bit_depth_chroma);
995  ff_h264qpel_init(&h->h264qpel, sps->bit_depth_luma);
996  ff_h264_pred_init(&h->hpc, h->avctx->codec_id, sps->bit_depth_luma,
997  sps->chroma_format_idc);
998  ff_videodsp_init(&h->vdsp, sps->bit_depth_luma);
999 
1000  if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
1001  ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
1002  if (ret < 0) {
1003  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
1004  goto fail;
1005  }
1006  } else {
1007  for (i = 0; i < h->nb_slice_ctx; i++) {
1008  H264SliceContext *sl = &h->slice_ctx[i];
1009 
1010  sl->h264 = h;
1011  sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
1012  sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
1013  sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
1014 
1015  if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
1016  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
1017  goto fail;
1018  }
1019  }
1020  }
1021 
1022  h->context_initialized = 1;
1023 
1024  return 0;
1025 fail:
1027  h->context_initialized = 0;
1028  return ret;
1029 }
1030 
1032 {
1033  switch (a) {
1037  default:
1038  return a;
1039  }
1040 }
1041 
1042 static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
1043 {
1044  const SPS *sps;
1045  int needs_reinit = 0, must_reinit, ret;
1046 
1047  if (first_slice) {
1048  av_buffer_unref(&h->ps.pps_ref);
1049  h->ps.pps = NULL;
1050  h->ps.pps_ref = av_buffer_ref(h->ps.pps_list[sl->pps_id]);
1051  if (!h->ps.pps_ref)
1052  return AVERROR(ENOMEM);
1053  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
1054  }
1055 
1056  if (h->ps.sps != h->ps.pps->sps) {
1057  h->ps.sps = (const SPS*)h->ps.pps->sps;
1058 
1059  if (h->mb_width != h->ps.sps->mb_width ||
1060  h->mb_height != h->ps.sps->mb_height ||
1061  h->cur_bit_depth_luma != h->ps.sps->bit_depth_luma ||
1062  h->cur_chroma_format_idc != h->ps.sps->chroma_format_idc
1063  )
1064  needs_reinit = 1;
1065 
1066  if (h->bit_depth_luma != h->ps.sps->bit_depth_luma ||
1067  h->chroma_format_idc != h->ps.sps->chroma_format_idc)
1068  needs_reinit = 1;
1069  }
1070  sps = h->ps.sps;
1071 
1072  must_reinit = (h->context_initialized &&
1073  ( 16*sps->mb_width != h->avctx->coded_width
1074  || 16*sps->mb_height != h->avctx->coded_height
1075  || h->cur_bit_depth_luma != sps->bit_depth_luma
1076  || h->cur_chroma_format_idc != sps->chroma_format_idc
1077  || h->mb_width != sps->mb_width
1078  || h->mb_height != sps->mb_height
1079  ));
1080  if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
1081  || (non_j_pixfmt(h->avctx->pix_fmt) != non_j_pixfmt(get_pixel_format(h, 0))))
1082  must_reinit = 1;
1083 
1084  if (first_slice && av_cmp_q(sps->sar, h->avctx->sample_aspect_ratio))
1085  must_reinit = 1;
1086 
1087  if (!h->setup_finished) {
1088  h->avctx->profile = ff_h264_get_profile(sps);
1089  h->avctx->level = sps->level_idc;
1090  h->avctx->refs = sps->ref_frame_count;
1091 
1092  h->mb_width = sps->mb_width;
1093  h->mb_height = sps->mb_height;
1094  h->mb_num = h->mb_width * h->mb_height;
1095  h->mb_stride = h->mb_width + 1;
1096 
1097  h->b_stride = h->mb_width * 4;
1098 
1099  h->chroma_y_shift = sps->chroma_format_idc <= 1; // 400 uses yuv420p
1100 
1101  h->width = 16 * h->mb_width;
1102  h->height = 16 * h->mb_height;
1103 
1104  init_dimensions(h);
1105 
1106  if (sps->video_signal_type_present_flag) {
1107  h->avctx->color_range = sps->full_range > 0 ? AVCOL_RANGE_JPEG
1108  : AVCOL_RANGE_MPEG;
1109  if (sps->colour_description_present_flag) {
1110  if (h->avctx->colorspace != sps->colorspace)
1111  needs_reinit = 1;
1112  h->avctx->color_primaries = sps->color_primaries;
1113  h->avctx->color_trc = sps->color_trc;
1114  h->avctx->colorspace = sps->colorspace;
1115  }
1116  }
1117 
1118  if (h->sei.alternative_transfer.present &&
1119  av_color_transfer_name(h->sei.alternative_transfer.preferred_transfer_characteristics) &&
1120  h->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
1121  h->avctx->color_trc = h->sei.alternative_transfer.preferred_transfer_characteristics;
1122  }
1123  }
1124  h->avctx->chroma_sample_location = sps->chroma_location;
1125 
1126  if (!h->context_initialized || must_reinit || needs_reinit) {
1127  int flush_changes = h->context_initialized;
1128  h->context_initialized = 0;
1129  if (sl != h->slice_ctx) {
1130  av_log(h->avctx, AV_LOG_ERROR,
1131  "changing width %d -> %d / height %d -> %d on "
1132  "slice %d\n",
1133  h->width, h->avctx->coded_width,
1134  h->height, h->avctx->coded_height,
1135  h->current_slice + 1);
1136  return AVERROR_INVALIDDATA;
1137  }
1138 
1139  av_assert1(first_slice);
1140 
1141  if (flush_changes)
1143 
1144  if ((ret = get_pixel_format(h, 1)) < 0)
1145  return ret;
1146  h->avctx->pix_fmt = ret;
1147 
1148  av_log(h->avctx, AV_LOG_VERBOSE, "Reinit context to %dx%d, "
1149  "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
1150 
1151  if ((ret = h264_slice_header_init(h)) < 0) {
1152  av_log(h->avctx, AV_LOG_ERROR,
1153  "h264_slice_header_init() failed\n");
1154  return ret;
1155  }
1156  }
1157 
1158  return 0;
1159 }
1160 
1162 {
1163  const SPS *sps = h->ps.sps;
1164  H264Picture *cur = h->cur_pic_ptr;
1165  AVFrame *out = cur->f;
1166 
1167  out->interlaced_frame = 0;
1168  out->repeat_pict = 0;
1169 
1170  /* Signal interlacing information externally. */
1171  /* Prioritize picture timing SEI information over used
1172  * decoding process if it exists. */
1173  if (h->sei.picture_timing.present) {
1174  int ret = ff_h264_sei_process_picture_timing(&h->sei.picture_timing, sps,
1175  h->avctx);
1176  if (ret < 0) {
1177  av_log(h->avctx, AV_LOG_ERROR, "Error processing a picture timing SEI\n");
1178  if (h->avctx->err_recognition & AV_EF_EXPLODE)
1179  return ret;
1180  h->sei.picture_timing.present = 0;
1181  }
1182  }
1183 
1184  if (sps->pic_struct_present_flag && h->sei.picture_timing.present) {
1185  H264SEIPictureTiming *pt = &h->sei.picture_timing;
1186  switch (pt->pic_struct) {
1188  break;
1191  out->interlaced_frame = 1;
1192  break;
1196  out->interlaced_frame = 1;
1197  else
1198  // try to flag soft telecine progressive
1199  out->interlaced_frame = h->prev_interlaced_frame;
1200  break;
1203  /* Signal the possibility of telecined film externally
1204  * (pic_struct 5,6). From these hints, let the applications
1205  * decide if they apply deinterlacing. */
1206  out->repeat_pict = 1;
1207  break;
1209  out->repeat_pict = 2;
1210  break;
1212  out->repeat_pict = 4;
1213  break;
1214  }
1215 
1216  if ((pt->ct_type & 3) &&
1217  pt->pic_struct <= H264_SEI_PIC_STRUCT_BOTTOM_TOP)
1218  out->interlaced_frame = (pt->ct_type & (1 << 1)) != 0;
1219  } else {
1220  /* Derive interlacing flag from used decoding process. */
1221  out->interlaced_frame = FIELD_OR_MBAFF_PICTURE(h);
1222  }
1223  h->prev_interlaced_frame = out->interlaced_frame;
1224 
1225  if (cur->field_poc[0] != cur->field_poc[1]) {
1226  /* Derive top_field_first from field pocs. */
1227  out->top_field_first = cur->field_poc[0] < cur->field_poc[1];
1228  } else {
1229  if (sps->pic_struct_present_flag && h->sei.picture_timing.present) {
1230  /* Use picture timing SEI information. Even if it is a
1231  * information of a past frame, better than nothing. */
1232  if (h->sei.picture_timing.pic_struct == H264_SEI_PIC_STRUCT_TOP_BOTTOM ||
1233  h->sei.picture_timing.pic_struct == H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
1234  out->top_field_first = 1;
1235  else
1236  out->top_field_first = 0;
1237  } else if (out->interlaced_frame) {
1238  /* Default to top field first when pic_struct_present_flag
1239  * is not set but interlaced frame detected */
1240  out->top_field_first = 1;
1241  } else {
1242  /* Most likely progressive */
1243  out->top_field_first = 0;
1244  }
1245  }
1246 
1247  if (h->sei.frame_packing.present &&
1248  h->sei.frame_packing.arrangement_type <= 6 &&
1249  h->sei.frame_packing.content_interpretation_type > 0 &&
1250  h->sei.frame_packing.content_interpretation_type < 3) {
1251  H264SEIFramePacking *fp = &h->sei.frame_packing;
1253  if (stereo) {
1254  switch (fp->arrangement_type) {
1256  stereo->type = AV_STEREO3D_CHECKERBOARD;
1257  break;
1259  stereo->type = AV_STEREO3D_COLUMNS;
1260  break;
1262  stereo->type = AV_STEREO3D_LINES;
1263  break;
1265  if (fp->quincunx_sampling_flag)
1267  else
1268  stereo->type = AV_STEREO3D_SIDEBYSIDE;
1269  break;
1271  stereo->type = AV_STEREO3D_TOPBOTTOM;
1272  break;
1274  stereo->type = AV_STEREO3D_FRAMESEQUENCE;
1275  break;
1276  case H264_SEI_FPA_TYPE_2D:
1277  stereo->type = AV_STEREO3D_2D;
1278  break;
1279  }
1280 
1281  if (fp->content_interpretation_type == 2)
1282  stereo->flags = AV_STEREO3D_FLAG_INVERT;
1283 
1284  if (fp->arrangement_type == H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL) {
1285  if (fp->current_frame_is_frame0_flag)
1286  stereo->view = AV_STEREO3D_VIEW_LEFT;
1287  else
1288  stereo->view = AV_STEREO3D_VIEW_RIGHT;
1289  }
1290  }
1291  }
1292 
1293  if (h->sei.display_orientation.present &&
1294  (h->sei.display_orientation.anticlockwise_rotation ||
1295  h->sei.display_orientation.hflip ||
1296  h->sei.display_orientation.vflip)) {
1297  H264SEIDisplayOrientation *o = &h->sei.display_orientation;
1298  double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16);
1301  sizeof(int32_t) * 9);
1302  if (rotation) {
1303  av_display_rotation_set((int32_t *)rotation->data, angle);
1304  av_display_matrix_flip((int32_t *)rotation->data,
1305  o->hflip, o->vflip);
1306  }
1307  }
1308 
1309  if (h->sei.afd.present) {
1311  sizeof(uint8_t));
1312 
1313  if (sd) {
1314  *sd->data = h->sei.afd.active_format_description;
1315  h->sei.afd.present = 0;
1316  }
1317  }
1318 
1319  if (h->sei.a53_caption.buf_ref) {
1320  H264SEIA53Caption *a53 = &h->sei.a53_caption;
1321 
1323  if (!sd)
1324  av_buffer_unref(&a53->buf_ref);
1325  a53->buf_ref = NULL;
1326 
1327  h->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
1328  }
1329 
1330  for (int i = 0; i < h->sei.unregistered.nb_buf_ref; i++) {
1331  H264SEIUnregistered *unreg = &h->sei.unregistered;
1332 
1333  if (unreg->buf_ref[i]) {
1336  unreg->buf_ref[i]);
1337  if (!sd)
1338  av_buffer_unref(&unreg->buf_ref[i]);
1339  unreg->buf_ref[i] = NULL;
1340  }
1341  }
1342  h->sei.unregistered.nb_buf_ref = 0;
1343 
1344  if (h->sei.film_grain_characteristics.present) {
1345  H264SEIFilmGrainCharacteristics *fgc = &h->sei.film_grain_characteristics;
1347  if (!fgp)
1348  return AVERROR(ENOMEM);
1349 
1351  fgp->seed = cur->poc + (h->poc_offset << 5);
1352 
1353  fgp->codec.h274.model_id = fgc->model_id;
1357  fgp->codec.h274.color_range = fgc->full_range + 1;
1360  fgp->codec.h274.color_space = fgc->matrix_coeffs;
1361  } else {
1362  fgp->codec.h274.bit_depth_luma = sps->bit_depth_luma;
1363  fgp->codec.h274.bit_depth_chroma = sps->bit_depth_chroma;
1364  if (sps->video_signal_type_present_flag)
1365  fgp->codec.h274.color_range = sps->full_range + 1;
1366  else
1368  if (sps->colour_description_present_flag) {
1369  fgp->codec.h274.color_primaries = sps->color_primaries;
1370  fgp->codec.h274.color_trc = sps->color_trc;
1371  fgp->codec.h274.color_space = sps->colorspace;
1372  } else {
1376  }
1377  }
1380 
1382  sizeof(fgp->codec.h274.component_model_present));
1384  sizeof(fgp->codec.h274.num_intensity_intervals));
1385  memcpy(&fgp->codec.h274.num_model_values, &fgc->num_model_values,
1386  sizeof(fgp->codec.h274.num_model_values));
1391  memcpy(&fgp->codec.h274.comp_model_value, &fgc->comp_model_value,
1392  sizeof(fgp->codec.h274.comp_model_value));
1393 
1394  fgc->present = !!fgc->repetition_period;
1395 
1396  h->avctx->properties |= FF_CODEC_PROPERTY_FILM_GRAIN;
1397  }
1398 
1399  if (h->sei.picture_timing.timecode_cnt > 0) {
1400  uint32_t *tc_sd;
1401  char tcbuf[AV_TIMECODE_STR_SIZE];
1402 
1405  sizeof(uint32_t)*4);
1406  if (!tcside)
1407  return AVERROR(ENOMEM);
1408 
1409  tc_sd = (uint32_t*)tcside->data;
1410  tc_sd[0] = h->sei.picture_timing.timecode_cnt;
1411 
1412  for (int i = 0; i < tc_sd[0]; i++) {
1413  int drop = h->sei.picture_timing.timecode[i].dropframe;
1414  int hh = h->sei.picture_timing.timecode[i].hours;
1415  int mm = h->sei.picture_timing.timecode[i].minutes;
1416  int ss = h->sei.picture_timing.timecode[i].seconds;
1417  int ff = h->sei.picture_timing.timecode[i].frame;
1418 
1419  tc_sd[i + 1] = av_timecode_get_smpte(h->avctx->framerate, drop, hh, mm, ss, ff);
1420  av_timecode_make_smpte_tc_string2(tcbuf, h->avctx->framerate, tc_sd[i + 1], 0, 0);
1421  av_dict_set(&out->metadata, "timecode", tcbuf, 0);
1422  }
1423  h->sei.picture_timing.timecode_cnt = 0;
1424  }
1425 
1426  return 0;
1427 }
1428 
1430 {
1431  const SPS *sps = h->ps.sps;
1432  H264Picture *out = h->cur_pic_ptr;
1433  H264Picture *cur = h->cur_pic_ptr;
1434  int i, pics, out_of_order, out_idx;
1435 
1436  cur->mmco_reset = h->mmco_reset;
1437  h->mmco_reset = 0;
1438 
1439  if (sps->bitstream_restriction_flag ||
1440  h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT) {
1441  h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, sps->num_reorder_frames);
1442  }
1443 
1444  for (i = 0; 1; i++) {
1445  if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
1446  if(i)
1447  h->last_pocs[i-1] = cur->poc;
1448  break;
1449  } else if(i) {
1450  h->last_pocs[i-1]= h->last_pocs[i];
1451  }
1452  }
1453  out_of_order = MAX_DELAYED_PIC_COUNT - i;
1454  if( cur->f->pict_type == AV_PICTURE_TYPE_B
1455  || (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - (int64_t)h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2))
1456  out_of_order = FFMAX(out_of_order, 1);
1457  if (out_of_order == MAX_DELAYED_PIC_COUNT) {
1458  av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
1459  for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
1460  h->last_pocs[i] = INT_MIN;
1461  h->last_pocs[0] = cur->poc;
1462  cur->mmco_reset = 1;
1463  } else if(h->avctx->has_b_frames < out_of_order && !sps->bitstream_restriction_flag){
1464  int loglevel = h->avctx->frame_number > 1 ? AV_LOG_WARNING : AV_LOG_VERBOSE;
1465  av_log(h->avctx, loglevel, "Increasing reorder buffer to %d\n", out_of_order);
1466  h->avctx->has_b_frames = out_of_order;
1467  }
1468 
1469  pics = 0;
1470  while (h->delayed_pic[pics])
1471  pics++;
1472 
1474 
1475  h->delayed_pic[pics++] = cur;
1476  if (cur->reference == 0)
1477  cur->reference = DELAYED_PIC_REF;
1478 
1479  out = h->delayed_pic[0];
1480  out_idx = 0;
1481  for (i = 1; h->delayed_pic[i] &&
1482  !h->delayed_pic[i]->f->key_frame &&
1483  !h->delayed_pic[i]->mmco_reset;
1484  i++)
1485  if (h->delayed_pic[i]->poc < out->poc) {
1486  out = h->delayed_pic[i];
1487  out_idx = i;
1488  }
1489  if (h->avctx->has_b_frames == 0 &&
1490  (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset))
1491  h->next_outputed_poc = INT_MIN;
1492  out_of_order = out->poc < h->next_outputed_poc;
1493 
1494  if (out_of_order || pics > h->avctx->has_b_frames) {
1495  out->reference &= ~DELAYED_PIC_REF;
1496  for (i = out_idx; h->delayed_pic[i]; i++)
1497  h->delayed_pic[i] = h->delayed_pic[i + 1];
1498  }
1499  if (!out_of_order && pics > h->avctx->has_b_frames) {
1500  h->next_output_pic = out;
1501  if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) {
1502  h->next_outputed_poc = INT_MIN;
1503  } else
1504  h->next_outputed_poc = out->poc;
1505 
1506  if (out->recovered) {
1507  // We have reached an recovery point and all frames after it in
1508  // display order are "recovered".
1509  h->frame_recovered |= FRAME_RECOVERED_SEI;
1510  }
1511  out->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI);
1512 
1513  if (!out->recovered) {
1514  if (!(h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) &&
1515  !(h->avctx->flags2 & AV_CODEC_FLAG2_SHOW_ALL)) {
1516  h->next_output_pic = NULL;
1517  } else {
1518  out->f->flags |= AV_FRAME_FLAG_CORRUPT;
1519  }
1520  }
1521  } else {
1522  av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
1523  }
1524 
1525  return 0;
1526 }
1527 
1528 /* This function is called right after decoding the slice header for a first
1529  * slice in a field (or a frame). It decides whether we are decoding a new frame
1530  * or a second field in a pair and does the necessary setup.
1531  */
1533  const H2645NAL *nal, int first_slice)
1534 {
1535  int i;
1536  const SPS *sps;
1537 
1538  int last_pic_structure, last_pic_droppable, ret;
1539 
1540  ret = h264_init_ps(h, sl, first_slice);
1541  if (ret < 0)
1542  return ret;
1543 
1544  sps = h->ps.sps;
1545 
1546  if (sps && sps->bitstream_restriction_flag &&
1547  h->avctx->has_b_frames < sps->num_reorder_frames) {
1548  h->avctx->has_b_frames = sps->num_reorder_frames;
1549  }
1550 
1551  last_pic_droppable = h->droppable;
1552  last_pic_structure = h->picture_structure;
1553  h->droppable = (nal->ref_idc == 0);
1554  h->picture_structure = sl->picture_structure;
1555 
1556  h->poc.frame_num = sl->frame_num;
1557  h->poc.poc_lsb = sl->poc_lsb;
1558  h->poc.delta_poc_bottom = sl->delta_poc_bottom;
1559  h->poc.delta_poc[0] = sl->delta_poc[0];
1560  h->poc.delta_poc[1] = sl->delta_poc[1];
1561 
1562  if (nal->type == H264_NAL_IDR_SLICE)
1563  h->poc_offset = sl->idr_pic_id;
1564  else if (h->picture_intra_only)
1565  h->poc_offset = 0;
1566 
1567  /* Shorten frame num gaps so we don't have to allocate reference
1568  * frames just to throw them away */
1569  if (h->poc.frame_num != h->poc.prev_frame_num) {
1570  int unwrap_prev_frame_num = h->poc.prev_frame_num;
1571  int max_frame_num = 1 << sps->log2_max_frame_num;
1572 
1573  if (unwrap_prev_frame_num > h->poc.frame_num)
1574  unwrap_prev_frame_num -= max_frame_num;
1575 
1576  if ((h->poc.frame_num - unwrap_prev_frame_num) > sps->ref_frame_count) {
1577  unwrap_prev_frame_num = (h->poc.frame_num - sps->ref_frame_count) - 1;
1578  if (unwrap_prev_frame_num < 0)
1579  unwrap_prev_frame_num += max_frame_num;
1580 
1581  h->poc.prev_frame_num = unwrap_prev_frame_num;
1582  }
1583  }
1584 
1585  /* See if we have a decoded first field looking for a pair...
1586  * Here, we're using that to see if we should mark previously
1587  * decode frames as "finished".
1588  * We have to do that before the "dummy" in-between frame allocation,
1589  * since that can modify h->cur_pic_ptr. */
1590  if (h->first_field) {
1591  int last_field = last_pic_structure == PICT_BOTTOM_FIELD;
1592  av_assert0(h->cur_pic_ptr);
1593  av_assert0(h->cur_pic_ptr->f->buf[0]);
1594  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1595 
1596  /* Mark old field/frame as completed */
1597  if (h->cur_pic_ptr->tf.owner[last_field] == h->avctx) {
1598  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_field);
1599  }
1600 
1601  /* figure out if we have a complementary field pair */
1602  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1603  /* Previous field is unmatched. Don't display it, but let it
1604  * remain for reference if marked as such. */
1605  if (last_pic_structure != PICT_FRAME) {
1606  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
1607  last_pic_structure == PICT_TOP_FIELD);
1608  }
1609  } else {
1610  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1611  /* This and previous field were reference, but had
1612  * different frame_nums. Consider this field first in
1613  * pair. Throw away previous field except for reference
1614  * purposes. */
1615  if (last_pic_structure != PICT_FRAME) {
1616  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
1617  last_pic_structure == PICT_TOP_FIELD);
1618  }
1619  } else {
1620  /* Second field in complementary pair */
1621  if (!((last_pic_structure == PICT_TOP_FIELD &&
1622  h->picture_structure == PICT_BOTTOM_FIELD) ||
1623  (last_pic_structure == PICT_BOTTOM_FIELD &&
1624  h->picture_structure == PICT_TOP_FIELD))) {
1625  av_log(h->avctx, AV_LOG_ERROR,
1626  "Invalid field mode combination %d/%d\n",
1627  last_pic_structure, h->picture_structure);
1628  h->picture_structure = last_pic_structure;
1629  h->droppable = last_pic_droppable;
1630  return AVERROR_INVALIDDATA;
1631  } else if (last_pic_droppable != h->droppable) {
1632  avpriv_request_sample(h->avctx,
1633  "Found reference and non-reference fields in the same frame, which");
1634  h->picture_structure = last_pic_structure;
1635  h->droppable = last_pic_droppable;
1636  return AVERROR_PATCHWELCOME;
1637  }
1638  }
1639  }
1640  }
1641 
1642  while (h->poc.frame_num != h->poc.prev_frame_num && !h->first_field &&
1643  h->poc.frame_num != (h->poc.prev_frame_num + 1) % (1 << sps->log2_max_frame_num)) {
1644  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1645  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1646  h->poc.frame_num, h->poc.prev_frame_num);
1647  if (!sps->gaps_in_frame_num_allowed_flag)
1648  for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
1649  h->last_pocs[i] = INT_MIN;
1650  ret = h264_frame_start(h);
1651  if (ret < 0) {
1652  h->first_field = 0;
1653  return ret;
1654  }
1655 
1656  h->poc.prev_frame_num++;
1657  h->poc.prev_frame_num %= 1 << sps->log2_max_frame_num;
1658  h->cur_pic_ptr->frame_num = h->poc.prev_frame_num;
1659  h->cur_pic_ptr->invalid_gap = !sps->gaps_in_frame_num_allowed_flag;
1660  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1661  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1662 
1663  h->explicit_ref_marking = 0;
1665  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1666  return ret;
1667  /* Error concealment: If a ref is missing, copy the previous ref
1668  * in its place.
1669  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1670  * many assumptions about there being no actual duplicates.
1671  * FIXME: This does not copy padding for out-of-frame motion
1672  * vectors. Given we are concealing a lost frame, this probably
1673  * is not noticeable by comparison, but it should be fixed. */
1674  if (h->short_ref_count) {
1675  int c[4] = {
1676  1<<(h->ps.sps->bit_depth_luma-1),
1677  1<<(h->ps.sps->bit_depth_chroma-1),
1678  1<<(h->ps.sps->bit_depth_chroma-1),
1679  -1
1680  };
1681 
1682  if (prev &&
1683  h->short_ref[0]->f->width == prev->f->width &&
1684  h->short_ref[0]->f->height == prev->f->height &&
1685  h->short_ref[0]->f->format == prev->f->format) {
1686  ff_thread_await_progress(&prev->tf, INT_MAX, 0);
1687  if (prev->field_picture)
1688  ff_thread_await_progress(&prev->tf, INT_MAX, 1);
1689  ff_thread_release_buffer(h->avctx, &h->short_ref[0]->tf);
1690  h->short_ref[0]->tf.f = h->short_ref[0]->f;
1691  ret = ff_thread_ref_frame(&h->short_ref[0]->tf, &prev->tf);
1692  if (ret < 0)
1693  return ret;
1694  h->short_ref[0]->poc = prev->poc + 2U;
1695  ff_thread_report_progress(&h->short_ref[0]->tf, INT_MAX, 0);
1696  if (h->short_ref[0]->field_picture)
1697  ff_thread_report_progress(&h->short_ref[0]->tf, INT_MAX, 1);
1698  } else if (!h->frame_recovered && !h->avctx->hwaccel)
1699  ff_color_frame(h->short_ref[0]->f, c);
1700  h->short_ref[0]->frame_num = h->poc.prev_frame_num;
1701  }
1702  }
1703 
1704  /* See if we have a decoded first field looking for a pair...
1705  * We're using that to see whether to continue decoding in that
1706  * frame, or to allocate a new one. */
1707  if (h->first_field) {
1708  av_assert0(h->cur_pic_ptr);
1709  av_assert0(h->cur_pic_ptr->f->buf[0]);
1710  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1711 
1712  /* figure out if we have a complementary field pair */
1713  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1714  /* Previous field is unmatched. Don't display it, but let it
1715  * remain for reference if marked as such. */
1716  h->missing_fields ++;
1717  h->cur_pic_ptr = NULL;
1718  h->first_field = FIELD_PICTURE(h);
1719  } else {
1720  h->missing_fields = 0;
1721  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1722  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
1723  h->picture_structure==PICT_BOTTOM_FIELD);
1724  /* This and the previous field had different frame_nums.
1725  * Consider this field first in pair. Throw away previous
1726  * one except for reference purposes. */
1727  h->first_field = 1;
1728  h->cur_pic_ptr = NULL;
1729  } else if (h->cur_pic_ptr->reference & DELAYED_PIC_REF) {
1730  /* This frame was already output, we cannot draw into it
1731  * anymore.
1732  */
1733  h->first_field = 1;
1734  h->cur_pic_ptr = NULL;
1735  } else {
1736  /* Second field in complementary pair */
1737  h->first_field = 0;
1738  }
1739  }
1740  } else {
1741  /* Frame or first field in a potentially complementary pair */
1742  h->first_field = FIELD_PICTURE(h);
1743  }
1744 
1745  if (!FIELD_PICTURE(h) || h->first_field) {
1746  if (h264_frame_start(h) < 0) {
1747  h->first_field = 0;
1748  return AVERROR_INVALIDDATA;
1749  }
1750  } else {
1751  int field = h->picture_structure == PICT_BOTTOM_FIELD;
1753  h->cur_pic_ptr->tf.owner[field] = h->avctx;
1754  }
1755  /* Some macroblocks can be accessed before they're available in case
1756  * of lost slices, MBAFF or threading. */
1757  if (FIELD_PICTURE(h)) {
1758  for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
1759  memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
1760  } else {
1761  memset(h->slice_table, -1,
1762  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
1763  }
1764 
1765  ret = ff_h264_init_poc(h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc,
1766  h->ps.sps, &h->poc, h->picture_structure, nal->ref_idc);
1767  if (ret < 0)
1768  return ret;
1769 
1770  memcpy(h->mmco, sl->mmco, sl->nb_mmco * sizeof(*h->mmco));
1771  h->nb_mmco = sl->nb_mmco;
1772  h->explicit_ref_marking = sl->explicit_ref_marking;
1773 
1774  h->picture_idr = nal->type == H264_NAL_IDR_SLICE;
1775 
1776  if (h->sei.recovery_point.recovery_frame_cnt >= 0) {
1777  const int sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
1778 
1779  if (h->poc.frame_num != sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I)
1780  h->valid_recovery_point = 1;
1781 
1782  if ( h->recovery_frame < 0
1783  || av_mod_uintp2(h->recovery_frame - h->poc.frame_num, h->ps.sps->log2_max_frame_num) > sei_recovery_frame_cnt) {
1784  h->recovery_frame = av_mod_uintp2(h->poc.frame_num + sei_recovery_frame_cnt, h->ps.sps->log2_max_frame_num);
1785 
1786  if (!h->valid_recovery_point)
1787  h->recovery_frame = h->poc.frame_num;
1788  }
1789  }
1790 
1791  h->cur_pic_ptr->f->key_frame |= (nal->type == H264_NAL_IDR_SLICE);
1792 
1793  if (nal->type == H264_NAL_IDR_SLICE ||
1794  (h->recovery_frame == h->poc.frame_num && nal->ref_idc)) {
1795  h->recovery_frame = -1;
1796  h->cur_pic_ptr->recovered = 1;
1797  }
1798  // If we have an IDR, all frames after it in decoded order are
1799  // "recovered".
1800  if (nal->type == H264_NAL_IDR_SLICE)
1801  h->frame_recovered |= FRAME_RECOVERED_IDR;
1802 #if 1
1803  h->cur_pic_ptr->recovered |= h->frame_recovered;
1804 #else
1805  h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR);
1806 #endif
1807 
1808  /* Set the frame properties/side data. Only done for the second field in
1809  * field coded frames, since some SEI information is present for each field
1810  * and is merged by the SEI parsing code. */
1811  if (!FIELD_PICTURE(h) || !h->first_field || h->missing_fields > 1) {
1813  if (ret < 0)
1814  return ret;
1815 
1817  if (ret < 0)
1818  return ret;
1819  }
1820 
1821  return 0;
1822 }
1823 
1825  const H2645NAL *nal)
1826 {
1827  const SPS *sps;
1828  const PPS *pps;
1829  int ret;
1830  unsigned int slice_type, tmp, i;
1831  int field_pic_flag, bottom_field_flag;
1832  int first_slice = sl == h->slice_ctx && !h->current_slice;
1833  int picture_structure;
1834 
1835  if (first_slice)
1836  av_assert0(!h->setup_finished);
1837 
1838  sl->first_mb_addr = get_ue_golomb_long(&sl->gb);
1839 
1840  slice_type = get_ue_golomb_31(&sl->gb);
1841  if (slice_type > 9) {
1842  av_log(h->avctx, AV_LOG_ERROR,
1843  "slice type %d too large at %d\n",
1844  slice_type, sl->first_mb_addr);
1845  return AVERROR_INVALIDDATA;
1846  }
1847  if (slice_type > 4) {
1848  slice_type -= 5;
1849  sl->slice_type_fixed = 1;
1850  } else
1851  sl->slice_type_fixed = 0;
1852 
1853  slice_type = ff_h264_golomb_to_pict_type[slice_type];
1854  sl->slice_type = slice_type;
1855  sl->slice_type_nos = slice_type & 3;
1856 
1857  if (nal->type == H264_NAL_IDR_SLICE &&
1859  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1860  return AVERROR_INVALIDDATA;
1861  }
1862 
1863  sl->pps_id = get_ue_golomb(&sl->gb);
1864  if (sl->pps_id >= MAX_PPS_COUNT) {
1865  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", sl->pps_id);
1866  return AVERROR_INVALIDDATA;
1867  }
1868  if (!h->ps.pps_list[sl->pps_id]) {
1869  av_log(h->avctx, AV_LOG_ERROR,
1870  "non-existing PPS %u referenced\n",
1871  sl->pps_id);
1872  return AVERROR_INVALIDDATA;
1873  }
1874  pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
1875  sps = pps->sps;
1876 
1877  sl->frame_num = get_bits(&sl->gb, sps->log2_max_frame_num);
1878  if (!first_slice) {
1879  if (h->poc.frame_num != sl->frame_num) {
1880  av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
1881  h->poc.frame_num, sl->frame_num);
1882  return AVERROR_INVALIDDATA;
1883  }
1884  }
1885 
1886  sl->mb_mbaff = 0;
1887 
1888  if (sps->frame_mbs_only_flag) {
1889  picture_structure = PICT_FRAME;
1890  } else {
1891  if (!sps->direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
1892  av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
1893  return -1;
1894  }
1895  field_pic_flag = get_bits1(&sl->gb);
1896  if (field_pic_flag) {
1897  bottom_field_flag = get_bits1(&sl->gb);
1898  picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1899  } else {
1900  picture_structure = PICT_FRAME;
1901  }
1902  }
1903  sl->picture_structure = picture_structure;
1904  sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
1905 
1906  if (picture_structure == PICT_FRAME) {
1907  sl->curr_pic_num = sl->frame_num;
1908  sl->max_pic_num = 1 << sps->log2_max_frame_num;
1909  } else {
1910  sl->curr_pic_num = 2 * sl->frame_num + 1;
1911  sl->max_pic_num = 1 << (sps->log2_max_frame_num + 1);
1912  }
1913 
1914  if (nal->type == H264_NAL_IDR_SLICE)
1915  sl->idr_pic_id = get_ue_golomb_long(&sl->gb);
1916 
1917  sl->poc_lsb = 0;
1918  sl->delta_poc_bottom = 0;
1919  if (sps->poc_type == 0) {
1920  sl->poc_lsb = get_bits(&sl->gb, sps->log2_max_poc_lsb);
1921 
1922  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1923  sl->delta_poc_bottom = get_se_golomb(&sl->gb);
1924  }
1925 
1926  sl->delta_poc[0] = sl->delta_poc[1] = 0;
1927  if (sps->poc_type == 1 && !sps->delta_pic_order_always_zero_flag) {
1928  sl->delta_poc[0] = get_se_golomb(&sl->gb);
1929 
1930  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1931  sl->delta_poc[1] = get_se_golomb(&sl->gb);
1932  }
1933 
1934  sl->redundant_pic_count = 0;
1935  if (pps->redundant_pic_cnt_present)
1936  sl->redundant_pic_count = get_ue_golomb(&sl->gb);
1937 
1938  if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
1939  sl->direct_spatial_mv_pred = get_bits1(&sl->gb);
1940 
1942  &sl->gb, pps, sl->slice_type_nos,
1943  picture_structure, h->avctx);
1944  if (ret < 0)
1945  return ret;
1946 
1947  if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
1949  if (ret < 0) {
1950  sl->ref_count[1] = sl->ref_count[0] = 0;
1951  return ret;
1952  }
1953  }
1954 
1955  sl->pwt.use_weight = 0;
1956  for (i = 0; i < 2; i++) {
1957  sl->pwt.luma_weight_flag[i] = 0;
1958  sl->pwt.chroma_weight_flag[i] = 0;
1959  }
1960  if ((pps->weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
1961  (pps->weighted_bipred_idc == 1 &&
1964  sl->slice_type_nos, &sl->pwt,
1965  picture_structure, h->avctx);
1966  if (ret < 0)
1967  return ret;
1968  }
1969 
1970  sl->explicit_ref_marking = 0;
1971  if (nal->ref_idc) {
1972  ret = ff_h264_decode_ref_pic_marking(sl, &sl->gb, nal, h->avctx);
1973  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1974  return AVERROR_INVALIDDATA;
1975  }
1976 
1977  if (sl->slice_type_nos != AV_PICTURE_TYPE_I && pps->cabac) {
1978  tmp = get_ue_golomb_31(&sl->gb);
1979  if (tmp > 2) {
1980  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1981  return AVERROR_INVALIDDATA;
1982  }
1983  sl->cabac_init_idc = tmp;
1984  }
1985 
1986  sl->last_qscale_diff = 0;
1987  tmp = pps->init_qp + (unsigned)get_se_golomb(&sl->gb);
1988  if (tmp > 51 + 6 * (sps->bit_depth_luma - 8)) {
1989  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
1990  return AVERROR_INVALIDDATA;
1991  }
1992  sl->qscale = tmp;
1993  sl->chroma_qp[0] = get_chroma_qp(pps, 0, sl->qscale);
1994  sl->chroma_qp[1] = get_chroma_qp(pps, 1, sl->qscale);
1995  // FIXME qscale / qp ... stuff
1996  if (sl->slice_type == AV_PICTURE_TYPE_SP)
1997  get_bits1(&sl->gb); /* sp_for_switch_flag */
1998  if (sl->slice_type == AV_PICTURE_TYPE_SP ||
2000  get_se_golomb(&sl->gb); /* slice_qs_delta */
2001 
2002  sl->deblocking_filter = 1;
2003  sl->slice_alpha_c0_offset = 0;
2004  sl->slice_beta_offset = 0;
2005  if (pps->deblocking_filter_parameters_present) {
2006  tmp = get_ue_golomb_31(&sl->gb);
2007  if (tmp > 2) {
2008  av_log(h->avctx, AV_LOG_ERROR,
2009  "deblocking_filter_idc %u out of range\n", tmp);
2010  return AVERROR_INVALIDDATA;
2011  }
2012  sl->deblocking_filter = tmp;
2013  if (sl->deblocking_filter < 2)
2014  sl->deblocking_filter ^= 1; // 1<->0
2015 
2016  if (sl->deblocking_filter) {
2017  int slice_alpha_c0_offset_div2 = get_se_golomb(&sl->gb);
2018  int slice_beta_offset_div2 = get_se_golomb(&sl->gb);
2019  if (slice_alpha_c0_offset_div2 > 6 ||
2020  slice_alpha_c0_offset_div2 < -6 ||
2021  slice_beta_offset_div2 > 6 ||
2022  slice_beta_offset_div2 < -6) {
2023  av_log(h->avctx, AV_LOG_ERROR,
2024  "deblocking filter parameters %d %d out of range\n",
2025  slice_alpha_c0_offset_div2, slice_beta_offset_div2);
2026  return AVERROR_INVALIDDATA;
2027  }
2028  sl->slice_alpha_c0_offset = slice_alpha_c0_offset_div2 * 2;
2029  sl->slice_beta_offset = slice_beta_offset_div2 * 2;
2030  }
2031  }
2032 
2033  return 0;
2034 }
2035 
2036 /* do all the per-slice initialization needed before we can start decoding the
2037  * actual MBs */
2039  const H2645NAL *nal)
2040 {
2041  int i, j, ret = 0;
2042 
2043  if (h->picture_idr && nal->type != H264_NAL_IDR_SLICE) {
2044  av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of IDR and non-IDR slices\n");
2045  return AVERROR_INVALIDDATA;
2046  }
2047 
2048  av_assert1(h->mb_num == h->mb_width * h->mb_height);
2049  if (sl->first_mb_addr << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
2050  sl->first_mb_addr >= h->mb_num) {
2051  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
2052  return AVERROR_INVALIDDATA;
2053  }
2054  sl->resync_mb_x = sl->mb_x = sl->first_mb_addr % h->mb_width;
2055  sl->resync_mb_y = sl->mb_y = (sl->first_mb_addr / h->mb_width) <<
2057  if (h->picture_structure == PICT_BOTTOM_FIELD)
2058  sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
2059  av_assert1(sl->mb_y < h->mb_height);
2060 
2061  ret = ff_h264_build_ref_list(h, sl);
2062  if (ret < 0)
2063  return ret;
2064 
2065  if (h->ps.pps->weighted_bipred_idc == 2 &&
2067  implicit_weight_table(h, sl, -1);
2068  if (FRAME_MBAFF(h)) {
2069  implicit_weight_table(h, sl, 0);
2070  implicit_weight_table(h, sl, 1);
2071  }
2072  }
2073 
2076  if (!h->setup_finished)
2078 
2079  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
2080  (h->avctx->skip_loop_filter >= AVDISCARD_NONKEY &&
2081  h->nal_unit_type != H264_NAL_IDR_SLICE) ||
2082  (h->avctx->skip_loop_filter >= AVDISCARD_NONINTRA &&
2084  (h->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
2086  (h->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
2087  nal->ref_idc == 0))
2088  sl->deblocking_filter = 0;
2089 
2090  if (sl->deblocking_filter == 1 && h->nb_slice_ctx > 1) {
2091  if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) {
2092  /* Cheat slightly for speed:
2093  * Do not bother to deblock across slices. */
2094  sl->deblocking_filter = 2;
2095  } else {
2096  h->postpone_filter = 1;
2097  }
2098  }
2099  sl->qp_thresh = 15 -
2101  FFMAX3(0,
2102  h->ps.pps->chroma_qp_index_offset[0],
2103  h->ps.pps->chroma_qp_index_offset[1]) +
2104  6 * (h->ps.sps->bit_depth_luma - 8);
2105 
2106  sl->slice_num = ++h->current_slice;
2107 
2108  if (sl->slice_num)
2109  h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
2110  if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
2111  && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
2112  && sl->slice_num >= MAX_SLICES) {
2113  //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
2114  av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
2115  }
2116 
2117  for (j = 0; j < 2; j++) {
2118  int id_list[16];
2119  int *ref2frm = h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
2120  for (i = 0; i < 16; i++) {
2121  id_list[i] = 60;
2122  if (j < sl->list_count && i < sl->ref_count[j] &&
2123  sl->ref_list[j][i].parent->f->buf[0]) {
2124  int k;
2125  AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
2126  for (k = 0; k < h->short_ref_count; k++)
2127  if (h->short_ref[k]->f->buf[0]->buffer == buf) {
2128  id_list[i] = k;
2129  break;
2130  }
2131  for (k = 0; k < h->long_ref_count; k++)
2132  if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
2133  id_list[i] = h->short_ref_count + k;
2134  break;
2135  }
2136  }
2137  }
2138 
2139  ref2frm[0] =
2140  ref2frm[1] = -1;
2141  for (i = 0; i < 16; i++)
2142  ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
2143  ref2frm[18 + 0] =
2144  ref2frm[18 + 1] = -1;
2145  for (i = 16; i < 48; i++)
2146  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
2147  (sl->ref_list[j][i].reference & 3);
2148  }
2149 
2150  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
2151  av_log(h->avctx, AV_LOG_DEBUG,
2152  "slice:%d %s mb:%d %c%s%s frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
2153  sl->slice_num,
2154  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
2155  sl->mb_y * h->mb_width + sl->mb_x,
2157  sl->slice_type_fixed ? " fix" : "",
2158  nal->type == H264_NAL_IDR_SLICE ? " IDR" : "",
2159  h->poc.frame_num,
2160  h->cur_pic_ptr->field_poc[0],
2161  h->cur_pic_ptr->field_poc[1],
2162  sl->ref_count[0], sl->ref_count[1],
2163  sl->qscale,
2164  sl->deblocking_filter,
2166  sl->pwt.use_weight,
2167  sl->pwt.use_weight == 1 && sl->pwt.use_weight_chroma ? "c" : "",
2168  sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
2169  }
2170 
2171  return 0;
2172 }
2173 
2175 {
2176  H264SliceContext *sl = h->slice_ctx + h->nb_slice_ctx_queued;
2177  int first_slice = sl == h->slice_ctx && !h->current_slice;
2178  int ret;
2179 
2180  sl->gb = nal->gb;
2181 
2182  ret = h264_slice_header_parse(h, sl, nal);
2183  if (ret < 0)
2184  return ret;
2185 
2186  // discard redundant pictures
2187  if (sl->redundant_pic_count > 0) {
2188  sl->ref_count[0] = sl->ref_count[1] = 0;
2189  return 0;
2190  }
2191 
2192  if (sl->first_mb_addr == 0 || !h->current_slice) {
2193  if (h->setup_finished) {
2194  av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n");
2195  return AVERROR_INVALIDDATA;
2196  }
2197  }
2198 
2199  if (sl->first_mb_addr == 0) { // FIXME better field boundary detection
2200  if (h->current_slice) {
2201  // this slice starts a new field
2202  // first decode any pending queued slices
2203  if (h->nb_slice_ctx_queued) {
2204  H264SliceContext tmp_ctx;
2205 
2207  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
2208  return ret;
2209 
2210  memcpy(&tmp_ctx, h->slice_ctx, sizeof(tmp_ctx));
2211  memcpy(h->slice_ctx, sl, sizeof(tmp_ctx));
2212  memcpy(sl, &tmp_ctx, sizeof(tmp_ctx));
2213  sl = h->slice_ctx;
2214  }
2215 
2216  if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
2217  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2218  if (ret < 0)
2219  return ret;
2220  } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == H264_NAL_IDR_SLICE) {
2221  av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
2222  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2223  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
2224  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
2225  h->cur_pic_ptr = NULL;
2226  if (ret < 0)
2227  return ret;
2228  } else
2229  return AVERROR_INVALIDDATA;
2230  }
2231 
2232  if (!h->first_field) {
2233  if (h->cur_pic_ptr && !h->droppable) {
2234  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
2235  h->picture_structure == PICT_BOTTOM_FIELD);
2236  }
2237  h->cur_pic_ptr = NULL;
2238  }
2239  }
2240 
2241  if (!h->current_slice)
2242  av_assert0(sl == h->slice_ctx);
2243 
2244  if (h->current_slice == 0 && !h->first_field) {
2245  if (
2246  (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
2247  (h->avctx->skip_frame >= AVDISCARD_BIDIR && sl->slice_type_nos == AV_PICTURE_TYPE_B) ||
2248  (h->avctx->skip_frame >= AVDISCARD_NONINTRA && sl->slice_type_nos != AV_PICTURE_TYPE_I) ||
2249  (h->avctx->skip_frame >= AVDISCARD_NONKEY && h->nal_unit_type != H264_NAL_IDR_SLICE && h->sei.recovery_point.recovery_frame_cnt < 0) ||
2250  h->avctx->skip_frame >= AVDISCARD_ALL) {
2251  return 0;
2252  }
2253  }
2254 
2255  if (!first_slice) {
2256  const PPS *pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
2257 
2258  if (h->ps.pps->sps_id != pps->sps_id ||
2259  h->ps.pps->transform_8x8_mode != pps->transform_8x8_mode /*||
2260  (h->setup_finished && h->ps.pps != pps)*/) {
2261  av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n");
2262  return AVERROR_INVALIDDATA;
2263  }
2264  if (h->ps.sps != pps->sps) {
2265  av_log(h->avctx, AV_LOG_ERROR,
2266  "SPS changed in the middle of the frame\n");
2267  return AVERROR_INVALIDDATA;
2268  }
2269  }
2270 
2271  if (h->current_slice == 0) {
2272  ret = h264_field_start(h, sl, nal, first_slice);
2273  if (ret < 0)
2274  return ret;
2275  } else {
2276  if (h->picture_structure != sl->picture_structure ||
2277  h->droppable != (nal->ref_idc == 0)) {
2278  av_log(h->avctx, AV_LOG_ERROR,
2279  "Changing field mode (%d -> %d) between slices is not allowed\n",
2280  h->picture_structure, sl->picture_structure);
2281  return AVERROR_INVALIDDATA;
2282  } else if (!h->cur_pic_ptr) {
2283  av_log(h->avctx, AV_LOG_ERROR,
2284  "unset cur_pic_ptr on slice %d\n",
2285  h->current_slice + 1);
2286  return AVERROR_INVALIDDATA;
2287  }
2288  }
2289 
2290  ret = h264_slice_init(h, sl, nal);
2291  if (ret < 0)
2292  return ret;
2293 
2294  h->nb_slice_ctx_queued++;
2295 
2296  return 0;
2297 }
2298 
2300 {
2301  switch (sl->slice_type) {
2302  case AV_PICTURE_TYPE_P:
2303  return 0;
2304  case AV_PICTURE_TYPE_B:
2305  return 1;
2306  case AV_PICTURE_TYPE_I:
2307  return 2;
2308  case AV_PICTURE_TYPE_SP:
2309  return 3;
2310  case AV_PICTURE_TYPE_SI:
2311  return 4;
2312  default:
2313  return AVERROR_INVALIDDATA;
2314  }
2315 }
2316 
2318  H264SliceContext *sl,
2319  int mb_type, int top_xy,
2320  int left_xy[LEFT_MBS],
2321  int top_type,
2322  int left_type[LEFT_MBS],
2323  int mb_xy, int list)
2324 {
2325  int b_stride = h->b_stride;
2326  int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
2327  int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
2328  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
2329  if (USES_LIST(top_type, list)) {
2330  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
2331  const int b8_xy = 4 * top_xy + 2;
2332  const int *ref2frm = &h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2333  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
2334  ref_cache[0 - 1 * 8] =
2335  ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]];
2336  ref_cache[2 - 1 * 8] =
2337  ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]];
2338  } else {
2339  AV_ZERO128(mv_dst - 1 * 8);
2340  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2341  }
2342 
2343  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
2344  if (USES_LIST(left_type[LTOP], list)) {
2345  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
2346  const int b8_xy = 4 * left_xy[LTOP] + 1;
2347  const int *ref2frm = &h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2348  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
2349  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
2350  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
2351  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
2352  ref_cache[-1 + 0] =
2353  ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
2354  ref_cache[-1 + 16] =
2355  ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
2356  } else {
2357  AV_ZERO32(mv_dst - 1 + 0);
2358  AV_ZERO32(mv_dst - 1 + 8);
2359  AV_ZERO32(mv_dst - 1 + 16);
2360  AV_ZERO32(mv_dst - 1 + 24);
2361  ref_cache[-1 + 0] =
2362  ref_cache[-1 + 8] =
2363  ref_cache[-1 + 16] =
2364  ref_cache[-1 + 24] = LIST_NOT_USED;
2365  }
2366  }
2367  }
2368 
2369  if (!USES_LIST(mb_type, list)) {
2370  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
2371  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2372  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2373  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2374  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2375  return;
2376  }
2377 
2378  {
2379  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
2380  const int *ref2frm = &h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2381  uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101;
2382  uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101;
2383  AV_WN32A(&ref_cache[0 * 8], ref01);
2384  AV_WN32A(&ref_cache[1 * 8], ref01);
2385  AV_WN32A(&ref_cache[2 * 8], ref23);
2386  AV_WN32A(&ref_cache[3 * 8], ref23);
2387  }
2388 
2389  {
2390  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
2391  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
2392  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
2393  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
2394  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
2395  }
2396 }
2397 
2398 /**
2399  * @return non zero if the loop filter can be skipped
2400  */
2401 static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
2402 {
2403  const int mb_xy = sl->mb_xy;
2404  int top_xy, left_xy[LEFT_MBS];
2405  int top_type, left_type[LEFT_MBS];
2406  uint8_t *nnz;
2407  uint8_t *nnz_cache;
2408 
2409  top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
2410 
2411  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
2412  if (FRAME_MBAFF(h)) {
2413  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
2414  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
2415  if (sl->mb_y & 1) {
2416  if (left_mb_field_flag != curr_mb_field_flag)
2417  left_xy[LTOP] -= h->mb_stride;
2418  } else {
2419  if (curr_mb_field_flag)
2420  top_xy += h->mb_stride &
2421  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
2422  if (left_mb_field_flag != curr_mb_field_flag)
2423  left_xy[LBOT] += h->mb_stride;
2424  }
2425  }
2426 
2427  sl->top_mb_xy = top_xy;
2428  sl->left_mb_xy[LTOP] = left_xy[LTOP];
2429  sl->left_mb_xy[LBOT] = left_xy[LBOT];
2430  {
2431  /* For sufficiently low qp, filtering wouldn't do anything.
2432  * This is a conservative estimate: could also check beta_offset
2433  * and more accurate chroma_qp. */
2434  int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
2435  int qp = h->cur_pic.qscale_table[mb_xy];
2436  if (qp <= qp_thresh &&
2437  (left_xy[LTOP] < 0 ||
2438  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
2439  (top_xy < 0 ||
2440  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
2441  if (!FRAME_MBAFF(h))
2442  return 1;
2443  if ((left_xy[LTOP] < 0 ||
2444  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
2445  (top_xy < h->mb_stride ||
2446  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
2447  return 1;
2448  }
2449  }
2450 
2451  top_type = h->cur_pic.mb_type[top_xy];
2452  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
2453  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
2454  if (sl->deblocking_filter == 2) {
2455  if (h->slice_table[top_xy] != sl->slice_num)
2456  top_type = 0;
2457  if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
2458  left_type[LTOP] = left_type[LBOT] = 0;
2459  } else {
2460  if (h->slice_table[top_xy] == 0xFFFF)
2461  top_type = 0;
2462  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
2463  left_type[LTOP] = left_type[LBOT] = 0;
2464  }
2465  sl->top_type = top_type;
2466  sl->left_type[LTOP] = left_type[LTOP];
2467  sl->left_type[LBOT] = left_type[LBOT];
2468 
2469  if (IS_INTRA(mb_type))
2470  return 0;
2471 
2472  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2473  top_type, left_type, mb_xy, 0);
2474  if (sl->list_count == 2)
2475  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2476  top_type, left_type, mb_xy, 1);
2477 
2478  nnz = h->non_zero_count[mb_xy];
2479  nnz_cache = sl->non_zero_count_cache;
2480  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2481  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2482  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2483  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2484  sl->cbp = h->cbp_table[mb_xy];
2485 
2486  if (top_type) {
2487  nnz = h->non_zero_count[top_xy];
2488  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2489  }
2490 
2491  if (left_type[LTOP]) {
2492  nnz = h->non_zero_count[left_xy[LTOP]];
2493  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2494  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2495  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2496  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2497  }
2498 
2499  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2500  * from what the loop filter needs */
2501  if (!CABAC(h) && h->ps.pps->transform_8x8_mode) {
2502  if (IS_8x8DCT(top_type)) {
2503  nnz_cache[4 + 8 * 0] =
2504  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2505  nnz_cache[6 + 8 * 0] =
2506  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2507  }
2508  if (IS_8x8DCT(left_type[LTOP])) {
2509  nnz_cache[3 + 8 * 1] =
2510  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2511  }
2512  if (IS_8x8DCT(left_type[LBOT])) {
2513  nnz_cache[3 + 8 * 3] =
2514  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2515  }
2516 
2517  if (IS_8x8DCT(mb_type)) {
2518  nnz_cache[scan8[0]] =
2519  nnz_cache[scan8[1]] =
2520  nnz_cache[scan8[2]] =
2521  nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
2522 
2523  nnz_cache[scan8[0 + 4]] =
2524  nnz_cache[scan8[1 + 4]] =
2525  nnz_cache[scan8[2 + 4]] =
2526  nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
2527 
2528  nnz_cache[scan8[0 + 8]] =
2529  nnz_cache[scan8[1 + 8]] =
2530  nnz_cache[scan8[2 + 8]] =
2531  nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
2532 
2533  nnz_cache[scan8[0 + 12]] =
2534  nnz_cache[scan8[1 + 12]] =
2535  nnz_cache[scan8[2 + 12]] =
2536  nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
2537  }
2538  }
2539 
2540  return 0;
2541 }
2542 
2543 static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
2544 {
2545  uint8_t *dest_y, *dest_cb, *dest_cr;
2546  int linesize, uvlinesize, mb_x, mb_y;
2547  const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
2548  const int old_slice_type = sl->slice_type;
2549  const int pixel_shift = h->pixel_shift;
2550  const int block_h = 16 >> h->chroma_y_shift;
2551 
2552  if (h->postpone_filter)
2553  return;
2554 
2555  if (sl->deblocking_filter) {
2556  for (mb_x = start_x; mb_x < end_x; mb_x++)
2557  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2558  int mb_xy, mb_type;
2559  mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
2560  mb_type = h->cur_pic.mb_type[mb_xy];
2561 
2562  if (FRAME_MBAFF(h))
2563  sl->mb_mbaff =
2564  sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2565 
2566  sl->mb_x = mb_x;
2567  sl->mb_y = mb_y;
2568  dest_y = h->cur_pic.f->data[0] +
2569  ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
2570  dest_cb = h->cur_pic.f->data[1] +
2571  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2572  mb_y * sl->uvlinesize * block_h;
2573  dest_cr = h->cur_pic.f->data[2] +
2574  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2575  mb_y * sl->uvlinesize * block_h;
2576  // FIXME simplify above
2577 
2578  if (MB_FIELD(sl)) {
2579  linesize = sl->mb_linesize = sl->linesize * 2;
2580  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
2581  if (mb_y & 1) { // FIXME move out of this function?
2582  dest_y -= sl->linesize * 15;
2583  dest_cb -= sl->uvlinesize * (block_h - 1);
2584  dest_cr -= sl->uvlinesize * (block_h - 1);
2585  }
2586  } else {
2587  linesize = sl->mb_linesize = sl->linesize;
2588  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
2589  }
2590  backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
2591  uvlinesize, 0);
2592  if (fill_filter_caches(h, sl, mb_type))
2593  continue;
2594  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, h->cur_pic.qscale_table[mb_xy]);
2595  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, h->cur_pic.qscale_table[mb_xy]);
2596 
2597  if (FRAME_MBAFF(h)) {
2598  ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2599  linesize, uvlinesize);
2600  } else {
2601  ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
2602  dest_cr, linesize, uvlinesize);
2603  }
2604  }
2605  }
2606  sl->slice_type = old_slice_type;
2607  sl->mb_x = end_x;
2608  sl->mb_y = end_mb_y - FRAME_MBAFF(h);
2609  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale);
2610  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale);
2611 }
2612 
2614 {
2615  const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
2616  int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
2617  h->cur_pic.mb_type[mb_xy - 1] :
2618  (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
2619  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2620  sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2621 }
2622 
2623 /**
2624  * Draw edges and report progress for the last MB row.
2625  */
2627 {
2628  int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
2629  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2630  int height = 16 << FRAME_MBAFF(h);
2631  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2632 
2633  if (sl->deblocking_filter) {
2634  if ((top + height) >= pic_height)
2635  height += deblock_border;
2636  top -= deblock_border;
2637  }
2638 
2639  if (top >= pic_height || (top + height) < 0)
2640  return;
2641 
2642  height = FFMIN(height, pic_height - top);
2643  if (top < 0) {
2644  height = top + height;
2645  top = 0;
2646  }
2647 
2648  ff_h264_draw_horiz_band(h, sl, top, height);
2649 
2650  if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
2651  return;
2652 
2653  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2654  h->picture_structure == PICT_BOTTOM_FIELD);
2655 }
2656 
2658  int startx, int starty,
2659  int endx, int endy, int status)
2660 {
2661  if (!sl->h264->enable_er)
2662  return;
2663 
2664  if (CONFIG_ERROR_RESILIENCE) {
2665  ERContext *er = &sl->h264->slice_ctx[0].er;
2666 
2667  ff_er_add_slice(er, startx, starty, endx, endy, status);
2668  }
2669 }
2670 
2671 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2672 {
2673  H264SliceContext *sl = arg;
2674  const H264Context *h = sl->h264;
2675  int lf_x_start = sl->mb_x;
2676  int orig_deblock = sl->deblocking_filter;
2677  int ret;
2678 
2679  sl->linesize = h->cur_pic_ptr->f->linesize[0];
2680  sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
2681 
2682  ret = alloc_scratch_buffers(sl, sl->linesize);
2683  if (ret < 0)
2684  return ret;
2685 
2686  sl->mb_skip_run = -1;
2687 
2688  av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
2689 
2690  if (h->postpone_filter)
2691  sl->deblocking_filter = 0;
2692 
2693  sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
2694  (CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY));
2695 
2696  if (!(h->avctx->active_thread_type & FF_THREAD_SLICE) && h->picture_structure == PICT_FRAME && h->slice_ctx[0].er.error_status_table) {
2697  const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
2698  if (start_i) {
2699  int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
2700  prev_status &= ~ VP_START;
2701  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
2702  h->slice_ctx[0].er.error_occurred = 1;
2703  }
2704  }
2705 
2706  if (h->ps.pps->cabac) {
2707  /* realign */
2708  align_get_bits(&sl->gb);
2709 
2710  /* init cabac */
2712  sl->gb.buffer + get_bits_count(&sl->gb) / 8,
2713  (get_bits_left(&sl->gb) + 7) / 8);
2714  if (ret < 0)
2715  return ret;
2716 
2718 
2719  for (;;) {
2720  int ret, eos;
2721  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2722  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2723  sl->next_slice_idx);
2724  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2725  sl->mb_y, ER_MB_ERROR);
2726  return AVERROR_INVALIDDATA;
2727  }
2728 
2729  ret = ff_h264_decode_mb_cabac(h, sl);
2730 
2731  if (ret >= 0)
2732  ff_h264_hl_decode_mb(h, sl);
2733 
2734  // FIXME optimal? or let mb_decode decode 16x32 ?
2735  if (ret >= 0 && FRAME_MBAFF(h)) {
2736  sl->mb_y++;
2737 
2738  ret = ff_h264_decode_mb_cabac(h, sl);
2739 
2740  if (ret >= 0)
2741  ff_h264_hl_decode_mb(h, sl);
2742  sl->mb_y--;
2743  }
2744  eos = get_cabac_terminate(&sl->cabac);
2745 
2746  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2747  sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
2748  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2749  sl->mb_y, ER_MB_END);
2750  if (sl->mb_x >= lf_x_start)
2751  loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
2752  goto finish;
2753  }
2754  if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
2755  av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
2756  if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
2757  av_log(h->avctx, AV_LOG_ERROR,
2758  "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
2759  sl->mb_x, sl->mb_y,
2760  sl->cabac.bytestream_end - sl->cabac.bytestream);
2761  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2762  sl->mb_y, ER_MB_ERROR);
2763  return AVERROR_INVALIDDATA;
2764  }
2765 
2766  if (++sl->mb_x >= h->mb_width) {
2767  loop_filter(h, sl, lf_x_start, sl->mb_x);
2768  sl->mb_x = lf_x_start = 0;
2769  decode_finish_row(h, sl);
2770  ++sl->mb_y;
2771  if (FIELD_OR_MBAFF_PICTURE(h)) {
2772  ++sl->mb_y;
2773  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2775  }
2776  }
2777 
2778  if (eos || sl->mb_y >= h->mb_height) {
2779  ff_tlog(h->avctx, "slice end %d %d\n",
2780  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2781  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2782  sl->mb_y, ER_MB_END);
2783  if (sl->mb_x > lf_x_start)
2784  loop_filter(h, sl, lf_x_start, sl->mb_x);
2785  goto finish;
2786  }
2787  }
2788  } else {
2789  for (;;) {
2790  int ret;
2791 
2792  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2793  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2794  sl->next_slice_idx);
2795  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2796  sl->mb_y, ER_MB_ERROR);
2797  return AVERROR_INVALIDDATA;
2798  }
2799 
2800  ret = ff_h264_decode_mb_cavlc(h, sl);
2801 
2802  if (ret >= 0)
2803  ff_h264_hl_decode_mb(h, sl);
2804 
2805  // FIXME optimal? or let mb_decode decode 16x32 ?
2806  if (ret >= 0 && FRAME_MBAFF(h)) {
2807  sl->mb_y++;
2808  ret = ff_h264_decode_mb_cavlc(h, sl);
2809 
2810  if (ret >= 0)
2811  ff_h264_hl_decode_mb(h, sl);
2812  sl->mb_y--;
2813  }
2814 
2815  if (ret < 0) {
2816  av_log(h->avctx, AV_LOG_ERROR,
2817  "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
2818  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2819  sl->mb_y, ER_MB_ERROR);
2820  return ret;
2821  }
2822 
2823  if (++sl->mb_x >= h->mb_width) {
2824  loop_filter(h, sl, lf_x_start, sl->mb_x);
2825  sl->mb_x = lf_x_start = 0;
2826  decode_finish_row(h, sl);
2827  ++sl->mb_y;
2828  if (FIELD_OR_MBAFF_PICTURE(h)) {
2829  ++sl->mb_y;
2830  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2832  }
2833  if (sl->mb_y >= h->mb_height) {
2834  ff_tlog(h->avctx, "slice end %d %d\n",
2835  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2836 
2837  if ( get_bits_left(&sl->gb) == 0
2838  || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
2839  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2840  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2841 
2842  goto finish;
2843  } else {
2844  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2845  sl->mb_x, sl->mb_y, ER_MB_END);
2846 
2847  return AVERROR_INVALIDDATA;
2848  }
2849  }
2850  }
2851 
2852  if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
2853  ff_tlog(h->avctx, "slice end %d %d\n",
2854  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2855 
2856  if (get_bits_left(&sl->gb) == 0) {
2857  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2858  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2859  if (sl->mb_x > lf_x_start)
2860  loop_filter(h, sl, lf_x_start, sl->mb_x);
2861 
2862  goto finish;
2863  } else {
2864  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2865  sl->mb_y, ER_MB_ERROR);
2866 
2867  return AVERROR_INVALIDDATA;
2868  }
2869  }
2870  }
2871  }
2872 
2873 finish:
2874  sl->deblocking_filter = orig_deblock;
2875  return 0;
2876 }
2877 
2878 /**
2879  * Call decode_slice() for each context.
2880  *
2881  * @param h h264 master context
2882  */
2884 {
2885  AVCodecContext *const avctx = h->avctx;
2886  H264SliceContext *sl;
2887  int context_count = h->nb_slice_ctx_queued;
2888  int ret = 0;
2889  int i, j;
2890 
2891  h->slice_ctx[0].next_slice_idx = INT_MAX;
2892 
2893  if (h->avctx->hwaccel || context_count < 1)
2894  return 0;
2895 
2896  av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
2897 
2898  if (context_count == 1) {
2899 
2900  h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height;
2901  h->postpone_filter = 0;
2902 
2903  ret = decode_slice(avctx, &h->slice_ctx[0]);
2904  h->mb_y = h->slice_ctx[0].mb_y;
2905  if (ret < 0)
2906  goto finish;
2907  } else {
2908  av_assert0(context_count > 0);
2909  for (i = 0; i < context_count; i++) {
2910  int next_slice_idx = h->mb_width * h->mb_height;
2911  int slice_idx;
2912 
2913  sl = &h->slice_ctx[i];
2914  if (CONFIG_ERROR_RESILIENCE) {
2915  sl->er.error_count = 0;
2916  }
2917 
2918  /* make sure none of those slices overlap */
2919  slice_idx = sl->mb_y * h->mb_width + sl->mb_x;
2920  for (j = 0; j < context_count; j++) {
2921  H264SliceContext *sl2 = &h->slice_ctx[j];
2922  int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x;
2923 
2924  if (i == j || slice_idx2 < slice_idx)
2925  continue;
2926  next_slice_idx = FFMIN(next_slice_idx, slice_idx2);
2927  }
2928  sl->next_slice_idx = next_slice_idx;
2929  }
2930 
2931  avctx->execute(avctx, decode_slice, h->slice_ctx,
2932  NULL, context_count, sizeof(h->slice_ctx[0]));
2933 
2934  /* pull back stuff from slices to master context */
2935  sl = &h->slice_ctx[context_count - 1];
2936  h->mb_y = sl->mb_y;
2937  if (CONFIG_ERROR_RESILIENCE) {
2938  for (i = 1; i < context_count; i++)
2939  h->slice_ctx[0].er.error_count += h->slice_ctx[i].er.error_count;
2940  }
2941 
2942  if (h->postpone_filter) {
2943  h->postpone_filter = 0;
2944 
2945  for (i = 0; i < context_count; i++) {
2946  int y_end, x_end;
2947 
2948  sl = &h->slice_ctx[i];
2949  y_end = FFMIN(sl->mb_y + 1, h->mb_height);
2950  x_end = (sl->mb_y >= h->mb_height) ? h->mb_width : sl->mb_x;
2951 
2952  for (j = sl->resync_mb_y; j < y_end; j += 1 + FIELD_OR_MBAFF_PICTURE(h)) {
2953  sl->mb_y = j;
2954  loop_filter(h, sl, j > sl->resync_mb_y ? 0 : sl->resync_mb_x,
2955  j == y_end - 1 ? x_end : h->mb_width);
2956  }
2957  }
2958  }
2959  }
2960 
2961 finish:
2962  h->nb_slice_ctx_queued = 0;
2963  return ret;
2964 }
PICT_FRAME
#define PICT_FRAME
Definition: mpegutils.h:38
er_add_slice
static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2657
ff_h264_filter_mb_fast
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
Definition: h264_loopfilter.c:419
h264_slice_header_init
static int h264_slice_header_init(H264Context *h)
Definition: h264_slice.c:942
implicit_weight_table
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:691
H264SliceContext::mb_xy
int mb_xy
Definition: h264dec.h:243
ff_h264_unref_picture
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:44
av_buffer_pool_init
AVBufferPool * av_buffer_pool_init(size_t size, AVBufferRef *(*alloc)(size_t size))
Allocate and initialize a buffer pool.
Definition: buffer.c:280
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:186
AV_TIMECODE_STR_SIZE
#define AV_TIMECODE_STR_SIZE
Definition: timecode.h:33
AV_PIX_FMT_CUDA
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
Definition: pixfmt.h:225
td
#define td
Definition: regdef.h:70
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
H264SliceContext::ref_cache
int8_t ref_cache[2][5 *8]
Definition: h264dec.h:312
status
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
ff_h264_free_tables
void ff_h264_free_tables(H264Context *h)
Definition: h264dec.c:138
H264SEIDisplayOrientation::hflip
int hflip
Definition: h264_sei.h:147
AV_STEREO3D_VIEW_LEFT
@ AV_STEREO3D_VIEW_LEFT
Frame contains only the left view.
Definition: stereo3d.h:156
av_clip
#define av_clip
Definition: common.h:96
h264_init_ps
static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
Definition: h264_slice.c:1042
H264SEIFilmGrainCharacteristics::blending_mode_id
int blending_mode_id
Definition: h264_sei.h:178
H264SliceContext::max_pic_num
int max_pic_num
Definition: h264dec.h:344
H264SliceContext::nb_mmco
int nb_mmco
Definition: h264dec.h:335
get_bits_left
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:850
CHROMA422
#define CHROMA422(h)
Definition: h264dec.h:100
FF_BUG_TRUNCATED
#define FF_BUG_TRUNCATED
Definition: avcodec.h:1265
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
cabac.h
AV_STEREO3D_SIDEBYSIDE_QUINCUNX
@ AV_STEREO3D_SIDEBYSIDE_QUINCUNX
Views are next to each other, but when upscaling apply a checkerboard pattern.
Definition: stereo3d.h:117
H264_NAL_IDR_SLICE
@ H264_NAL_IDR_SLICE
Definition: h264.h:39
H264Picture::poc
int poc
frame POC
Definition: h264dec.h:153
h264_export_frame_props
static int h264_export_frame_props(H264Context *h)
Definition: h264_slice.c:1161
H264Picture::f
AVFrame * f
Definition: h264dec.h:131
ff_thread_ref_frame
int ff_thread_ref_frame(ThreadFrame *dst, const ThreadFrame *src)
Definition: utils.c:878
out
FILE * out
Definition: movenc.c:54
cb
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:215
av_frame_new_side_data
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, size_t size)
Add a new side data to a frame.
Definition: frame.c:605
av_clip_int8
#define av_clip_int8
Definition: common.h:105
zigzag_scan8x8_cavlc
static const uint8_t zigzag_scan8x8_cavlc[64+1]
Definition: h264_slice.c:97
ff_h264_replace_picture
int ff_h264_replace_picture(H264Context *h, H264Picture *dst, const H264Picture *src)
Definition: h264_picture.c:155
ff_thread_can_start_frame
int ff_thread_can_start_frame(AVCodecContext *avctx)
Definition: pthread_frame.c:935
H264Context::slice_ctx
H264SliceContext * slice_ctx
Definition: h264dec.h:364
AVFilmGrainH274Params::color_space
enum AVColorSpace color_space
Definition: film_grain_params.h:152
AVBufferRef::data
uint8_t * data
The data buffer.
Definition: buffer.h:90
AV_FRAME_DATA_A53_CC
@ AV_FRAME_DATA_A53_CC
ATSC A53 Part 4 Closed Captions.
Definition: frame.h:58
H264Picture::ref_index
int8_t * ref_index[2]
Definition: h264dec.h:150
HWACCEL_MAX
#define HWACCEL_MAX
ff_h264_slice_context_init
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264dec.c:222
AVFrame::coded_picture_number
int coded_picture_number
picture number in bitstream order
Definition: frame.h:408
MB_MBAFF
#define MB_MBAFF(h)
Definition: h264dec.h:73
H264SliceContext::mvd_table
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:325
ff_h264_set_erpic
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src)
Definition: h264_picture.c:208
get_bits_count
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:220
H264_SEI_PIC_STRUCT_TOP_BOTTOM
@ H264_SEI_PIC_STRUCT_TOP_BOTTOM
3: top field, bottom field, in that order
Definition: h264_sei.h:34
AVFilmGrainH274Params::blending_mode_id
int blending_mode_id
Specifies the blending mode used to blend the simulated film grain with the decoded images.
Definition: film_grain_params.h:160
H264Picture::pps
const PPS * pps
Definition: h264dec.h:172
AV_FRAME_DATA_S12M_TIMECODE
@ AV_FRAME_DATA_S12M_TIMECODE
Timecode which conforms to SMPTE ST 12-1.
Definition: frame.h:151
av_mod_uintp2
#define av_mod_uintp2
Definition: common.h:123
GetBitContext::size_in_bits
int size_in_bits
Definition: get_bits.h:69
H2645NAL::ref_idc
int ref_idc
H.264 only, nal_ref_idc.
Definition: h2645_parse.h:72
predict_field_decoding_flag
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
Definition: h264_slice.c:2613
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:303
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:26
AVFrame::width
int width
Definition: frame.h:361
w
uint8_t w
Definition: llviddspenc.c:38
AVCOL_RANGE_JPEG
@ AVCOL_RANGE_JPEG
Full range content.
Definition: pixfmt.h:576
get_ue_golomb
static int get_ue_golomb(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to 8190.
Definition: golomb.h:55
av_display_matrix_flip
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
Definition: display.c:65
internal.h
ff_h264_update_thread_context
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:307
alloc_scratch_buffers
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
Definition: h264_slice.c:129
AVCOL_TRC_UNSPECIFIED
@ AVCOL_TRC_UNSPECIFIED
Definition: pixfmt.h:476
FRAME_RECOVERED_IDR
#define FRAME_RECOVERED_IDR
We have seen an IDR, so all the following frames in coded order are correctly decodable.
Definition: h264dec.h:537
H264SliceContext::mmco
MMCO mmco[MAX_MMCO_COUNT]
Definition: h264dec.h:334
decode_finish_row
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2626
H264SliceContext::ref_count
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264dec.h:279
H264SEIFilmGrainCharacteristics::color_primaries
int color_primaries
Definition: h264_sei.h:175
AV_PIX_FMT_YUV420P10
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:389
ff_er_frame_start
void ff_er_frame_start(ERContext *s)
Definition: error_resilience.c:796
H264_SEI_FPA_TYPE_CHECKERBOARD
@ H264_SEI_FPA_TYPE_CHECKERBOARD
Definition: h264_sei.h:46
H264Picture::qscale_table
int8_t * qscale_table
Definition: h264dec.h:138
H264SliceContext::h264
struct H264Context * h264
Definition: h264dec.h:190
H264SliceContext::left_mb_xy
int left_mb_xy[LEFT_MBS]
Definition: h264dec.h:223
AV_PIX_FMT_D3D11VA_VLD
@ AV_PIX_FMT_D3D11VA_VLD
HW decoding through Direct3D11 via old API, Picture.data[3] contains a ID3D11VideoDecoderOutputView p...
Definition: pixfmt.h:219
ERContext
Definition: error_resilience.h:53
H264PredWeightTable::use_weight_chroma
int use_weight_chroma
Definition: h264_parse.h:32
AV_LOG_VERBOSE
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:196
PICT_BOTTOM_FIELD
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:37
AVCOL_SPC_RGB
@ AVCOL_SPC_RGB
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB), YZX and ST 428-1
Definition: pixfmt.h:503
AV_WN32A
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
ff_h264_update_thread_context_for_user
int ff_h264_update_thread_context_for_user(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:475
AVFilmGrainH274Params::color_range
enum AVColorRange color_range
Definition: film_grain_params.h:149
ff_er_add_slice
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
Definition: error_resilience.c:829
av_display_rotation_set
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure counterclockwise rotation by the specified angle...
Definition: display.c:50
AV_FRAME_DATA_DISPLAYMATRIX
@ AV_FRAME_DATA_DISPLAYMATRIX
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
Definition: frame.h:84
H264Picture::ref_index_buf
AVBufferRef * ref_index_buf[2]
Definition: h264dec.h:149
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
av_buffer_ref
AVBufferRef * av_buffer_ref(const AVBufferRef *buf)
Create a new reference to an AVBuffer.
Definition: buffer.c:103
ff_h264_pred_weight_table
int ff_h264_pred_weight_table(GetBitContext *gb, const SPS *sps, const int *ref_count, int slice_type_nos, H264PredWeightTable *pwt, int picture_structure, void *logctx)
Definition: h264_parse.c:27
FRAME_RECOVERED_SEI
#define FRAME_RECOVERED_SEI
Sufficient number of frames have been decoded since a SEI recovery point, so all the following frames...
Definition: h264dec.h:542
H264SliceContext::is_complex
int is_complex
Definition: h264dec.h:250
ER_DC_END
#define ER_DC_END
Definition: error_resilience.h:35
ff_h264_decode_ref_pic_list_reordering
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx)
Definition: h264_refs.c:423
mpegutils.h
AVFrame::buf
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:477
H264Picture::invalid_gap
int invalid_gap
Definition: h264dec.h:167
av_timecode_get_smpte
uint32_t av_timecode_get_smpte(AVRational rate, int drop, int hh, int mm, int ss, int ff)
Convert sei info to SMPTE 12M binary representation.
Definition: timecode.c:68
AV_STEREO3D_VIEW_RIGHT
@ AV_STEREO3D_VIEW_RIGHT
Frame contains only the right view.
Definition: stereo3d.h:161
H264Picture::pps_buf
AVBufferRef * pps_buf
Definition: h264dec.h:171
thread.h
ff_thread_await_progress
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_thread_report_progress() has been called on them. This includes draw_edges(). Porting codecs to frame threading
ThreadFrame::f
AVFrame * f
Definition: thread.h:35
AVFilmGrainParams::seed
uint64_t seed
Seed to use for the synthesis process, if the codec allows for it.
Definition: film_grain_params.h:228
FF_DEBUG_PICT_INFO
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:1303
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:317
H264SliceContext::mb_x
int mb_x
Definition: h264dec.h:242
h264_mvpred.h
H264Picture::frame_num
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264dec.h:154
H264SliceContext::next_slice_idx
int next_slice_idx
Definition: h264dec.h:248
H264SliceContext
Definition: h264dec.h:189
fill_filter_caches_inter
static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:2317
golomb.h
exp golomb vlc stuff
MB_FIELD
#define MB_FIELD(sl)
Definition: h264dec.h:74
AV_STEREO3D_SIDEBYSIDE
@ AV_STEREO3D_SIDEBYSIDE
Views are next to each other.
Definition: stereo3d.h:67
get_bits
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:380
ff_h264_filter_mb
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
Definition: h264_loopfilter.c:719
H264SliceContext::mv_cache
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264dec.h:311
AV_CODEC_FLAG_OUTPUT_CORRUPT
#define AV_CODEC_FLAG_OUTPUT_CORRUPT
Output even those frames that might be corrupted.
Definition: avcodec.h:218
AVHWAccel
Definition: avcodec.h:2039
AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:407
finish
static void finish(void)
Definition: movenc.c:342
get_chroma_qp
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
Get the chroma qp.
Definition: h264dec.h:701
U
#define U(x)
Definition: vp56_arith.h:37
H264Picture::mmco_reset
int mmco_reset
MMCO_RESET set this 1.
Definition: h264dec.h:155
fail
#define fail()
Definition: checkasm.h:127
copy_picture_range
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:291
AV_STEREO3D_2D
@ AV_STEREO3D_2D
Video is not stereoscopic (and metadata has to be there).
Definition: stereo3d.h:55
H264SEIA53Caption
Definition: h264_sei.h:107
AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:405
timecode.h
h264_select_output_frame
static int h264_select_output_frame(H264Context *h)
Definition: h264_slice.c:1429
ff_thread_get_buffer
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in AVCodec caps_internal and use ff_thread_get_buffer() to allocate frames. The frames must then be freed with ff_thread_release_buffer(). Otherwise decode directly into the user-supplied frames. Call ff_thread_report_progress() after some part of the current picture has decoded. A good place to put this is where draw_horiz_band() is called - add this if it isn 't called anywhere
AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:387
H264SliceContext::er
ERContext er
Definition: h264dec.h:192
USES_LIST
#define USES_LIST(a, list)
Definition: mpegutils.h:98
CABACContext::bytestream
const uint8_t * bytestream
Definition: cabac.h:45
AVFrame::key_frame
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:381
av_pix_fmt_get_chroma_sub_sample
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2568
ff_videodsp_init
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
H264Picture::mb_stride
int mb_stride
Definition: h264dec.h:175
IN_RANGE
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:284
ff_h264_flush_change
void ff_h264_flush_change(H264Context *h)
Definition: h264dec.c:453
ff_h264qpel_init
av_cold void ff_h264qpel_init(H264QpelContext *c, int bit_depth)
Definition: h264qpel.c:49
ff_h264_sei_process_picture_timing
int ff_h264_sei_process_picture_timing(H264SEIPictureTiming *h, const SPS *sps, void *logctx)
Parse the contents of a picture timing message given an active SPS.
Definition: h264_sei.c:69
h264_frame_start
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:487
H264SliceContext::deblocking_filter
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264dec.h:205
H264PredWeightTable::luma_log2_weight_denom
int luma_log2_weight_denom
Definition: h264_parse.h:33
ss
#define ss(width, name, subs,...)
Definition: cbs_vp9.c:261
H264Picture::f_grain
AVFrame * f_grain
Definition: h264dec.h:134
H264SliceContext::picture_structure
int picture_structure
Definition: h264dec.h:252
ff_h264_golomb_to_pict_type
const uint8_t ff_h264_golomb_to_pict_type[5]
Definition: h264data.c:37
release_unused_pictures
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:116
H264PredWeightTable::use_weight
int use_weight
Definition: h264_parse.h:31
H264_SEI_FPA_TYPE_SIDE_BY_SIDE
@ H264_SEI_FPA_TYPE_SIDE_BY_SIDE
Definition: h264_sei.h:49
av_reduce
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
H264SliceContext::direct_spatial_mv_pred
int direct_spatial_mv_pred
Definition: h264dec.h:263
H264SliceContext::slice_num
int slice_num
Definition: h264dec.h:194
H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL
@ H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL
Definition: h264_sei.h:51
AVFilmGrainH274Params::intensity_interval_upper_bound
uint8_t intensity_interval_upper_bound[3][256]
Specifies the upper bound of each intensity interval for which the set of model values applies for th...
Definition: film_grain_params.h:194
non_j_pixfmt
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
Definition: h264_slice.c:1031
AVFilmGrainH274Params::bit_depth_luma
int bit_depth_luma
Specifies the bit depth used for the luma component.
Definition: film_grain_params.h:142
AV_PIX_FMT_YUV444P10
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:392
ff_h264_init_cabac_states
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl)
Definition: h264_cabac.c:1261
ff_h264_hl_decode_mb
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:799
avassert.h
AV_STEREO3D_FRAMESEQUENCE
@ AV_STEREO3D_FRAMESEQUENCE
Views are alternated temporally.
Definition: stereo3d.h:92
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
film_grain_params.h
FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a)
Definition: sinewin_tablegen.c:29
ff_color_frame
void ff_color_frame(AVFrame *frame, const int color[4])
Definition: utils.c:403
ff_thread_report_progress
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
Definition: pthread_frame.c:588
AV_PIX_FMT_YUVJ422P
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
av_buffer_pool_get
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:387
ff_h264_queue_decode_slice
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal)
Submit a slice for decoding.
Definition: h264_slice.c:2174
width
#define width
H264Context::DPB
H264Picture DPB[H264_MAX_PICTURE_COUNT]
Definition: h264dec.h:359
AV_STEREO3D_LINES
@ AV_STEREO3D_LINES
Views are packed per line, as if interlaced.
Definition: stereo3d.h:129
H264SEIFilmGrainCharacteristics::present
int present
Definition: h264_sei.h:169
stereo3d.h
H264_SEI_FPA_TYPE_TOP_BOTTOM
@ H264_SEI_FPA_TYPE_TOP_BOTTOM
Definition: h264_sei.h:50
AV_PIX_FMT_DXVA2_VLD
@ AV_PIX_FMT_DXVA2_VLD
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer.
Definition: pixfmt.h:127
H264SEIA53Caption::buf_ref
AVBufferRef * buf_ref
Definition: h264_sei.h:108
H264PredWeightTable::chroma_log2_weight_denom
int chroma_log2_weight_denom
Definition: h264_parse.h:34
AV_CEIL_RSHIFT
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:51
AV_ZERO32
#define AV_ZERO32(d)
Definition: intreadwrite.h:629
AV_GET_BUFFER_FLAG_REF
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:361
FIELD_PICTURE
#define FIELD_PICTURE(h)
Definition: h264dec.h:76
av_film_grain_params_create_side_data
AVFilmGrainParams * av_film_grain_params_create_side_data(AVFrame *frame)
Allocate a complete AVFilmGrainParams and add it to the frame.
Definition: film_grain_params.c:31
ff_h264_execute_ref_pic_marking
int ff_h264_execute_ref_pic_marking(H264Context *h)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:610
AVFilmGrainParams::codec
union AVFilmGrainParams::@291 codec
Additional fields may be added both here and in any structure included.
ff_h264_decode_ref_pic_marking
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb, const H2645NAL *nal, void *logctx)
Definition: h264_refs.c:834
from
const char * from
Definition: jacosubdec.c:66
to
const char * to
Definition: webvttdec.c:35
h264_slice_header_parse
static int h264_slice_header_parse(const H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1824
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
H264PredWeightTable::chroma_weight_flag
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264_parse.h:36
pix_fmts
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:290
h264data.h
AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:386
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:201
H264Ref::parent
H264Picture * parent
Definition: h264dec.h:186
PICT_TOP_FIELD
#define PICT_TOP_FIELD
Definition: mpegutils.h:36
field_scan8x8_cavlc
static const uint8_t field_scan8x8_cavlc[64+1]
Definition: h264_slice.c:77
H264SliceContext::slice_alpha_c0_offset
int slice_alpha_c0_offset
Definition: h264dec.h:206
H264SEIFilmGrainCharacteristics::intensity_interval_lower_bound
uint8_t intensity_interval_lower_bound[3][256]
Definition: h264_sei.h:183
IS_INTRA
#define IS_INTRA(x, y)
field
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this field
Definition: writing_filters.txt:78
AVFrame::crop_right
size_t crop_right
Definition: frame.h:631
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
AVFilmGrainH274Params::comp_model_value
int16_t comp_model_value[3][256][6]
Specifies the model values for the component for each intensity interval.
Definition: film_grain_params.h:205
H264SliceContext::slice_type
int slice_type
Definition: h264dec.h:195
H264SliceContext::resync_mb_x
int resync_mb_x
Definition: h264dec.h:244
H264Picture::sei_recovery_frame_cnt
int sei_recovery_frame_cnt
Definition: h264dec.h:168
AVCOL_PRI_UNSPECIFIED
@ AVCOL_PRI_UNSPECIFIED
Definition: pixfmt.h:451
AVDISCARD_BIDIR
@ AVDISCARD_BIDIR
discard all bidirectional frames
Definition: defs.h:51
get_se_golomb
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:241
H2645NAL::type
int type
NAL unit type.
Definition: h2645_parse.h:54
AV_PIX_FMT_YUVJ444P
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
H264Context::enable_er
int enable_er
Definition: h264dec.h:565
ff_h264_draw_horiz_band
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height)
Definition: h264dec.c:103
H264SliceContext::curr_pic_num
int curr_pic_num
Definition: h264dec.h:343
FF_CODEC_PROPERTY_FILM_GRAIN
#define FF_CODEC_PROPERTY_FILM_GRAIN
Definition: avcodec.h:1825
arg
const char * arg
Definition: jacosubdec.c:67
AVStereo3D::flags
int flags
Additional information about the frame packing.
Definition: stereo3d.h:185
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:65
if
if(ret)
Definition: filter_design.txt:179
AVFilmGrainH274Params::model_id
int model_id
Specifies the film grain simulation mode.
Definition: film_grain_params.h:137
AVDISCARD_ALL
@ AVDISCARD_ALL
discard all
Definition: defs.h:54
GetBitContext::buffer
const uint8_t * buffer
Definition: get_bits.h:63
alloc_picture
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:188
H264Picture::motion_val_buf
AVBufferRef * motion_val_buf[2]
Definition: h264dec.h:140
PTRDIFF_SPECIFIER
#define PTRDIFF_SPECIFIER
Definition: internal.h:192
NULL
#define NULL
Definition: coverity.c:32
AV_COPY128
#define AV_COPY128(d, s)
Definition: intreadwrite.h:609
AVERROR_PATCHWELCOME
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:64
av_buffer_unref
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it.
Definition: buffer.c:139
AV_COPY64
#define AV_COPY64(d, s)
Definition: intreadwrite.h:605
H264SliceContext::edge_emu_buffer
uint8_t * edge_emu_buffer
Definition: h264dec.h:296
H264SEIUnregistered
Definition: h264_sei.h:111
SPS
Sequence parameter set.
Definition: h264_ps.h:44
TRANSPOSE
#define TRANSPOSE(x)
AV_PIX_FMT_YUVJ420P
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
ER_MB_ERROR
#define ER_MB_ERROR
Definition: error_resilience.h:38
ff_h264_decode_mb_cabac
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cabac.c:1910
AV_PICTURE_TYPE_SI
@ AV_PICTURE_TYPE_SI
Switching Intra.
Definition: avutil.h:278
H264SliceContext::chroma_qp
int chroma_qp[2]
Definition: h264dec.h:200
AV_CODEC_FLAG2_FAST
#define AV_CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:287
get_bits1
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:499
AV_PICTURE_TYPE_I
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:274
src
#define src
Definition: vp8dsp.c:255
H264SEIFilmGrainCharacteristics::repetition_period
int repetition_period
Definition: h264_sei.h:186
av_buffer_pool_uninit
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:322
PPS
Picture parameter set.
Definition: h264_ps.h:111
av_fast_mallocz
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
Allocate and clear a buffer, reusing the given one if large enough.
Definition: mem.c:565
mathops.h
list
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
Definition: filter_design.txt:25
IS_INTERLACED
#define IS_INTERLACED(a)
Definition: mpegutils.h:82
av_frame_new_side_data_from_buf
AVFrameSideData * av_frame_new_side_data_from_buf(AVFrame *frame, enum AVFrameSideDataType type, AVBufferRef *buf)
Add a new side data to a frame from an existing AVBufferRef.
Definition: frame.c:573
H264Picture::mb_height
int mb_height
Definition: h264dec.h:174
MAX_PPS_COUNT
#define MAX_PPS_COUNT
Definition: h264_ps.h:38
AV_PIX_FMT_YUV422P10
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:390
H264SliceContext::qscale
int qscale
Definition: h264dec.h:199
get_pixel_format
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
Definition: h264_slice.c:789
fill_filter_caches
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
Definition: h264_slice.c:2401
ERContext::error_occurred
int error_occurred
Definition: error_resilience.h:65
AV_EF_EXPLODE
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:1335
fp
#define fp
Definition: regdef.h:44
AV_ZERO128
#define AV_ZERO128(d)
Definition: intreadwrite.h:637
init_scan_tables
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:755
AV_PIX_FMT_GBRP9
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:404
H264SliceContext::top_borders_allocated
int top_borders_allocated[2]
Definition: h264dec.h:300
AV_FRAME_DATA_AFD
@ AV_FRAME_DATA_AFD
Active Format Description data consisting of a single byte as specified in ETSI TS 101 154 using AVAc...
Definition: frame.h:89
AV_PICTURE_TYPE_SP
@ AV_PICTURE_TYPE_SP
Switching Predicted.
Definition: avutil.h:279
AVCOL_RANGE_UNSPECIFIED
@ AVCOL_RANGE_UNSPECIFIED
Definition: pixfmt.h:542
FIELD_OR_MBAFF_PICTURE
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264dec.h:93
H264SliceContext::mb_skip_run
int mb_skip_run
Definition: h264dec.h:249
h264_ps.h
init_dimensions
static void init_dimensions(H264Context *h)
Definition: h264_slice.c:902
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
AV_FRAME_DATA_SEI_UNREGISTERED
@ AV_FRAME_DATA_SEI_UNREGISTERED
User data unregistered metadata associated with a video frame.
Definition: frame.h:177
H264SliceContext::top_type
int top_type
Definition: h264dec.h:226
AVFrame::crop_bottom
size_t crop_bottom
Definition: frame.h:629
for
for(j=16;j >0;--j)
Definition: h264pred_template.c:469
H264SliceContext::resync_mb_y
int resync_mb_y
Definition: h264dec.h:245
H264_SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM
@ H264_SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM
6: bottom field, top field, bottom field repeated, in that order
Definition: h264_sei.h:37
ff_thread_release_buffer
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
Definition: pthread_frame.c:1057
DELAYED_PIC_REF
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output.
Definition: diracdec.c:68
H264SEIPictureTiming
Definition: h264_sei.h:66
H264SliceContext::cabac
CABACContext cabac
Cabac.
Definition: h264dec.h:330
H264SliceContext::redundant_pic_count
int redundant_pic_count
Definition: h264dec.h:256
AVFrame::crop_left
size_t crop_left
Definition: frame.h:630
AVDISCARD_NONKEY
@ AVDISCARD_NONKEY
discard all frames except keyframes
Definition: defs.h:53
ERContext::error_count
atomic_int error_count
Definition: error_resilience.h:64
AVFrame::pict_type
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:386
ff_zigzag_scan
const uint8_t ff_zigzag_scan[16+1]
Definition: mathtables.c:109
AV_STEREO3D_CHECKERBOARD
@ AV_STEREO3D_CHECKERBOARD
Views are packed in a checkerboard-like structure per pixel.
Definition: stereo3d.h:104
H264Picture::reference
int reference
Definition: h264dec.h:165
AV_CODEC_FLAG_GRAY
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:243
CABAC
#define CABAC(h)
Definition: h264_cabac.c:28
LEFT_MBS
#define LEFT_MBS
Definition: h264dec.h:77
pps
static int FUNC() pps(CodedBitstreamContext *ctx, RWContext *rw, H264RawPPS *current)
Definition: cbs_h264_syntax_template.c:404
AVFilmGrainH274Params::component_model_present
int component_model_present[3]
Indicates if the modelling of film grain for a given component is present.
Definition: film_grain_params.h:170
H264SEIFramePacking
Definition: h264_sei.h:133
rectangle.h
FF_COMPLIANCE_STRICT
#define FF_COMPLIANCE_STRICT
Strictly conform to all the things in the spec no matter what consequences.
Definition: avcodec.h:1282
H264SliceContext::mb_uvlinesize
ptrdiff_t mb_uvlinesize
Definition: h264dec.h:240
VP_START
#define VP_START
< current MB is the first after a resync marker
Definition: error_resilience.h:30
AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:394
H264SliceContext::pwt
H264PredWeightTable pwt
Definition: h264dec.h:209
MAX_DELAYED_PIC_COUNT
#define MAX_DELAYED_PIC_COUNT
Definition: h264dec.h:58
H264SEIFilmGrainCharacteristics::bit_depth_chroma
int bit_depth_chroma
Definition: h264_sei.h:173
H264Picture::tf
ThreadFrame tf
Definition: h264dec.h:132
H264Picture::mb_type
uint32_t * mb_type
Definition: h264dec.h:144
ff_h264_decode_mb_cavlc
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cavlc.c:696
H264_SEI_PIC_STRUCT_BOTTOM_TOP
@ H264_SEI_PIC_STRUCT_BOTTOM_TOP
4: bottom field, top field, in that order
Definition: h264_sei.h:35
H264Picture::recovered
int recovered
picture at IDR or recovery point + recovery count
Definition: h264dec.h:166
H2645NAL::gb
GetBitContext gb
Definition: h2645_parse.h:49
H264SliceContext::top_mb_xy
int top_mb_xy
Definition: h264dec.h:221
H264SliceContext::qp_thresh
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264dec.h:201
H2645NAL
Definition: h2645_parse.h:34
AV_PIX_FMT_YUV444P12
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:396
H264SliceContext::top_borders
uint8_t(*[2] top_borders)[(16 *3) *2]
Definition: h264dec.h:297
AVFrameSideData::data
uint8_t * data
Definition: frame.h:211
h264chroma.h
AVFilmGrainParams
This structure describes how to handle film grain synthesis in video for specific codecs.
Definition: film_grain_params.h:216
FF_THREAD_SLICE
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:1452
H264SliceContext::cbp
int cbp
Definition: h264dec.h:267
AVFrame::format
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
Definition: frame.h:376
H264SliceContext::left_type
int left_type[LEFT_MBS]
Definition: h264dec.h:228
ff_h264_direct_ref_list_init
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:121
H264SliceContext::mb_y
int mb_y
Definition: h264dec.h:242
H264PredWeightTable::implicit_weight
int implicit_weight[48][48][2]
Definition: h264_parse.h:40
height
#define height
decode_slice
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2671
H264SliceContext::explicit_ref_marking
int explicit_ref_marking
Definition: h264dec.h:336
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
av_reallocp_array
int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
Allocate, reallocate, or free an array through a pointer to a pointer.
Definition: mem.c:232
H264_SEI_FPA_TYPE_INTERLEAVE_COLUMN
@ H264_SEI_FPA_TYPE_INTERLEAVE_COLUMN
Definition: h264_sei.h:47
pt
int pt
Definition: rtp.c:35
H264SliceContext::uvlinesize
ptrdiff_t uvlinesize
Definition: h264dec.h:238
AVBufferRef::buffer
AVBuffer * buffer
Definition: buffer.h:83
AV_PIX_FMT_D3D11
@ AV_PIX_FMT_D3D11
Hardware surfaces for Direct3D11.
Definition: pixfmt.h:303
H264SEIFilmGrainCharacteristics::model_id
int model_id
Definition: h264_sei.h:170
H264SEIDisplayOrientation::anticlockwise_rotation
int anticlockwise_rotation
Definition: h264_sei.h:146
H264SliceContext::slice_type_nos
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264dec.h:196
H264SliceContext::delta_poc_bottom
int delta_poc_bottom
Definition: h264dec.h:341
AVFilmGrainParams::h274
AVFilmGrainH274Params h274
Definition: film_grain_params.h:237
AV_STEREO3D_FLAG_INVERT
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
Definition: stereo3d.h:167
AV_PIX_FMT_VAAPI
@ AV_PIX_FMT_VAAPI
Hardware acceleration through VA-API, data[3] contains a VASurfaceID.
Definition: pixfmt.h:119
H264SEIFilmGrainCharacteristics::intensity_interval_upper_bound
uint8_t intensity_interval_upper_bound[3][256]
Definition: h264_sei.h:184
FRAME_MBAFF
#define FRAME_MBAFF(h)
Definition: h264dec.h:75
IS_DIRECT
#define IS_DIRECT(a)
Definition: mpegutils.h:83
H264_SEI_PIC_STRUCT_FRAME
@ H264_SEI_PIC_STRUCT_FRAME
0: frame
Definition: h264_sei.h:31
pack16to32
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
Definition: h264dec.h:680
get_cabac_terminate
static int av_unused get_cabac_terminate(CABACContext *c)
Definition: cabac_functions.h:182
H264_SEI_PIC_STRUCT_FRAME_TRIPLING
@ H264_SEI_PIC_STRUCT_FRAME_TRIPLING
8: frame tripling
Definition: h264_sei.h:39
field_scan
static const uint8_t field_scan[16+1]
Definition: h264_slice.c:51
loop_filter
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
Definition: h264_slice.c:2543
ff_init_cabac_decoder
int ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:165
H264SliceContext::mb_mbaff
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264dec.h:254
field_scan8x8
static const uint8_t field_scan8x8[64+1]
Definition: h264_slice.c:58
AV_PIX_FMT_VDPAU
@ AV_PIX_FMT_VDPAU
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:187
av_get_picture_type_char
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:88
AV_PIX_FMT_VIDEOTOOLBOX
@ AV_PIX_FMT_VIDEOTOOLBOX
hardware decoding through Videotoolbox
Definition: pixfmt.h:272
LIST_NOT_USED
#define LIST_NOT_USED
Definition: h264dec.h:409
H264Picture::field_picture
int field_picture
whether or not picture was encoded in separate fields
Definition: h264dec.h:163
h264dec.h
H264SliceContext::poc_lsb
int poc_lsb
Definition: h264dec.h:340
H264SEIFilmGrainCharacteristics
Definition: h264_sei.h:168
H264SliceContext::first_mb_addr
unsigned int first_mb_addr
Definition: h264dec.h:246
ff_h264_direct_dist_scale_factor
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:62
i
int i
Definition: input.c:406
H264Picture::needs_fg
int needs_fg
whether picture needs film grain synthesis (see f_grain)
Definition: h264dec.h:169
AVBuffer
A reference counted buffer type.
Definition: buffer_internal.h:39
H264Context
H264Context.
Definition: h264dec.h:350
AVDISCARD_NONINTRA
@ AVDISCARD_NONINTRA
discard all non intra frames
Definition: defs.h:52
av_timecode_make_smpte_tc_string2
char * av_timecode_make_smpte_tc_string2(char *buf, AVRational rate, uint32_t tcsmpte, int prevent_df, int skip_field)
Get the timecode string from the SMPTE timecode format.
Definition: timecode.c:136
AV_CODEC_FLAG2_SHOW_ALL
#define AV_CODEC_FLAG2_SHOW_ALL
Show all frames before the first keyframe.
Definition: avcodec.h:315
AV_FRAME_FLAG_CORRUPT
#define AV_FRAME_FLAG_CORRUPT
The frame data may be corrupted, e.g.
Definition: frame.h:511
H264_SEI_PIC_STRUCT_FRAME_DOUBLING
@ H264_SEI_PIC_STRUCT_FRAME_DOUBLING
7: frame doubling
Definition: h264_sei.h:38
ff_h264chroma_init
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
H264SliceContext::frame_num
int frame_num
Definition: h264dec.h:338
AVFilmGrainH274Params::num_intensity_intervals
uint16_t num_intensity_intervals[3]
Specifies the number of intensity intervals for which a specific set of model values has been estimat...
Definition: film_grain_params.h:176
AV_PIX_FMT_GBRP12
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:406
display.h
AV_STEREO3D_TOPBOTTOM
@ AV_STEREO3D_TOPBOTTOM
Views are on top of each other.
Definition: stereo3d.h:79
ff_h264_execute_decode_slices
int ff_h264_execute_decode_slices(H264Context *h)
Call decode_slice() for each context.
Definition: h264_slice.c:2883
H264SliceContext::mb_linesize
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264dec.h:239
av_assert1
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
H264SEIFilmGrainCharacteristics::matrix_coeffs
int matrix_coeffs
Definition: h264_sei.h:177
av_always_inline
#define av_always_inline
Definition: attributes.h:49
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
cabac_functions.h
H264Picture::hwaccel_priv_buf
AVBufferRef * hwaccel_priv_buf
Definition: h264dec.h:146
tb
#define tb
Definition: regdef.h:68
AV_COPY32
#define AV_COPY32(d, s)
Definition: intreadwrite.h:601
av_buffer_replace
int av_buffer_replace(AVBufferRef **pdst, const AVBufferRef *src)
Ensure dst refers to the same data as src.
Definition: buffer.c:233
ff_h264_parse_ref_count
int ff_h264_parse_ref_count(int *plist_count, int ref_count[2], GetBitContext *gb, const PPS *pps, int slice_type_nos, int picture_structure, void *logctx)
Definition: h264_parse.c:219
AVCOL_SPC_UNSPECIFIED
@ AVCOL_SPC_UNSPECIFIED
Definition: pixfmt.h:505
AVFilmGrainH274Params::color_primaries
enum AVColorPrimaries color_primaries
Definition: film_grain_params.h:150
H264_SEI_FPA_TYPE_INTERLEAVE_ROW
@ H264_SEI_FPA_TYPE_INTERLEAVE_ROW
Definition: h264_sei.h:48
ff_h264_alloc_tables
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264dec.c:181
AVCOL_RANGE_MPEG
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
Definition: pixfmt.h:559
AVFilmGrainH274Params::intensity_interval_lower_bound
uint8_t intensity_interval_lower_bound[3][256]
Specifies the lower ounds of each intensity interval for whichthe set of model values applies for the...
Definition: film_grain_params.h:188
AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:388
H264SliceContext::list_count
unsigned int list_count
Definition: h264dec.h:280
avcodec.h
av_cmp_q
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:89
ff_h264dsp_init
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:66
ff_zigzag_direct
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
av_buffer_allocz
AVBufferRef * av_buffer_allocz(size_t size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:93
ff_h264_ref_picture
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:100
ret
ret
Definition: filter_design.txt:187
ff_h264_init_poc
int ff_h264_init_poc(int pic_field_poc[2], int *pic_poc, const SPS *sps, H264POCContext *pc, int picture_structure, int nal_ref_idc)
Definition: h264_parse.c:277
ff_h264_get_profile
int ff_h264_get_profile(const SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264_parse.c:529
H264SEIFilmGrainCharacteristics::transfer_characteristics
int transfer_characteristics
Definition: h264_sei.h:176
AV_STEREO3D_COLUMNS
@ AV_STEREO3D_COLUMNS
Views are packed per column.
Definition: stereo3d.h:141
h264_field_start
static int h264_field_start(H264Context *h, const H264SliceContext *sl, const H2645NAL *nal, int first_slice)
Definition: h264_slice.c:1532
AVStereo3D::type
enum AVStereo3DType type
How views are packed within the video.
Definition: stereo3d.h:180
H264SliceContext::last_qscale_diff
int last_qscale_diff
Definition: h264dec.h:202
H264SEIFilmGrainCharacteristics::bit_depth_luma
int bit_depth_luma
Definition: h264_sei.h:172
sps
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
Definition: cbs_h264_syntax_template.c:260
align_get_bits
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:694
AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:393
AV_PIX_FMT_YUV422P14
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:398
ff_set_sar
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:101
H264SEIFilmGrainCharacteristics::full_range
int full_range
Definition: h264_sei.h:174
H264SliceContext::pps_id
unsigned int pps_id
Definition: h264dec.h:290
H264SliceContext::linesize
ptrdiff_t linesize
Definition: h264dec.h:238
H264SliceContext::slice_beta_offset
int slice_beta_offset
Definition: h264dec.h:207
AVCodecContext
main external API structure.
Definition: avcodec.h:383
AVFrame::height
int height
Definition: frame.h:361
get_ue_golomb_31
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:122
MAX_SLICES
#define MAX_SLICES
Definition: dxva2_hevc.c:29
backup_mb_border
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:589
ff_h264_build_ref_list
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:299
AVCodecContext::execute
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:1491
H264SEIFilmGrainCharacteristics::comp_model_present_flag
int comp_model_present_flag[3]
Definition: h264_sei.h:180
AV_FILM_GRAIN_PARAMS_H274
@ AV_FILM_GRAIN_PARAMS_H274
The union is valid when interpreted as AVFilmGrainH274Params (codec.h274)
Definition: film_grain_params.h:35
H264SliceContext::bipred_scratchpad
uint8_t * bipred_scratchpad
Definition: h264dec.h:295
ff_h264_pred_init
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:413
H264Picture::field_poc
int field_poc[2]
top/bottom POC
Definition: h264dec.h:152
AV_PICTURE_TYPE_B
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
Definition: avutil.h:276
error_resilience.h
AV_PIX_FMT_NONE
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
AVHWAccel::frame_priv_data_size
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:2149
H264Picture::mb_width
int mb_width
Definition: h264dec.h:174
fill_rectangle
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:826
H264Picture
Definition: h264dec.h:130
find_unused_picture
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:272
ff_thread_get_format
FF_DISABLE_DEPRECATION_WARNINGS enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
Definition: pthread_frame.c:1021
AVFilmGrainH274Params::log2_scale_factor
int log2_scale_factor
Specifies a scale factor used in the film grain characterization equations.
Definition: film_grain_params.h:165
scan8
static const uint8_t scan8[16 *3+3]
Definition: h264dec.h:664
ref
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
h264_slice_init
static int h264_slice_init(H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:2038
H264SEIDisplayOrientation::vflip
int vflip
Definition: h264_sei.h:147
H264SEIDisplayOrientation
Definition: h264_sei.h:144
H264Picture::tf_grain
ThreadFrame tf_grain
Definition: h264dec.h:135
FF_CODEC_PROPERTY_CLOSED_CAPTIONS
#define FF_CODEC_PROPERTY_CLOSED_CAPTIONS
Definition: avcodec.h:1824
ff_h264_field_end
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup)
Definition: h264_picture.c:231
CABACContext::bytestream_end
const uint8_t * bytestream_end
Definition: cabac.h:46
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
AVFilmGrainH274Params::num_model_values
uint8_t num_model_values[3]
Specifies the number of model values present for each intensity interval in which the film grain has ...
Definition: film_grain_params.h:182
init_table_pools
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:161
H264Picture::mb_type_buf
AVBufferRef * mb_type_buf
Definition: h264dec.h:143
H264SEIUnregistered::buf_ref
AVBufferRef ** buf_ref
Definition: h264_sei.h:113
H264SliceContext::ref_list
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264dec.h:281
LBOT
#define LBOT
Definition: h264dec.h:79
AV_EF_AGGRESSIVE
#define AV_EF_AGGRESSIVE
consider things that a sane encoder should not do as an error
Definition: avcodec.h:1340
H264SliceContext::non_zero_count_cache
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264dec.h:306
AV_PIX_FMT_GBRP
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:158
H264SEIFilmGrainCharacteristics::num_intensity_intervals
uint16_t num_intensity_intervals[3]
Definition: h264_sei.h:181
AV_PICTURE_TYPE_P
@ AV_PICTURE_TYPE_P
Predicted.
Definition: avutil.h:275
IS_INTER
#define IS_INTER(a)
Definition: mpegutils.h:78
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
H264SEIFilmGrainCharacteristics::comp_model_value
int16_t comp_model_value[3][256][6]
Definition: h264_sei.h:185
H264SEIFilmGrainCharacteristics::num_model_values
uint8_t num_model_values[3]
Definition: h264_sei.h:182
get_ue_golomb_long
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:106
H264Context::nal_length_size
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
Definition: h264dec.h:470
av_stereo3d_create_side_data
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
Definition: stereo3d.c:33
avpriv_request_sample
#define avpriv_request_sample(...)
Definition: tableprint_vlc.h:37
ER_MB_END
#define ER_MB_END
Definition: error_resilience.h:39
AVFilmGrainH274Params::color_trc
enum AVColorTransferCharacteristic color_trc
Definition: film_grain_params.h:151
AVFrameSideData
Structure to hold side data for an AVFrame.
Definition: frame.h:209
H264_SEI_PIC_STRUCT_BOTTOM_FIELD
@ H264_SEI_PIC_STRUCT_BOTTOM_FIELD
2: bottom field
Definition: h264_sei.h:33
H264Picture::hwaccel_picture_private
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264dec.h:147
ER_MV_END
#define ER_MV_END
Definition: error_resilience.h:36
H264SEIFilmGrainCharacteristics::log2_scale_factor
int log2_scale_factor
Definition: h264_sei.h:179
H264SliceContext::idr_pic_id
int idr_pic_id
Definition: h264dec.h:339
AVStereo3D::view
enum AVStereo3DView view
Determines which views are packed.
Definition: stereo3d.h:190
H264_SEI_FPA_TYPE_2D
@ H264_SEI_FPA_TYPE_2D
Definition: h264_sei.h:52
ff_tlog
#define ff_tlog(ctx,...)
Definition: internal.h:205
FFALIGN
#define FFALIGN(x, a)
Definition: macros.h:78
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:410
cr
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:216
AVFrame::crop_top
size_t crop_top
Definition: frame.h:628
H264SliceContext::gb
GetBitContext gb
Definition: h264dec.h:191
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
av_dict_set
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
Definition: dict.c:70
av_fast_malloc
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:560
H264SliceContext::intra4x4_pred_mode
int8_t * intra4x4_pred_mode
Definition: h264dec.h:218
FFMAX3
#define FFMAX3(a, b, c)
Definition: macros.h:48
LTOP
#define LTOP
Definition: h264dec.h:78
int32_t
int32_t
Definition: audioconvert.c:56
h264.h
imgutils.h
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:334
H264SliceContext::edge_emu_buffer_allocated
int edge_emu_buffer_allocated
Definition: h264dec.h:299
REBASE_PICTURE
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:286
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:28
CHROMA444
#define CHROMA444(h)
Definition: h264dec.h:101
AVFilmGrainH274Params::bit_depth_chroma
int bit_depth_chroma
Specifies the bit depth used for the chroma components.
Definition: film_grain_params.h:147
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:61
ff_h264_get_slice_type
int ff_h264_get_slice_type(const H264SliceContext *sl)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:2299
h
h
Definition: vp9dsp_template.c:2038
H264SliceContext::cabac_init_idc
int cabac_init_idc
Definition: h264dec.h:332
AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:399
H264PredWeightTable::luma_weight_flag
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264_parse.h:35
H264_MAX_PICTURE_COUNT
#define H264_MAX_PICTURE_COUNT
Definition: h264dec.h:54
ER_AC_END
#define ER_AC_END
Definition: error_resilience.h:34
AVStereo3D
Stereo 3D type: this structure describes how two videos are packed within a single video surface,...
Definition: stereo3d.h:176
H264SliceContext::bipred_scratchpad_allocated
int bipred_scratchpad_allocated
Definition: h264dec.h:298
AVDISCARD_NONREF
@ AVDISCARD_NONREF
discard all non reference
Definition: defs.h:50
H264SliceContext::slice_type_fixed
int slice_type_fixed
Definition: h264dec.h:197
H264Ref::poc
int poc
Definition: h264dec.h:183
AVFilmGrainParams::type
enum AVFilmGrainParamsType type
Specifies the codec for which this structure is valid.
Definition: film_grain_params.h:220
IS_8x8DCT
#define IS_8x8DCT(a)
Definition: h264dec.h:106
H264Picture::qscale_table_buf
AVBufferRef * qscale_table_buf
Definition: h264dec.h:137
H264_SEI_PIC_STRUCT_TOP_FIELD
@ H264_SEI_PIC_STRUCT_TOP_FIELD
1: top field
Definition: h264_sei.h:32
H264SliceContext::delta_poc
int delta_poc[2]
Definition: h264dec.h:342
av_color_transfer_name
const char * av_color_transfer_name(enum AVColorTransferCharacteristic transfer)
Definition: pixdesc.c:2907
H264Picture::long_ref
int long_ref
1->long term reference 0->short term reference
Definition: h264dec.h:159
H264Ref::reference
int reference
Definition: h264dec.h:182
H264Picture::motion_val
int16_t(*[2] motion_val)[2]
Definition: h264dec.h:141
AV_CODEC_EXPORT_DATA_FILM_GRAIN
#define AV_CODEC_EXPORT_DATA_FILM_GRAIN
Decoding only.
Definition: avcodec.h:356
AV_PIX_FMT_YUV420P14
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:397
H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP
@ H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP
5: top field, bottom field, top field repeated, in that order
Definition: h264_sei.h:36
H264SEIFilmGrainCharacteristics::separate_colour_description_present_flag
int separate_colour_description_present_flag
Definition: h264_sei.h:171
av_get_pix_fmt_name
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2460
H264SliceContext::mb_field_decoding_flag
int mb_field_decoding_flag
Definition: h264dec.h:253
H264Context::is_avc
int is_avc
Used to parse AVC variant of H.264.
Definition: h264dec.h:469