Go to the documentation of this file.
33 #include "config_components.h"
88 ht[
i].bits, ht[
i].values,
89 ht[
i].class == 1,
s->avctx);
93 if (ht[
i].
class < 2) {
94 memcpy(
s->raw_huffman_lengths[ht[
i].class][ht[
i].index],
96 memcpy(
s->raw_huffman_values[ht[
i].class][ht[
i].index],
97 ht[
i].values, ht[
i].length);
107 if (
len > 14 && buf[12] == 1)
108 s->interlace_polarity = 1;
109 if (
len > 14 && buf[12] == 2)
110 s->interlace_polarity = 0;
121 s->idsp.idct_permutation);
129 if (!
s->picture_ptr) {
133 s->picture_ptr =
s->picture;
143 s->first_picture = 1;
153 if (
s->extern_huff) {
159 "error using external huffman table, switching back to internal\n");
165 s->interlace_polarity = 1;
169 s->interlace_polarity = 1;
176 if (
s->smv_frames_per_jpeg <= 0) {
220 for (
i = 0;
i < 64;
i++) {
222 if (
s->quant_matrixes[
index][
i] == 0) {
224 av_log(
s->avctx, log_level,
"dqt: 0 quant value\n");
232 s->quant_matrixes[
index][8]) >> 1;
235 len -= 1 + 64 * (1+pr);
244 uint8_t bits_table[17];
245 uint8_t val_table[256];
265 for (
i = 1;
i <= 16;
i++) {
270 if (len < n || n > 256)
273 for (
i = 0;
i < n;
i++) {
284 val_table,
class > 0,
s->avctx)) < 0)
290 val_table, 0,
s->avctx)) < 0)
294 for (
i = 0;
i < 16;
i++)
295 s->raw_huffman_lengths[
class][
index][
i] = bits_table[
i + 1];
297 s->raw_huffman_values[
class][
index][
i] = val_table[
i];
310 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
311 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
321 if (
s->avctx->bits_per_raw_sample !=
bits) {
323 s->avctx->bits_per_raw_sample =
bits;
328 if (
bits == 9 && !
s->pegasus_rct)
331 if(
s->lossless &&
s->avctx->lowres){
340 if (
s->interlaced &&
s->width ==
width &&
s->height ==
height + 1)
346 if (
s->buf_size && (
width + 7) / 8 * ((
height + 7) / 8) >
s->buf_size * 4LL)
350 if (nb_components <= 0 ||
353 if (
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
354 if (nb_components !=
s->nb_components) {
356 "nb_components changing in interlaced picture\n");
360 if (
s->ls && !(
bits <= 8 || nb_components == 1)) {
362 "JPEG-LS that is not <= 8 "
363 "bits/component or 16-bit gray");
366 if (
len != 8 + 3 * nb_components) {
367 av_log(
s->avctx,
AV_LOG_ERROR,
"decode_sof0: error, len(%d) mismatch %d components\n",
len, nb_components);
371 s->nb_components = nb_components;
374 for (
i = 0;
i < nb_components;
i++) {
380 if (h_count[
i] >
s->h_max)
381 s->h_max = h_count[
i];
382 if (v_count[
i] >
s->v_max)
383 s->v_max = v_count[
i];
385 if (
s->quant_index[
i] >= 4) {
389 if (!h_count[
i] || !v_count[
i]) {
391 "Invalid sampling factor in component %d %d:%d\n",
392 i, h_count[
i], v_count[
i]);
397 i, h_count[
i], v_count[
i],
398 s->component_id[
i],
s->quant_index[
i]);
400 if ( nb_components == 4
401 &&
s->component_id[0] ==
'C'
402 &&
s->component_id[1] ==
'M'
403 &&
s->component_id[2] ==
'Y'
404 &&
s->component_id[3] ==
'K')
405 s->adobe_transform = 0;
407 if (
s->ls && (
s->h_max > 1 ||
s->v_max > 1)) {
413 if (nb_components == 2) {
427 memcmp(
s->h_count, h_count,
sizeof(h_count)) ||
428 memcmp(
s->v_count, v_count,
sizeof(v_count))) {
434 memcpy(
s->h_count, h_count,
sizeof(h_count));
435 memcpy(
s->v_count, v_count,
sizeof(v_count));
440 if (
s->first_picture &&
441 (
s->multiscope != 2 ||
s->avctx->pkt_timebase.den >= 25 *
s->avctx->pkt_timebase.num) &&
442 s->orig_height != 0 &&
443 s->height < ((
s->orig_height * 3) / 4)) {
445 s->bottom_field =
s->interlace_polarity;
456 (
s->avctx->codec_tag ==
MKTAG(
'A',
'V',
'R',
'n') ||
457 s->avctx->codec_tag ==
MKTAG(
'A',
'V',
'D',
'J')) &&
461 s->first_picture = 0;
467 s->avctx->height =
s->avctx->coded_height /
s->smv_frames_per_jpeg;
468 if (
s->avctx->height <= 0)
471 if (
s->bayer &&
s->progressive) {
476 if (
s->got_picture &&
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
477 if (
s->progressive) {
482 if (
s->v_max == 1 &&
s->h_max == 1 &&
s->lossless==1 && (nb_components==3 || nb_components==4))
484 else if (!
s->lossless)
487 pix_fmt_id = ((unsigned)
s->h_count[0] << 28) | (
s->v_count[0] << 24) |
488 (
s->h_count[1] << 20) | (
s->v_count[1] << 16) |
489 (
s->h_count[2] << 12) | (
s->v_count[2] << 8) |
490 (
s->h_count[3] << 4) |
s->v_count[3];
494 if (!(pix_fmt_id & 0xD0D0D0D0))
495 pix_fmt_id -= (pix_fmt_id & 0xF0F0F0F0) >> 1;
496 if (!(pix_fmt_id & 0x0D0D0D0D))
497 pix_fmt_id -= (pix_fmt_id & 0x0F0F0F0F) >> 1;
499 for (
i = 0;
i < 8;
i++) {
500 int j = 6 + (
i&1) - (
i&6);
501 int is = (pix_fmt_id >> (4*
i)) & 0xF;
502 int js = (pix_fmt_id >> (4*j)) & 0xF;
504 if (
is == 1 && js != 2 && (i < 2 || i > 5))
505 js = (pix_fmt_id >> ( 8 + 4*(
i&1))) & 0xF;
506 if (
is == 1 && js != 2 && (i < 2 || i > 5))
507 js = (pix_fmt_id >> (16 + 4*(
i&1))) & 0xF;
509 if (
is == 1 && js == 2) {
510 if (
i & 1)
s->upscale_h[j/2] = 1;
511 else s->upscale_v[j/2] = 1;
516 if (pix_fmt_id != 0x11110000 && pix_fmt_id != 0x11000000)
520 switch (pix_fmt_id) {
530 if (
s->adobe_transform == 0
531 ||
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
545 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
557 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
568 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
570 s->upscale_v[1] =
s->upscale_v[2] = 1;
571 s->upscale_h[1] =
s->upscale_h[2] = 1;
572 }
else if (
s->adobe_transform == 2 &&
s->bits <= 8) {
574 s->upscale_v[1] =
s->upscale_v[2] = 1;
575 s->upscale_h[1] =
s->upscale_h[2] = 1;
594 if (
s->adobe_transform == 0 ||
s->component_id[0] ==
'R' &&
595 s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
621 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
625 s->upscale_v[1] =
s->upscale_v[2] = 1;
627 if (pix_fmt_id == 0x14111100)
628 s->upscale_v[1] =
s->upscale_v[2] = 1;
636 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
640 s->upscale_h[1] =
s->upscale_h[2] = 1;
650 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B')
654 s->upscale_h[0] =
s->upscale_h[2] = 2;
661 s->upscale_h[1] =
s->upscale_h[2] = 2;
678 if (pix_fmt_id == 0x42111100) {
681 s->upscale_h[1] =
s->upscale_h[2] = 1;
682 }
else if (pix_fmt_id == 0x24111100) {
685 s->upscale_v[1] =
s->upscale_v[2] = 1;
686 }
else if (pix_fmt_id == 0x23111100) {
689 s->upscale_v[1] =
s->upscale_v[2] = 2;
701 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
702 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
710 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
711 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
712 if (
s->nb_components == 3) {
714 }
else if (
s->nb_components != 1) {
717 }
else if ((
s->palette_index ||
s->force_pal8) &&
s->bits <= 8)
719 else if (
s->bits <= 8)
731 if (
s->avctx->pix_fmt ==
s->hwaccel_sw_pix_fmt && !size_change) {
732 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
735 #if CONFIG_MJPEG_NVDEC_HWACCEL
738 #if CONFIG_MJPEG_VAAPI_HWACCEL
745 if (
s->hwaccel_pix_fmt < 0)
748 s->hwaccel_sw_pix_fmt =
s->avctx->pix_fmt;
749 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
768 memset(
s->picture_ptr->data[1], 0, 1024);
770 for (
i = 0;
i < 4;
i++)
771 s->linesize[
i] =
s->picture_ptr->linesize[
i] <<
s->interlaced;
773 ff_dlog(
s->avctx,
"%d %d %d %d %d %d\n",
774 s->width,
s->height,
s->linesize[0],
s->linesize[1],
775 s->interlaced,
s->avctx->height);
779 if ((
s->rgb && !
s->lossless && !
s->ls) ||
780 (!
s->rgb &&
s->ls &&
s->nb_components > 1) ||
788 if (
s->progressive) {
789 int bw = (
width +
s->h_max * 8 - 1) / (
s->h_max * 8);
790 int bh = (
height +
s->v_max * 8 - 1) / (
s->v_max * 8);
791 for (
i = 0;
i <
s->nb_components;
i++) {
792 int size = bw * bh *
s->h_count[
i] *
s->v_count[
i];
797 if (!
s->blocks[
i] || !
s->last_nnz[
i])
799 s->block_stride[
i] = bw *
s->h_count[
i];
801 memset(
s->coefs_finished, 0,
sizeof(
s->coefs_finished));
804 if (
s->avctx->hwaccel) {
806 s->hwaccel_picture_private =
808 if (!
s->hwaccel_picture_private)
811 ret =
hwaccel->start_frame(
s->avctx,
s->raw_image_buffer,
812 s->raw_image_buffer_size);
824 if (code < 0 || code > 16) {
826 "mjpeg_decode_dc: bad vlc: %d:%d (%p)\n",
827 0, dc_index, &
s->vlcs[0][dc_index]);
839 int dc_index,
int ac_index, uint16_t *quant_matrix)
845 if (
val == 0xfffff) {
849 val =
val * (unsigned)quant_matrix[0] +
s->last_dc[component];
850 s->last_dc[component] =
val;
859 i += ((unsigned)
code) >> 4;
867 int sign = (~cache) >> 31;
877 j =
s->permutated_scantable[
i];
887 int component,
int dc_index,
888 uint16_t *quant_matrix,
int Al)
891 s->bdsp.clear_block(
block);
893 if (
val == 0xfffff) {
897 val = (
val * (quant_matrix[0] << Al)) +
s->last_dc[component];
898 s->last_dc[component] =
val;
905 uint8_t *last_nnz,
int ac_index,
906 uint16_t *quant_matrix,
907 int ss,
int se,
int Al,
int *EOBRUN)
919 for (
i =
ss; ;
i++) {
932 int sign = (~cache) >> 31;
940 j =
s->permutated_scantable[
se];
947 j =
s->permutated_scantable[
i];
977 #define REFINE_BIT(j) { \
978 UPDATE_CACHE(re, &s->gb); \
979 sign = block[j] >> 15; \
980 block[j] += SHOW_UBITS(re, &s->gb, 1) * \
981 ((quant_matrix[i] ^ sign) - sign) << Al; \
982 LAST_SKIP_BITS(re, &s->gb, 1); \
990 av_log(s->avctx, AV_LOG_ERROR, "error count: %d\n", i); \
995 j = s->permutated_scantable[i]; \
998 else if (run-- == 0) \
1005 int ac_index, uint16_t *quant_matrix,
1006 int ss,
int se,
int Al,
int *EOBRUN)
1009 int last =
FFMIN(
se, *last_nnz);
1017 GET_VLC(
code, re, &
s->gb,
s->vlcs[2][ac_index].table, 9, 2);
1025 j =
s->permutated_scantable[
i];
1056 for (;
i <= last;
i++) {
1057 j =
s->permutated_scantable[
i];
1073 if (
s->restart_interval) {
1077 for (
i = 0;
i < nb_components;
i++)
1078 s->last_dc[
i] = (4 <<
s->bits);
1083 if (
s->restart_count == 0) {
1091 for (
i = 0;
i < nb_components;
i++)
1092 s->last_dc[
i] = (4 <<
s->bits);
1108 int left[4], top[4], topleft[4];
1109 const int linesize =
s->linesize[0];
1110 const int mask = ((1 <<
s->bits) - 1) << point_transform;
1111 int resync_mb_y = 0;
1112 int resync_mb_x = 0;
1115 if (!
s->bayer &&
s->nb_components < 3)
1117 if (
s->bayer &&
s->nb_components > 2)
1119 if (
s->nb_components <= 0 ||
s->nb_components > 4)
1121 if (
s->v_max != 1 ||
s->h_max != 1 || !
s->lossless)
1124 if (
s->rct ||
s->pegasus_rct)
1129 s->restart_count =
s->restart_interval;
1131 if (
s->restart_interval == 0)
1132 s->restart_interval = INT_MAX;
1135 width =
s->mb_width / nb_components;
1140 if (!
s->ljpeg_buffer)
1145 for (
i = 0;
i < 4;
i++)
1148 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1149 uint8_t *ptr =
s->picture_ptr->data[0] + (linesize * mb_y);
1151 if (
s->interlaced &&
s->bottom_field)
1152 ptr += linesize >> 1;
1154 for (
i = 0;
i < 4;
i++)
1157 if ((mb_y *
s->width) %
s->restart_interval == 0) {
1158 for (
i = 0;
i < 6;
i++)
1159 vpred[
i] = 1 << (
s->bits-1);
1162 for (mb_x = 0; mb_x <
width; mb_x++) {
1170 if (
s->restart_interval && !
s->restart_count){
1171 s->restart_count =
s->restart_interval;
1175 top[
i] =
left[
i]= topleft[
i]= 1 << (
s->bits - 1);
1177 if (mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || !mb_x)
1178 modified_predictor = 1;
1180 for (
i=0;
i<nb_components;
i++) {
1183 topleft[
i] = top[
i];
1190 if (!
s->bayer || mb_x) {
1200 mask & (
pred + (unsigned)(
dc * (1 << point_transform)));
1203 if (
s->restart_interval && !--
s->restart_count) {
1208 if (
s->rct &&
s->nb_components == 4) {
1209 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1210 ptr[4*mb_x + 2] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1211 ptr[4*mb_x + 1] =
buffer[mb_x][1] + ptr[4*mb_x + 2];
1212 ptr[4*mb_x + 3] =
buffer[mb_x][2] + ptr[4*mb_x + 2];
1213 ptr[4*mb_x + 0] =
buffer[mb_x][3];
1215 }
else if (
s->nb_components == 4) {
1216 for(
i=0;
i<nb_components;
i++) {
1217 int c=
s->comp_index[
i];
1219 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1222 }
else if(
s->bits == 9) {
1225 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1226 ((uint16_t*)ptr)[4*mb_x+
c] =
buffer[mb_x][
i];
1230 }
else if (
s->rct) {
1231 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1232 ptr[3*mb_x + 1] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1233 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1234 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1236 }
else if (
s->pegasus_rct) {
1237 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1239 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1240 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1242 }
else if (
s->bayer) {
1245 if (nb_components == 1) {
1247 for (mb_x = 0; mb_x <
width; mb_x++)
1248 ((uint16_t*)ptr)[mb_x] =
buffer[mb_x][0];
1249 }
else if (nb_components == 2) {
1250 for (mb_x = 0; mb_x <
width; mb_x++) {
1251 ((uint16_t*)ptr)[2*mb_x + 0] =
buffer[mb_x][0];
1252 ((uint16_t*)ptr)[2*mb_x + 1] =
buffer[mb_x][1];
1256 for(
i=0;
i<nb_components;
i++) {
1257 int c=
s->comp_index[
i];
1259 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1262 }
else if(
s->bits == 9) {
1265 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1266 ((uint16_t*)ptr)[3*mb_x+2-
c] =
buffer[mb_x][
i];
1276 int point_transform,
int nb_components)
1278 int i, mb_x, mb_y,
mask;
1279 int bits= (
s->bits+7)&~7;
1280 int resync_mb_y = 0;
1281 int resync_mb_x = 0;
1283 point_transform +=
bits -
s->bits;
1284 mask = ((1 <<
s->bits) - 1) << point_transform;
1286 av_assert0(nb_components>=1 && nb_components<=4);
1288 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1289 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1294 if (
s->restart_interval && !
s->restart_count){
1295 s->restart_count =
s->restart_interval;
1300 if(!mb_x || mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || s->
interlaced){
1301 int toprow = mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x;
1302 int leftcol = !mb_x || mb_y == resync_mb_y && mb_x == resync_mb_x;
1303 for (
i = 0;
i < nb_components;
i++) {
1306 int n,
h, v, x, y,
c, j, linesize;
1307 n =
s->nb_blocks[
i];
1308 c =
s->comp_index[
i];
1313 linesize=
s->linesize[
c];
1315 if(
bits>8) linesize /= 2;
1317 for(j=0; j<n; j++) {
1323 if (
h * mb_x + x >=
s->width
1324 || v * mb_y + y >=
s->height) {
1326 }
else if (
bits<=8) {
1327 ptr =
s->picture_ptr->data[
c] + (linesize * (v * mb_y + y)) + (
h * mb_x + x);
1329 if(x==0 && leftcol){
1335 if(x==0 && leftcol){
1336 pred= ptr[-linesize];
1342 if (
s->interlaced &&
s->bottom_field)
1343 ptr += linesize >> 1;
1345 *ptr=
pred + ((unsigned)
dc << point_transform);
1347 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1349 if(x==0 && leftcol){
1355 if(x==0 && leftcol){
1356 pred= ptr16[-linesize];
1362 if (
s->interlaced &&
s->bottom_field)
1363 ptr16 += linesize >> 1;
1365 *ptr16=
pred + ((unsigned)
dc << point_transform);
1374 for (
i = 0;
i < nb_components;
i++) {
1377 int n,
h, v, x, y,
c, j, linesize,
dc;
1378 n =
s->nb_blocks[
i];
1379 c =
s->comp_index[
i];
1384 linesize =
s->linesize[
c];
1386 if(
bits>8) linesize /= 2;
1388 for (j = 0; j < n; j++) {
1394 if (
h * mb_x + x >=
s->width
1395 || v * mb_y + y >=
s->height) {
1397 }
else if (
bits<=8) {
1398 ptr =
s->picture_ptr->data[
c] +
1399 (linesize * (v * mb_y + y)) +
1404 *ptr =
pred + ((unsigned)
dc << point_transform);
1406 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1410 *ptr16=
pred + ((unsigned)
dc << point_transform);
1420 if (
s->restart_interval && !--
s->restart_count) {
1430 uint8_t *
dst,
const uint8_t *
src,
1431 int linesize,
int lowres)
1434 case 0:
s->hdsp.put_pixels_tab[1][0](
dst,
src, linesize, 8);
1447 int block_x, block_y;
1448 int size = 8 >>
s->avctx->lowres;
1450 for (block_y=0; block_y<
size; block_y++)
1451 for (block_x=0; block_x<
size; block_x++)
1452 *(uint16_t*)(ptr + 2*block_x + block_y*linesize) <<= 16 -
s->bits;
1454 for (block_y=0; block_y<
size; block_y++)
1455 for (block_x=0; block_x<
size; block_x++)
1456 *(ptr + block_x + block_y*linesize) <<= 8 -
s->bits;
1461 int Al,
const uint8_t *mb_bitmask,
1462 int mb_bitmask_size,
1465 int i, mb_x, mb_y, chroma_h_shift, chroma_v_shift, chroma_width, chroma_height;
1470 int bytes_per_pixel = 1 + (
s->bits > 8);
1473 if (mb_bitmask_size != (
s->mb_width *
s->mb_height + 7)>>3) {
1477 init_get_bits(&mb_bitmask_gb, mb_bitmask,
s->mb_width *
s->mb_height);
1480 s->restart_count = 0;
1487 for (
i = 0;
i < nb_components;
i++) {
1488 int c =
s->comp_index[
i];
1489 data[
c] =
s->picture_ptr->data[
c];
1490 reference_data[
c] = reference ? reference->
data[
c] :
NULL;
1491 linesize[
c] =
s->linesize[
c];
1492 s->coefs_finished[
c] |= 1;
1495 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1496 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1499 if (
s->restart_interval && !
s->restart_count)
1500 s->restart_count =
s->restart_interval;
1507 for (
i = 0;
i < nb_components;
i++) {
1509 int n,
h, v, x, y,
c, j;
1511 n =
s->nb_blocks[
i];
1512 c =
s->comp_index[
i];
1517 for (j = 0; j < n; j++) {
1518 block_offset = (((linesize[
c] * (v * mb_y + y) * 8) +
1519 (
h * mb_x + x) * 8 * bytes_per_pixel) >>
s->avctx->lowres);
1521 if (
s->interlaced &&
s->bottom_field)
1522 block_offset += linesize[
c] >> 1;
1523 if ( 8*(
h * mb_x + x) < ((
c == 1) || (
c == 2) ? chroma_width :
s->width)
1524 && 8*(v * mb_y + y) < ((
c == 1) || (
c == 2) ? chroma_height :
s->height)) {
1525 ptr =
data[
c] + block_offset;
1528 if (!
s->progressive) {
1532 linesize[
c],
s->avctx->lowres);
1535 s->bdsp.clear_block(
s->block);
1537 s->dc_index[
i],
s->ac_index[
i],
1538 s->quant_matrixes[
s->quant_sindex[
i]]) < 0) {
1540 "error y=%d x=%d\n", mb_y, mb_x);
1543 if (ptr && linesize[
c]) {
1544 s->idsp.idct_put(ptr, linesize[
c],
s->block);
1550 int block_idx =
s->block_stride[
c] * (v * mb_y + y) +
1552 int16_t *
block =
s->blocks[
c][block_idx];
1555 s->quant_matrixes[
s->quant_sindex[
i]][0] << Al;
1557 s->quant_matrixes[
s->quant_sindex[
i]],
1560 "error y=%d x=%d\n", mb_y, mb_x);
1564 ff_dlog(
s->avctx,
"mb: %d %d processed\n", mb_y, mb_x);
1565 ff_dlog(
s->avctx,
"%d %d %d %d %d %d %d %d \n",
1566 mb_x, mb_y, x, y,
c,
s->bottom_field,
1567 (v * mb_y + y) * 8, (
h * mb_x + x) * 8);
1582 int se,
int Ah,
int Al)
1586 int c =
s->comp_index[0];
1587 uint16_t *quant_matrix =
s->quant_matrixes[
s->quant_sindex[0]];
1590 if (se < ss || se > 63) {
1597 s->coefs_finished[
c] |= (2ULL <<
se) - (1ULL <<
ss);
1599 s->restart_count = 0;
1601 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1602 int block_idx = mb_y *
s->block_stride[
c];
1603 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1604 uint8_t *last_nnz = &
s->last_nnz[
c][block_idx];
1606 av_log(
s->avctx,
AV_LOG_ERROR,
"bitstream truncated in mjpeg_decode_scan_progressive_ac\n");
1609 for (mb_x = 0; mb_x <
s->mb_width; mb_x++,
block++, last_nnz++) {
1611 if (
s->restart_interval && !
s->restart_count)
1612 s->restart_count =
s->restart_interval;
1616 quant_matrix,
ss,
se, Al, &EOBRUN);
1619 quant_matrix,
ss,
se, Al, &EOBRUN);
1625 "error y=%d x=%d\n", mb_y, mb_x);
1640 const int bytes_per_pixel = 1 + (
s->bits > 8);
1641 const int block_size =
s->lossless ? 1 : 8;
1643 for (
c = 0;
c <
s->nb_components;
c++) {
1644 uint8_t *
data =
s->picture_ptr->data[
c];
1645 int linesize =
s->linesize[
c];
1646 int h =
s->h_max /
s->h_count[
c];
1647 int v =
s->v_max /
s->v_count[
c];
1648 int mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1649 int mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1651 if (~
s->coefs_finished[
c])
1654 if (
s->interlaced &&
s->bottom_field)
1655 data += linesize >> 1;
1657 for (mb_y = 0; mb_y < mb_height; mb_y++) {
1658 uint8_t *ptr =
data + (mb_y * linesize * 8 >>
s->avctx->lowres);
1659 int block_idx = mb_y *
s->block_stride[
c];
1660 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1661 for (mb_x = 0; mb_x < mb_width; mb_x++,
block++) {
1662 s->idsp.idct_put(ptr, linesize, *
block);
1665 ptr += bytes_per_pixel*8 >>
s->avctx->lowres;
1672 int mb_bitmask_size,
const AVFrame *reference)
1676 const int block_size =
s->lossless ? 1 : 8;
1677 int ilv, prev_shift;
1679 if (!
s->got_picture) {
1681 "Can not process SOS before SOF, skipping\n");
1686 if (reference->
width !=
s->picture_ptr->width ||
1687 reference->
height !=
s->picture_ptr->height ||
1688 reference->
format !=
s->picture_ptr->format) {
1699 "decode_sos: nb_components (%d)",
1703 if (
len != 6 + 2 * nb_components) {
1707 for (
i = 0;
i < nb_components;
i++) {
1712 if (
id ==
s->component_id[
index])
1714 if (
index ==
s->nb_components) {
1716 "decode_sos: index(%d) out of components\n",
index);
1720 if (
s->avctx->codec_tag ==
MKTAG(
'M',
'T',
'S',
'J')
1721 && nb_components == 3 &&
s->nb_components == 3 &&
i)
1724 s->quant_sindex[
i] =
s->quant_index[
index];
1726 s->h_scount[
i] =
s->h_count[
index];
1727 s->v_scount[
i] =
s->v_count[
index];
1734 if (
s->dc_index[
i] < 0 ||
s->ac_index[
i] < 0 ||
1735 s->dc_index[
i] >= 4 ||
s->ac_index[
i] >= 4)
1737 if (!
s->vlcs[0][
s->dc_index[
i]].table || !(
s->progressive ?
s->vlcs[2][
s->ac_index[0]].table :
s->vlcs[1][
s->ac_index[
i]].table))
1743 if(
s->avctx->codec_tag !=
AV_RL32(
"CJPG")){
1747 prev_shift = point_transform = 0;
1749 if (nb_components > 1) {
1751 s->mb_width = (
s->width +
s->h_max * block_size - 1) / (
s->h_max * block_size);
1752 s->mb_height = (
s->height +
s->v_max * block_size - 1) / (
s->v_max * block_size);
1753 }
else if (!
s->ls) {
1754 h =
s->h_max /
s->h_scount[0];
1755 v =
s->v_max /
s->v_scount[0];
1756 s->mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1757 s->mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1758 s->nb_blocks[0] = 1;
1765 s->lossless ?
"lossless" :
"sequential DCT",
s->rgb ?
"RGB" :
"",
1766 predictor, point_transform, ilv,
s->bits,
s->mjpb_skiptosod,
1767 s->pegasus_rct ?
"PRCT" : (
s->rct ?
"RCT" :
""), nb_components);
1771 for (
i =
s->mjpb_skiptosod;
i > 0;
i--)
1775 for (
i = 0;
i < nb_components;
i++)
1776 s->last_dc[
i] = (4 <<
s->bits);
1778 if (
s->avctx->hwaccel) {
1781 s->raw_scan_buffer_size >= bytes_to_start);
1784 s->raw_scan_buffer + bytes_to_start,
1785 s->raw_scan_buffer_size - bytes_to_start);
1789 }
else if (
s->lossless) {
1791 if (CONFIG_JPEGLS_DECODER &&
s->ls) {
1796 point_transform, ilv)) < 0)
1799 if (
s->rgb ||
s->bayer) {
1805 nb_components)) < 0)
1814 point_transform)) < 0)
1818 prev_shift, point_transform,
1819 mb_bitmask, mb_bitmask_size, reference)) < 0)
1824 if (
s->interlaced &&
1833 s->bottom_field ^= 1;
1851 s->restart_count = 0;
1853 s->restart_interval);
1900 int t_w, t_h, v1, v2;
1908 s->avctx->sample_aspect_ratio.num =
get_bits(&
s->gb, 16);
1909 s->avctx->sample_aspect_ratio.den =
get_bits(&
s->gb, 16);
1910 if (
s->avctx->sample_aspect_ratio.num <= 0
1911 ||
s->avctx->sample_aspect_ratio.den <= 0) {
1912 s->avctx->sample_aspect_ratio.num = 0;
1913 s->avctx->sample_aspect_ratio.den = 1;
1918 "mjpeg: JFIF header found (version: %x.%x) SAR=%d/%d\n",
1920 s->avctx->sample_aspect_ratio.num,
1921 s->avctx->sample_aspect_ratio.den);
1929 if (
len -10 - (t_w * t_h * 3) > 0)
1930 len -= t_w * t_h * 3;
1947 av_log(
s->avctx,
AV_LOG_INFO,
"mjpeg: Adobe header found, transform=%d\n",
s->adobe_transform);
1954 int pegasus_rct =
s->pegasus_rct;
1957 "Pegasus lossless jpeg header found\n");
1979 if (
rgb !=
s->rgb || pegasus_rct !=
s->pegasus_rct) {
1985 s->pegasus_rct = pegasus_rct;
2025 }
else if (
type == 1) {
2037 if (!(
flags & 0x04)) {
2047 int ret, le, ifd_offset, bytes_read;
2080 if ((
s->start_code ==
APP1) && (
len > (0x28 - 8))) {
2103 unsigned nummarkers;
2123 if (nummarkers == 0) {
2126 }
else if (
s->iccnum != 0 && nummarkers !=
s->iccnum) {
2129 }
else if (seqno > nummarkers) {
2135 if (
s->iccnum == 0) {
2140 s->iccnum = nummarkers;
2143 if (
s->iccentries[seqno - 1].data) {
2148 s->iccentries[seqno - 1].length =
len;
2150 if (!
s->iccentries[seqno - 1].data) {
2160 if (
s->iccread >
s->iccnum)
2168 "mjpeg: error, decode_app parser read over the end\n");
2184 for (
i = 0;
i <
len - 2;
i++)
2186 if (
i > 0 && cbuf[
i - 1] ==
'\n')
2195 if (!strncmp(cbuf,
"AVID", 4)) {
2197 }
else if (!strcmp(cbuf,
"CS=ITU601"))
2199 else if ((!strncmp(cbuf,
"Intel(R) JPEG Library, version 1", 32) &&
s->avctx->codec_tag) ||
2200 (!strncmp(cbuf,
"Metasoft MJPEG Codec", 20)))
2202 else if (!strcmp(cbuf,
"MULTISCOPE II")) {
2203 s->avctx->sample_aspect_ratio = (
AVRational) { 1, 2 };
2215 static int find_marker(
const uint8_t **pbuf_ptr,
const uint8_t *buf_end)
2217 const uint8_t *buf_ptr;
2222 buf_ptr = *pbuf_ptr;
2223 while (buf_end - buf_ptr > 1) {
2226 if ((v == 0xff) && (v2 >=
SOF0) && (v2 <=
COM) && buf_ptr < buf_end) {
2235 ff_dlog(
NULL,
"find_marker skipped %d bytes\n", skipped);
2236 *pbuf_ptr = buf_ptr;
2241 const uint8_t **buf_ptr,
const uint8_t *buf_end,
2242 const uint8_t **unescaped_buf_ptr,
2243 int *unescaped_buf_size)
2254 const uint8_t *
src = *buf_ptr;
2255 const uint8_t *ptr =
src;
2256 uint8_t *
dst =
s->buffer;
2258 #define copy_data_segment(skip) do { \
2259 ptrdiff_t length = (ptr - src) - (skip); \
2261 memcpy(dst, src, length); \
2271 while (ptr < buf_end) {
2272 uint8_t x = *(ptr++);
2276 while (ptr < buf_end && x == 0xff) {
2291 if (x < RST0 || x >
RST7) {
2301 #undef copy_data_segment
2303 *unescaped_buf_ptr =
s->buffer;
2304 *unescaped_buf_size =
dst -
s->buffer;
2305 memset(
s->buffer + *unescaped_buf_size, 0,
2309 (buf_end - *buf_ptr) - (
dst -
s->buffer));
2311 const uint8_t *
src = *buf_ptr;
2312 uint8_t *
dst =
s->buffer;
2318 while (
src + t < buf_end) {
2319 uint8_t x =
src[t++];
2321 while ((
src + t < buf_end) && x == 0xff)
2334 uint8_t x =
src[
b++];
2336 if (x == 0xFF &&
b < t) {
2348 *unescaped_buf_ptr =
dst;
2349 *unescaped_buf_size = (bit_count + 7) >> 3;
2350 memset(
s->buffer + *unescaped_buf_size, 0,
2353 *unescaped_buf_ptr = *buf_ptr;
2354 *unescaped_buf_size = buf_end - *buf_ptr;
2364 if (
s->iccentries) {
2365 for (
i = 0;
i <
s->iccnum;
i++)
2375 int *got_frame,
const AVPacket *avpkt,
2376 const uint8_t *buf,
const int buf_size)
2379 const uint8_t *buf_end, *buf_ptr;
2380 const uint8_t *unescaped_buf_ptr;
2382 int unescaped_buf_size;
2391 s->buf_size = buf_size;
2395 s->adobe_transform = -1;
2402 buf_end = buf + buf_size;
2403 while (buf_ptr < buf_end) {
2407 &unescaped_buf_size);
2411 }
else if (unescaped_buf_size > INT_MAX / 8) {
2413 "MJPEG packet 0x%x too big (%d/%d), corrupt data?\n",
2453 if (!CONFIG_JPEGLS_DECODER &&
2477 s->restart_interval = 0;
2478 s->restart_count = 0;
2479 s->raw_image_buffer = buf_ptr;
2480 s->raw_image_buffer_size = buf_end - buf_ptr;
2528 if (!CONFIG_JPEGLS_DECODER ||
2537 s->progressive &&
s->cur_scan &&
s->got_picture)
2540 if (!
s->got_picture) {
2542 "Found EOI before any SOF, ignoring\n");
2545 if (
s->interlaced) {
2546 s->bottom_field ^= 1;
2548 if (
s->bottom_field == !
s->interlace_polarity)
2553 goto the_end_no_picture;
2577 s->raw_scan_buffer = buf_ptr;
2578 s->raw_scan_buffer_size = buf_end - buf_ptr;
2605 "mjpeg: unsupported coding type (%x)\n",
start_code);
2613 "marker parser used %d bytes (%d bits)\n",
2616 if (
s->got_picture &&
s->cur_scan) {
2651 for (p = 0; p<
s->nb_components; p++) {
2652 uint8_t *
line =
s->picture_ptr->data[p];
2655 if (!
s->upscale_h[p])
2661 if (
s->upscale_v[p] == 1)
2664 for (
int i = 0;
i <
h;
i++) {
2665 if (
s->upscale_h[p] == 1) {
2666 if (is16bit) ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 2];
2674 }
else if (
s->upscale_h[p] == 2) {
2676 ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 3];
2678 ((uint16_t*)
line)[
w - 2] = ((uint16_t*)
line)[
w - 1];
2687 }
else if (
s->upscale_h[p] == 4){
2689 uint16_t *line16 = (uint16_t *)
line;
2690 line16[
w - 1] = line16[(
w - 1) >> 2];
2692 line16[
w - 2] = (line16[(
w - 1) >> 2] * 3 + line16[(
w - 2) >> 2]) >> 2;
2694 line16[
w - 3] = (line16[(
w - 1) >> 2] + line16[(
w - 2) >> 2]) >> 1;
2706 line +=
s->linesize[p];
2731 for (p = 0; p <
s->nb_components; p++) {
2735 if (!
s->upscale_v[p])
2741 dst = &((uint8_t *)
s->picture_ptr->data[p])[(
h - 1) *
s->linesize[p]];
2743 uint8_t *
src1 = &((uint8_t *)
s->picture_ptr->data[p])[
i *
s->upscale_v[p] / (
s->upscale_v[p] + 1) *
s->linesize[p]];
2744 uint8_t *
src2 = &((uint8_t *)
s->picture_ptr->data[p])[(
i + 1) *
s->upscale_v[p] / (
s->upscale_v[p] + 1) *
s->linesize[p]];
2751 dst -=
s->linesize[p];
2755 if (
s->flipped && !
s->rgb) {
2781 int w =
s->picture_ptr->width;
2782 int h =
s->picture_ptr->height;
2784 for (
int i = 0;
i <
h;
i++) {
2789 +
s->picture_ptr->linesize[
index]*
i;
2791 for (j=0; j<
w; j++) {
2793 int r =
dst[0][j] * k;
2794 int g =
dst[1][j] * k;
2795 int b =
dst[2][j] * k;
2796 dst[0][j] =
g*257 >> 16;
2797 dst[1][j] =
b*257 >> 16;
2798 dst[2][j] =
r*257 >> 16;
2800 memset(
dst[3], 255,
w);
2804 int w =
s->picture_ptr->width;
2805 int h =
s->picture_ptr->height;
2807 for (
int i = 0;
i <
h;
i++) {
2812 +
s->picture_ptr->linesize[
index]*
i;
2814 for (j=0; j<
w; j++) {
2816 int r = (255 -
dst[0][j]) * k;
2817 int g = (128 -
dst[1][j]) * k;
2818 int b = (128 -
dst[2][j]) * k;
2819 dst[0][j] =
r*257 >> 16;
2820 dst[1][j] = (
g*257 >> 16) + 128;
2821 dst[2][j] = (
b*257 >> 16) + 128;
2823 memset(
dst[3], 255,
w);
2830 stereo->
type =
s->stereo3d->type;
2831 stereo->
flags =
s->stereo3d->flags;
2836 if (
s->iccnum != 0 &&
s->iccnum ==
s->iccread) {
2842 for (
int i = 0;
i <
s->iccnum;
i++)
2843 total_size +=
s->iccentries[
i].length;
2853 for (
int i = 0;
i <
s->iccnum;
i++) {
2854 memcpy(sd->
data +
offset,
s->iccentries[
i].data,
s->iccentries[
i].length);
2862 int orientation = strtol(
value, &endptr, 0);
2867 if (orientation >= 2 && orientation <= 8) {
2878 switch (orientation) {
2925 return buf_ptr - buf;
2943 if (
s->interlaced &&
s->bottom_field == !
s->interlace_polarity &&
s->got_picture && !avctx->
frame_num) {
2949 s->picture_ptr =
NULL;
2950 }
else if (
s->picture_ptr)
2958 s->ljpeg_buffer_size = 0;
2960 for (
i = 0;
i < 3;
i++) {
2961 for (j = 0; j < 4; j++)
2983 s->smv_next_frame = 0;
2987 #if CONFIG_MJPEG_DECODER
2988 #define OFFSET(x) offsetof(MJpegDecodeContext, x)
2989 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2991 {
"extern_huff",
"Use external huffman table.",
2996 static const AVClass mjpegdec_class = {
3015 .p.priv_class = &mjpegdec_class,
3021 #if CONFIG_MJPEG_NVDEC_HWACCEL
3024 #if CONFIG_MJPEG_VAAPI_HWACCEL
3031 #if CONFIG_THP_DECODER
3048 #if CONFIG_SMVJPEG_DECODER
3063 s->smv_frame->pts +=
s->smv_frame->duration;
3064 s->smv_next_frame = (
s->smv_next_frame + 1) %
s->smv_frames_per_jpeg;
3066 if (
s->smv_next_frame == 0)
3077 if (
s->smv_next_frame > 0)
3087 s->smv_frame->pkt_dts =
pkt->
dts;
3096 s->smv_frame->duration /=
s->smv_frames_per_jpeg;
3104 smv_process_frame(avctx,
frame);
3109 .
p.
name =
"smvjpeg",
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
void av_packet_unref(AVPacket *pkt)
Wipe the packet.
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
int ff_decode_get_packet(AVCodecContext *avctx, AVPacket *pkt)
Called by decoders to get the next packet for decoding.
#define AV_LOG_WARNING
Something somehow does not look correct.
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
AVPixelFormat
Pixel format.
#define AV_EF_EXPLODE
abort decoding on minor error detection
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static unsigned int show_bits_long(GetBitContext *s, int n)
Show 0-32 bits.
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int decode_slice(AVCodecContext *c, void *arg)
enum AVColorSpace colorspace
YUV colorspace type.
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
static av_always_inline void mjpeg_copy_block(MJpegDecodeContext *s, uint8_t *dst, const uint8_t *src, int linesize, int lowres)
The official guide to swscale for confused that is
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, size_t size)
Add a new side data to a frame.
static void decode_flush(AVCodecContext *avctx)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
#define GET_VLC(code, name, gb, table, bits, max_depth)
If the vlc code is invalid and max_depth=1, then no bits will be removed.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
const FFCodec ff_smvjpeg_decoder
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
#define se(name, range_min, range_max)
static int get_bits_count(const GetBitContext *s)
static void init_idct(AVCodecContext *avctx)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
#define AV_PIX_FMT_YUVA420P16
@ AVCOL_RANGE_JPEG
Full range content.
const FFCodec ff_mjpeg_decoder
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
enum AVFieldOrder field_order
Field order.
static int mjpeg_decode_dc(MJpegDecodeContext *s, int dc_index)
int step
Number of elements between 2 horizontally consecutive pixels.
#define AV_DICT_IGNORE_SUFFIX
Return first entry in a dictionary whose first part corresponds to the search key,...
const uint8_t ff_mjpeg_val_dc[]
#define FF_HW_SIMPLE_CALL(avctx, function)
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure clockwise rotation by the specified angle (in de...
@ AV_FRAME_DATA_DISPLAYMATRIX
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
#define UPDATE_CACHE(name, gb)
const uint8_t ff_mjpeg_bits_ac_chrominance[]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
#define GET_CACHE(name, gb)
static void skip_bits(GetBitContext *s, int n)
av_cold void ff_permute_scantable(uint8_t dst[64], const uint8_t src[64], const uint8_t permutation[64])
@ AV_STEREO3D_SIDEBYSIDE
Views are next to each other.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
int ff_mjpeg_decode_dht(MJpegDecodeContext *s)
static int ljpeg_decode_yuv_scan(MJpegDecodeContext *s, int predictor, int point_transform, int nb_components)
static void shift_output(MJpegDecodeContext *s, uint8_t *ptr, int linesize)
AVCodec p
The public AVCodec.
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
const struct AVCodec * codec
av_cold int ff_mjpeg_decode_init(AVCodecContext *avctx)
enum AVDiscard skip_frame
Skip decoding for selected frames.
@ AV_STEREO3D_2D
Video is not stereoscopic (and metadata has to be there).
#define AV_PIX_FMT_YUVA444P16
int ff_mjpeg_decode_frame_from_buf(AVCodecContext *avctx, AVFrame *frame, int *got_frame, const AVPacket *avpkt, const uint8_t *buf, const int buf_size)
static int mjpeg_decode_com(MJpegDecodeContext *s)
static int init_default_huffman_tables(MJpegDecodeContext *s)
int flags
AV_CODEC_FLAG_*.
static double val(void *priv, double ch)
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_PIX_FMT_GRAY16
#define ss(width, name, subs,...)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
const AVProfile ff_mjpeg_profiles[]
int ff_exif_decode_ifd(void *logctx, GetByteContext *gbytes, int le, int depth, AVDictionary **metadata)
static int aligned(int val)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int decode_dc_progressive(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, uint16_t *quant_matrix, int Al)
#define AV_PIX_FMT_YUV422P16
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
#define FF_CODEC_PROPERTY_LOSSLESS
#define AV_PROFILE_MJPEG_HUFFMAN_BASELINE_DCT
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
AVDictionaryEntry * av_dict_get(const AVDictionary *m, const char *key, const AVDictionaryEntry *prev, int flags)
Get a dictionary entry with matching key.
static int handle_rstn(MJpegDecodeContext *s, int nb_components)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define CLOSE_READER(name, gb)
#define FF_CODEC_DECODE_CB(func)
@ AV_STEREO3D_LINES
Views are packed per line, as if interlaced.
av_cold void ff_blockdsp_init(BlockDSPContext *c)
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static void parse_avid(MJpegDecodeContext *s, uint8_t *buf, int len)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
int ff_jpegls_decode_picture(MJpegDecodeContext *s, int near, int point_transform, int ilv)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_PIX_FMT_YUV420P16
static void reset_icc_profile(MJpegDecodeContext *s)
av_cold int ff_mjpeg_decode_end(AVCodecContext *avctx)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define CODEC_LONG_NAME(str)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
int flags
Additional information about the frame packing.
@ AVDISCARD_ALL
discard all
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
#define PTRDIFF_SPECIFIER
static void mjpeg_idct_scan_progressive_ac(MJpegDecodeContext *s)
static void copy_block2(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
#define AV_PROFILE_MJPEG_HUFFMAN_EXTENDED_SEQUENTIAL_DCT
Rational number (pair of numerator and denominator).
int ff_mjpeg_decode_dqt(MJpegDecodeContext *s)
struct AVCodecInternal * internal
Private context used for internal data.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
const char * av_default_item_name(void *ptr)
Return the context name.
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
@ AV_FRAME_DATA_ICC_PROFILE
The data contains an ICC profile as an opaque octet buffer following the format described by ISO 1507...
#define LAST_SKIP_BITS(name, gb, num)
static int mjpeg_decode_scan(MJpegDecodeContext *s, int nb_components, int Ah, int Al, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
static int decode_block_refinement(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
static int mjpeg_decode_scan_progressive_ac(MJpegDecodeContext *s, int ss, int se, int Ah, int Al)
const uint8_t ff_mjpeg_val_ac_chrominance[]
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_always_inline int bytestream2_tell(GetByteContext *g)
#define copy_data_segment(skip)
int lowres
low resolution decoding, 1-> 1/2 size, 2->1/4 size
const OptionDef options[]
static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int(* init)(AVBSFContext *ctx)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static int ljpeg_decode_rgb_scan(MJpegDecodeContext *s, int nb_components, int predictor, int point_transform)
const uint8_t ff_mjpeg_val_ac_luminance[]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
int ff_jpegls_decode_lse(MJpegDecodeContext *s)
Decode LSE block with initialization parameters.
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
int ff_mjpeg_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static int decode_block_progressive(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
int ff_mjpeg_decode_sos(MJpegDecodeContext *s, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
#define AV_PROFILE_MJPEG_JPEG_LS
const uint8_t ff_mjpeg_bits_ac_luminance[]
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
#define AV_NOPTS_VALUE
Undefined timestamp value.
int ff_frame_new_side_data(const AVCodecContext *avctx, AVFrame *frame, enum AVFrameSideDataType type, size_t size, AVFrameSideData **psd)
Wrapper around av_frame_new_side_data, which rejects side data overridden by the demuxer.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
#define FF_CODEC_CAP_SKIP_FRAME_FILL_PARAM
The decoder extracts and fills its parameters even if the frame is skipped due to the skip_frame sett...
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
#define OPEN_READER(name, gb)
int64_t dts
Decompression timestamp in AVStream->time_base units; the time at which the packet is decompressed.
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static int get_xbits(GetBitContext *s, int n)
Read MPEG-1 dc-style VLC (sign bit + mantissa with no MSB).
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
#define HWACCEL_NVDEC(codec)
static void predictor(uint8_t *src, ptrdiff_t size)
static int find_marker(const uint8_t **pbuf_ptr, const uint8_t *buf_end)
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
@ AV_PIX_FMT_VAAPI
Hardware acceleration through VA-API, data[3] contains a VASurfaceID.
#define AV_LOG_INFO
Standard information.
const FFCodec ff_thp_decoder
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static void copy_block4(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
static int decode_block(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, int ac_index, uint16_t *quant_matrix)
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
unsigned properties
Properties of the stream that gets decoded.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
#define AV_PROFILE_MJPEG_HUFFMAN_LOSSLESS
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
@ AV_FIELD_BB
Bottom coded first, bottom displayed first.
@ AV_STEREO3D_TOPBOTTOM
Views are on top of each other.
static int mjpeg_decode_dri(MJpegDecodeContext *s)
AVPacket * in_pkt
This packet is used to hold the packet given to decoders implementing the .decode API; it is unused b...
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
#define FF_DEBUG_STARTCODE
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
void * av_calloc(size_t nmemb, size_t size)
#define FF_CODEC_CAP_ICC_PROFILES
Codec supports embedded ICC profiles (AV_FRAME_DATA_ICC_PROFILE).
const uint8_t ff_zigzag_direct[64]
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
int64_t frame_num
Frame counter, set by libavcodec.
static int vshift(enum AVPixelFormat fmt, int plane)
void ff_vlc_free(VLC *vlc)
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
static const float pred[4]
AVStereo3D * av_stereo3d_alloc(void)
Allocate an AVStereo3D structure and set its fields to default values.
#define FFSWAP(type, a, b)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
enum AVStereo3DType type
How views are packed within the video.
static const uint8_t * align_get_bits(GetBitContext *s)
static const char * hwaccel
@ LSE
JPEG-LS extension parameters.
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
int ff_mjpeg_find_marker(MJpegDecodeContext *s, const uint8_t **buf_ptr, const uint8_t *buf_end, const uint8_t **unescaped_buf_ptr, int *unescaped_buf_size)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without and describe what they for example set the foo of the bar offset is the offset of the field in your see the OFFSET() macro
main external API structure.
#define FF_CODEC_RECEIVE_FRAME_CB(func)
#define SHOW_UBITS(name, gb, num)
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
@ AVCHROMA_LOC_CENTER
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
#define FF_HW_CALL(avctx, function,...)
static const FFHWAccel * ffhwaccel(const AVHWAccel *codec)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
int ff_tdecode_header(GetByteContext *gb, int *le, int *ifd_offset)
Decodes a TIFF header from the input bytestream and sets the endianness in *le and the offset to the ...
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
const uint8_t ff_mjpeg_bits_dc_chrominance[]
int ff_mjpeg_decode_sof(MJpegDecodeContext *s)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
int coded_width
Bitstream width / height, may be different from width/height e.g.
@ AV_PIX_FMT_GRAY16LE
Y , 16bpp, little-endian.
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static int mjpeg_decode_app(MJpegDecodeContext *s)
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
#define avpriv_request_sample(...)
Structure to hold side data for an AVFrame.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
const FF_VISIBILITY_PUSH_HIDDEN uint8_t ff_mjpeg_bits_dc_luminance[]
int ff_mjpeg_build_vlc(VLC *vlc, const uint8_t *bits_table, const uint8_t *val_table, int is_ac, void *logctx)
This structure stores compressed data.
@ AV_OPT_TYPE_BOOL
Underlying C type is int.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
int av_dict_copy(AVDictionary **dst, const AVDictionary *src, int flags)
Copy entries from one AVDictionary struct into another.
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define HWACCEL_VAAPI(codec)
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define flags(name, subs,...)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
static const SheerTable rgb[2]
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
Stereo 3D type: this structure describes how two videos are packed within a single video surface,...
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
#define AV_PROFILE_MJPEG_HUFFMAN_PROGRESSIVE_DCT
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_RB24
#define PREDICT(ret, topleft, top, left, predictor)
static int return_frame(AVFilterContext *ctx, int is_second)
static void BS_FUNC() skip(BSCTX *bc, unsigned int n)
Skip n bits in the buffer.
#define av_fourcc2str(fourcc)