Go to the documentation of this file.
34 #include "config_components.h"
82 #define QUANT_BIAS_SHIFT 8
84 #define QMAT_SHIFT_MMX 16
92 int16_t *
block,
int n,
113 uint16_t (*
qmat16)[2][64],
114 const uint16_t *quant_matrix,
115 int bias,
int qmin,
int qmax,
int intra)
126 else qscale2 =
qscale << 1;
133 for (
i = 0;
i < 64;
i++) {
134 const int j =
s->idsp.idct_permutation[
i];
145 for (
i = 0;
i < 64;
i++) {
146 const int j =
s->idsp.idct_permutation[
i];
157 for (
i = 0;
i < 64;
i++) {
158 const int j =
s->idsp.idct_permutation[
i];
179 for (
i = intra;
i < 64;
i++) {
191 "Warning, QMAT_SHIFT is larger than %d, overflows possible\n",
198 if (
s->q_scale_type == 1 && 0) {
200 int bestdiff=INT_MAX;
208 if (
diff < bestdiff) {
217 s->qscale =
av_clip(
s->qscale,
s->avctx->qmin,
s->vbv_ignore_qmax ? 31 :
s->avctx->qmax);
230 for (
i = 0;
i < 64;
i++) {
242 int8_t *
const qscale_table =
s->cur_pic.qscale_table;
245 for (
i = 0;
i <
s->mb_num;
i++) {
246 unsigned int lam =
s->lambda_table[
s->mb_index2xy[
i]];
248 qscale_table[
s->mb_index2xy[
i]] =
av_clip(qp,
s->avctx->qmin,
256 #define COPY(a) dst->a= src->a
271 for (
int i = -16;
i < 16;
i++)
290 s->input_picture_number = 0;
291 s->picture_in_gop_number = 0;
305 if (
s->avctx->trellis)
322 s->frame_skip_cmp_fn = me_cmp[1];
327 if (!me_cmp[0] || !me_cmp[4])
329 s->ildct_cmp[0] = me_cmp[0];
330 s->ildct_cmp[1] = me_cmp[4];
335 s->sse_cmp[0] = mecc.
sse[0];
336 s->sse_cmp[1] = mecc.
sse[1];
337 s->sad_cmp[0] = mecc.
sad[0];
338 s->sad_cmp[1] = mecc.
sad[1];
340 s->n_sse_cmp[0] = mecc.
nsse[0];
341 s->n_sse_cmp[1] = mecc.
nsse[1];
343 s->n_sse_cmp[0] = mecc.
sse[0];
344 s->n_sse_cmp[1] = mecc.
sse[1];
356 int mb_array_size, mv_table_size;
384 "keyframe interval too large!, reducing it from %d to %d\n",
396 "max b frames must be 0 or positive for mpegvideo based encoders\n");
407 s->rtp_mode = !!
s->rtp_payload_size;
411 if (
s->intra_dc_precision < 0) {
412 s->intra_dc_precision += 8;
413 }
else if (
s->intra_dc_precision >= 8)
414 s->intra_dc_precision -= 8;
416 if (
s->intra_dc_precision < 0) {
418 "intra dc precision must be positive, note some applications use"
419 " 0 and some 8 as base meaning 8bit, the value must not be smaller than that\n");
429 if (
s->gop_size <= 1) {
483 "Warning min_rate > 0 but min_rate != max_rate isn't recommended!\n");
500 "impossible bitrate constraints, this will fail\n");
510 if (!
s->fixed_qscale &&
516 if (nbt <= INT_MAX) {
529 "Warning vbv_delay will be set to 0xFFFF (=VBR) as the "
530 "specified vbv buffer is too large for the given bitrate!\n");
542 "OBMC is only supported with simple mb decision\n");
557 "Invalid pixel aspect ratio %i/%i, limit is 255/255 reducing\n",
610 if (
s->scenechange_threshold < 1000000000 &&
613 "closed gop with scene change detection are not supported yet, "
614 "set threshold to 1000000000\n");
622 "low delay forcing is only available for mpeg2, "
623 "set strict_std_compliance to 'unofficial' or lower in order to allow it\n");
626 if (
s->max_b_frames != 0) {
628 "B-frames cannot be used with low delay\n");
633 if (
s->q_scale_type == 1) {
636 "non linear quant only supports qmax <= 28 currently\n");
649 "notice: b_frame_strategy only affects the first pass\n");
650 s->b_frame_strategy = 0;
664 s->inter_quant_bias = 0;
666 s->intra_quant_bias = 0;
681 "timebase %d/%d not supported by MPEG 4 standard, "
682 "the maximum admitted value for the timebase denominator "
690 #if CONFIG_MPEG1VIDEO_ENCODER || CONFIG_MPEG2VIDEO_ENCODER
697 avctx->
delay =
s->low_delay ? 0 : (
s->max_b_frames + 1);
701 #if CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER
715 if (!CONFIG_SPEEDHQ_ENCODER)
723 if (!CONFIG_H261_ENCODER)
734 if (!CONFIG_H263_ENCODER)
737 s->width,
s->height) == 8) {
739 "The specified picture size of %dx%d is not valid for "
740 "the H.263 codec.\nValid sizes are 128x96, 176x144, "
741 "352x288, 704x576, and 1408x1152. "
742 "Try H.263+.\n",
s->width,
s->height);
754 s->modified_quant =
s->h263_aic;
756 s->unrestricted_mv =
s->obmc ||
s->loop_filter ||
s->umvplus;
757 s->flipflop_rounding = 1;
767 s->unrestricted_mv = 1;
781 s->modified_quant = 1;
785 s->unrestricted_mv = 0;
790 s->unrestricted_mv = 1;
791 s->flipflop_rounding = 1;
792 s->low_delay =
s->max_b_frames ? 0 : 1;
793 avctx->
delay =
s->low_delay ? 0 : (
s->max_b_frames + 1);
798 s->unrestricted_mv = 1;
806 s->unrestricted_mv = 1;
808 s->flipflop_rounding = 1;
815 s->unrestricted_mv = 1;
817 s->flipflop_rounding = 1;
824 s->unrestricted_mv = 1;
826 s->flipflop_rounding = 1;
838 s->progressive_frame =
843 if (
s->lmin >
s->lmax) {
875 mv_table_size = (
s->mb_height + 2) *
s->mb_stride + 1;
883 s->p_mv_table =
s->p_mv_table_base +
s->mb_stride + 1;
884 s->b_forw_mv_table =
s->b_forw_mv_table_base +
s->mb_stride + 1;
885 s->b_back_mv_table =
s->b_back_mv_table_base +
s->mb_stride + 1;
886 s->b_bidir_forw_mv_table =
s->b_bidir_forw_mv_table_base +
s->mb_stride + 1;
887 s->b_bidir_back_mv_table =
s->b_bidir_back_mv_table_base +
s->mb_stride + 1;
888 s->b_direct_mv_table =
s->b_direct_mv_table_base +
s->mb_stride + 1;
891 mb_array_size =
s->mb_stride *
s->mb_height;
901 #define ALLOCZ_ARRAYS(p, mult, numb) ((p) = av_calloc(numb, mult * sizeof(*(p))))
906 if (!(tmp1 =
ALLOCZ_ARRAYS(
s->b_field_mv_table_base, 8, mv_table_size)) ||
907 !(tmp2 =
ALLOCZ_ARRAYS(
s->b_field_select_table[0][0], 2 * 4, mv_table_size)) ||
911 s->p_field_select_table[1] =
s->p_field_select_table[0] + 2 * mv_table_size;
912 tmp1 +=
s->mb_stride + 1;
914 for (
int i = 0;
i < 2;
i++) {
915 for (
int j = 0; j < 2; j++) {
916 for (
int k = 0; k < 2; k++) {
917 s->b_field_mv_table[
i][j][k] = tmp1;
918 tmp1 += mv_table_size;
920 s->b_field_select_table[
i][j] = tmp2;
921 tmp2 += 2 * mv_table_size;
926 if (
s->noise_reduction) {
934 s->dct_unquantize_intra =
s->dct_unquantize_mpeg2_intra;
935 s->dct_unquantize_inter =
s->dct_unquantize_mpeg2_inter;
937 s->dct_unquantize_intra =
s->dct_unquantize_h263_intra;
938 s->dct_unquantize_inter =
s->dct_unquantize_h263_inter;
940 s->dct_unquantize_intra =
s->dct_unquantize_mpeg1_intra;
941 s->dct_unquantize_inter =
s->dct_unquantize_mpeg1_inter;
944 if ((CONFIG_H263P_ENCODER || CONFIG_RV20_ENCODER) &&
s->modified_quant)
947 if (
s->slice_context_count > 1) {
951 s->h263_slice_structured = 1;
954 if (CONFIG_H263_ENCODER &&
s->out_format ==
FMT_H263) {
956 #if CONFIG_MSMPEG4ENC
963 for (
i = 0;
i < 64;
i++) {
964 int j =
s->idsp.idct_permutation[
i];
977 s->chroma_intra_matrix[j] =
1001 if (
s->b_frame_strategy == 2) {
1002 for (
i = 0;
i <
s->max_b_frames + 2;
i++) {
1004 if (!
s->tmp_frames[
i])
1008 s->tmp_frames[
i]->width =
s->width >>
s->brd_scale;
1009 s->tmp_frames[
i]->height =
s->height >>
s->brd_scale;
1038 if (
s->input_picture &&
s->reordered_input_picture) {
1054 av_freep(&
s->b_bidir_forw_mv_table_base);
1055 av_freep(&
s->b_bidir_back_mv_table_base);
1058 av_freep(&
s->b_field_select_table[0][0]);
1067 if(
s->q_chroma_intra_matrix !=
s->q_intra_matrix )
av_freep(&
s->q_chroma_intra_matrix);
1068 if(
s->q_chroma_intra_matrix16 !=
s->q_intra_matrix16)
av_freep(&
s->q_chroma_intra_matrix16);
1069 s->q_chroma_intra_matrix=
NULL;
1070 s->q_chroma_intra_matrix16=
NULL;
1085 #define IS_ENCODER 1
1093 for (
int i = 0;
i < 6;
i++) {
1094 for (
int j = 0; j < 64; j++) {
1096 block[
i][
s->idsp.idct_permutation[j]]);
1110 for (y = 0; y < 16; y++) {
1111 for (x = 0; x < 16; x++) {
1126 h =
s->height & ~15;
1128 for (y = 0; y <
h; y += 16) {
1129 for (x = 0; x <
w; x += 16) {
1136 acc += sae + 500 < sad;
1162 for (
int i = 0;
f->data[
i];
i++) {
1182 int display_picture_number = 0,
ret;
1183 int encoding_delay =
s->max_b_frames ?
s->max_b_frames
1184 : (
s->low_delay ? 0 : 1);
1185 int flush_offset = 1;
1192 display_picture_number =
s->input_picture_number++;
1196 int64_t last =
s->user_specified_pts;
1200 "Invalid pts (%"PRId64
") <= last (%"PRId64
")\n",
1205 if (!
s->low_delay && display_picture_number == 1)
1206 s->dts_delta =
pts - last;
1208 s->user_specified_pts =
pts;
1211 s->user_specified_pts =
1212 pts =
s->user_specified_pts + 1;
1214 "Warning: AVFrame.pts=? trying to guess (%"PRId64
")\n",
1217 pts = display_picture_number;
1221 if (pic_arg->
linesize[0] !=
s->linesize ||
1222 pic_arg->
linesize[1] !=
s->uvlinesize ||
1225 if ((
s->width & 15) || (
s->height & 15))
1233 pic_arg->
linesize[1],
s->linesize,
s->uvlinesize);
1248 for (
int i = 0;
i < 3;
i++) {
1249 ptrdiff_t src_stride = pic_arg->
linesize[
i];
1250 ptrdiff_t dst_stride =
i ?
s->uvlinesize :
s->linesize;
1251 int h_shift =
i ?
s->chroma_x_shift : 0;
1252 int v_shift =
i ?
s->chroma_y_shift : 0;
1255 const uint8_t *
src = pic_arg->
data[
i];
1260 && !
s->progressive_sequence
1261 &&
FFALIGN(
s->height, 32) -
s->height > 16)
1264 if (!
s->avctx->rc_buffer_size)
1267 if (src_stride == dst_stride)
1268 memcpy(
dst,
src, src_stride *
h - src_stride +
w);
1271 uint8_t *dst2 =
dst;
1273 memcpy(dst2,
src,
w);
1278 if ((
s->width & 15) || (
s->height & (vpad-1))) {
1279 s->mpvencdsp.draw_edges(
dst, dst_stride,
1291 }
else if (!
s->reordered_input_picture[1]) {
1297 for (flush_offset = 0; flush_offset < encoding_delay + 1; flush_offset++)
1298 if (
s->input_picture[flush_offset])
1301 encoding_delay -= flush_offset - 1;
1306 s->input_picture[
i - flush_offset] =
s->input_picture[
i];
1308 s->input_picture[
i] =
NULL;
1310 s->input_picture[encoding_delay] = pic;
1324 for (plane = 0; plane < 3; plane++) {
1326 const int bw = plane ? 1 : 2;
1327 for (y = 0; y <
s->mb_height * bw; y++) {
1328 for (x = 0; x <
s->mb_width * bw; x++) {
1329 int off = p->
shared ? 0 : 16;
1330 const uint8_t *dptr = p->
f->
data[plane] + 8 * (x + y *
stride) + off;
1331 const uint8_t *rptr =
ref->f->data[plane] + 8 * (x + y *
stride);
1332 int v =
s->frame_skip_cmp_fn(
s, dptr, rptr,
stride, 8);
1334 switch (
FFABS(
s->frame_skip_exp)) {
1335 case 0: score =
FFMAX(score, v);
break;
1336 case 1: score +=
FFABS(v);
break;
1337 case 2: score64 += v * (
int64_t)v;
break;
1348 if (
s->frame_skip_exp < 0)
1349 score64 = pow(score64 / (
double)(
s->mb_width *
s->mb_height),
1350 -1.0/
s->frame_skip_exp);
1354 if (score64 < ((
s->frame_skip_factor * (
int64_t)
s->lambda) >> 8))
1383 const int scale =
s->brd_scale;
1388 int best_b_count = -1;
1402 b_lambda = p_lambda;
1406 for (
i = 0;
i <
s->max_b_frames + 2;
i++) {
1407 const MPVPicture *pre_input_ptr =
i ?
s->input_picture[
i - 1] :
1410 if (pre_input_ptr) {
1411 const uint8_t *
data[4];
1414 if (!pre_input_ptr->
shared &&
i) {
1420 s->mpvencdsp.shrink[
scale](
s->tmp_frames[
i]->data[0],
1421 s->tmp_frames[
i]->linesize[0],
1425 s->mpvencdsp.shrink[
scale](
s->tmp_frames[
i]->data[1],
1426 s->tmp_frames[
i]->linesize[1],
1430 s->mpvencdsp.shrink[
scale](
s->tmp_frames[
i]->data[2],
1431 s->tmp_frames[
i]->linesize[2],
1438 for (j = 0; j <
s->max_b_frames + 1; j++) {
1442 if (!
s->input_picture[j])
1455 c->mb_decision =
s->avctx->mb_decision;
1456 c->me_cmp =
s->avctx->me_cmp;
1457 c->mb_cmp =
s->avctx->mb_cmp;
1458 c->me_sub_cmp =
s->avctx->me_sub_cmp;
1460 c->time_base =
s->avctx->time_base;
1461 c->max_b_frames =
s->max_b_frames;
1479 for (
i = 0;
i <
s->max_b_frames + 1;
i++) {
1480 int is_p =
i % (j + 1) == j ||
i ==
s->max_b_frames;
1482 s->tmp_frames[
i + 1]->pict_type = is_p ?
1484 s->tmp_frames[
i + 1]->quality = is_p ? p_lambda : b_lambda;
1503 rd +=
c->error[0] +
c->error[1] +
c->error[2];
1521 return best_b_count;
1535 if (
s->reordered_input_picture[0] || !
s->input_picture[0])
1539 if (
s->frame_skip_threshold ||
s->frame_skip_factor) {
1540 if (
s->picture_in_gop_number <
s->gop_size &&
1553 !
s->next_pic.ptr ||
s->intra_only) {
1554 s->reordered_input_picture[0] =
s->input_picture[0];
1555 s->input_picture[0] =
NULL;
1557 s->reordered_input_picture[0]->coded_picture_number =
1558 s->coded_picture_number++;
1563 for (
int i = 0;
i <
s->max_b_frames + 1;
i++) {
1564 int pict_num =
s->input_picture[0]->display_picture_number +
i;
1566 if (pict_num >=
s->rc_context.num_entries)
1568 if (!
s->input_picture[
i]) {
1573 s->input_picture[
i]->f->pict_type =
1574 s->rc_context.entry[pict_num].new_pict_type;
1578 if (
s->b_frame_strategy == 0) {
1579 b_frames =
s->max_b_frames;
1580 while (b_frames && !
s->input_picture[b_frames])
1582 }
else if (
s->b_frame_strategy == 1) {
1584 for (
i = 1;
i <
s->max_b_frames + 1;
i++) {
1585 if (
s->input_picture[
i] &&
1586 s->input_picture[
i]->b_frame_score == 0) {
1587 s->input_picture[
i]->b_frame_score =
1589 s->input_picture[
i ]->f->data[0],
1590 s->input_picture[
i - 1]->f->data[0],
1594 for (
i = 0;
i <
s->max_b_frames + 1;
i++) {
1595 if (!
s->input_picture[
i] ||
1596 s->input_picture[
i]->b_frame_score - 1 >
1597 s->mb_num /
s->b_sensitivity)
1601 b_frames =
FFMAX(0,
i - 1);
1604 for (
i = 0;
i < b_frames + 1;
i++) {
1605 s->input_picture[
i]->b_frame_score = 0;
1607 }
else if (
s->b_frame_strategy == 2) {
1617 for (
int i = b_frames - 1;
i >= 0;
i--) {
1618 int type =
s->input_picture[
i]->f->pict_type;
1623 b_frames ==
s->max_b_frames) {
1625 "warning, too many B-frames in a row\n");
1628 if (
s->picture_in_gop_number + b_frames >=
s->gop_size) {
1630 s->gop_size >
s->picture_in_gop_number) {
1631 b_frames =
s->gop_size -
s->picture_in_gop_number - 1;
1643 s->reordered_input_picture[0] =
s->input_picture[b_frames];
1644 s->input_picture[b_frames] =
NULL;
1647 s->reordered_input_picture[0]->coded_picture_number =
1648 s->coded_picture_number++;
1649 for (
int i = 0;
i < b_frames;
i++) {
1650 s->reordered_input_picture[
i + 1] =
s->input_picture[
i];
1651 s->input_picture[
i] =
NULL;
1652 s->reordered_input_picture[
i + 1]->f->pict_type =
1654 s->reordered_input_picture[
i + 1]->coded_picture_number =
1655 s->coded_picture_number++;
1669 s->reordered_input_picture[
i - 1] =
s->reordered_input_picture[
i];
1679 if (
s->reordered_input_picture[0]) {
1680 s->reordered_input_picture[0]->reference =
1683 if (
s->reordered_input_picture[0]->shared ||
s->avctx->rc_buffer_size) {
1697 if (
s->new_pic->data[
i])
1701 s->cur_pic.ptr =
s->reordered_input_picture[0];
1702 s->reordered_input_picture[0] =
NULL;
1703 av_assert1(
s->mb_width ==
s->buffer_pools.alloc_mb_width);
1704 av_assert1(
s->mb_height ==
s->buffer_pools.alloc_mb_height);
1705 av_assert1(
s->mb_stride ==
s->buffer_pools.alloc_mb_stride);
1707 &
s->sc, &
s->buffer_pools,
s->mb_height);
1712 s->picture_number =
s->cur_pic.ptr->display_picture_number;
1723 if (
s->unrestricted_mv &&
1724 s->cur_pic.reference &&
1726 int hshift =
s->chroma_x_shift;
1727 int vshift =
s->chroma_y_shift;
1728 s->mpvencdsp.draw_edges(
s->cur_pic.data[0],
1729 s->cur_pic.linesize[0],
1730 s->h_edge_pos,
s->v_edge_pos,
1733 s->mpvencdsp.draw_edges(
s->cur_pic.data[1],
1734 s->cur_pic.linesize[1],
1735 s->h_edge_pos >> hshift,
1736 s->v_edge_pos >> vshift,
1740 s->mpvencdsp.draw_edges(
s->cur_pic.data[2],
1741 s->cur_pic.linesize[2],
1742 s->h_edge_pos >> hshift,
1743 s->v_edge_pos >> vshift,
1751 s->last_pict_type =
s->pict_type;
1752 s->last_lambda_for [
s->pict_type] =
s->cur_pic.ptr->f->quality;
1754 s->last_non_b_pict_type =
s->pict_type;
1761 for (intra = 0; intra < 2; intra++) {
1762 if (
s->dct_count[intra] > (1 << 16)) {
1763 for (
i = 0;
i < 64;
i++) {
1764 s->dct_error_sum[intra][
i] >>= 1;
1766 s->dct_count[intra] >>= 1;
1769 for (
i = 0;
i < 64;
i++) {
1770 s->dct_offset[intra][
i] = (
s->noise_reduction *
1771 s->dct_count[intra] +
1772 s->dct_error_sum[intra][
i] / 2) /
1773 (
s->dct_error_sum[intra][
i] + 1);
1780 s->cur_pic.ptr->f->pict_type =
s->pict_type;
1787 if (
s->dct_error_sum) {
1794 const AVFrame *pic_arg,
int *got_packet)
1797 int stuffing_count,
ret;
1798 int context_count =
s->slice_context_count;
1802 s->vbv_ignore_qmax = 0;
1804 s->picture_in_gop_number++;
1814 if (
s->new_pic->data[0]) {
1815 int growing_buffer = context_count == 1 && !
s->data_partitioning;
1816 size_t pkt_size = 10000 +
s->mb_width *
s->mb_height *
1829 s->mb_width*
s->mb_height*12);
1830 if (!
s->mb_info_ptr)
1832 s->prev_mb_info =
s->last_mb_info =
s->mb_info_size = 0;
1835 s->pict_type =
s->new_pic->pict_type;
1840 if (growing_buffer) {
1850 if ((CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER) &&
s->out_format ==
FMT_MJPEG)
1860 s->lambda <
s->lmax) {
1861 s->next_lambda =
FFMAX(
s->lambda + min_step,
s->lambda *
1862 (
s->qscale + 1) /
s->qscale);
1863 if (
s->adaptive_quant) {
1865 for (
i = 0;
i <
s->mb_height *
s->mb_stride;
i++)
1866 s->lambda_table[
i] =
1867 FFMAX(
s->lambda_table[
i] + min_step,
1868 s->lambda_table[
i] * (
s->qscale + 1) /
1874 s->no_rounding ^=
s->flipflop_rounding;
1877 s->time_base =
s->last_time_base;
1878 s->last_non_b_time =
s->time -
s->pp_time;
1880 s->vbv_ignore_qmax = 1;
1900 s->misc_bits +
s->i_tex_bits +
1906 s->stuffing_bits = 8*stuffing_count;
1907 if (stuffing_count) {
1913 switch (
s->codec_id) {
1916 while (stuffing_count--) {
1923 stuffing_count -= 4;
1924 while (stuffing_count--) {
1930 s->stuffing_bits = 0;
1948 int minbits =
s->frame_bits - 8 *
1949 (
s->vbv_delay_pos - 1);
1950 double bits =
s->rc_context.buffer_index + minbits - inbits;
1951 uint8_t *
const vbv_delay_ptr =
s->pb.buf +
s->vbv_delay_pos;
1955 "Internal error, negative bits\n");
1967 vbv_delay_ptr[0] &= 0xF8;
1970 vbv_delay_ptr[2] &= 0x07;
1979 (uint8_t*)props, props_size);
1985 s->total_bits +=
s->frame_bits;
1987 pkt->
pts =
s->cur_pic.ptr->f->pts;
1990 if (!
s->cur_pic.ptr->coded_picture_number)
2023 int n,
int threshold)
2025 static const char tab[64] = {
2026 3, 2, 2, 1, 1, 1, 1, 1,
2027 1, 1, 1, 1, 1, 1, 1, 1,
2028 1, 1, 1, 1, 1, 1, 1, 1,
2029 0, 0, 0, 0, 0, 0, 0, 0,
2030 0, 0, 0, 0, 0, 0, 0, 0,
2031 0, 0, 0, 0, 0, 0, 0, 0,
2032 0, 0, 0, 0, 0, 0, 0, 0,
2033 0, 0, 0, 0, 0, 0, 0, 0
2038 int16_t *
block =
s->block[n];
2039 const int last_index =
s->block_last_index[n];
2042 if (threshold < 0) {
2044 threshold = -threshold;
2049 if (last_index <= skip_dc - 1)
2052 for (
i = 0;
i <= last_index;
i++) {
2053 const int j =
s->intra_scantable.permutated[
i];
2056 if (skip_dc &&
i == 0)
2060 }
else if (
level > 1) {
2066 if (score >= threshold)
2068 for (
i = skip_dc;
i <= last_index;
i++) {
2069 const int j =
s->intra_scantable.permutated[
i];
2073 s->block_last_index[n] = 0;
2075 s->block_last_index[n] = -1;
2082 const int maxlevel =
s->max_qcoeff;
2083 const int minlevel =
s->min_qcoeff;
2091 for (;
i <= last_index;
i++) {
2092 const int j =
s->intra_scantable.permutated[
i];
2095 if (
level > maxlevel) {
2098 }
else if (
level < minlevel) {
2108 "warning, clipping %d dct coefficients to %d..%d\n",
2116 for (y = 0; y < 8; y++) {
2117 for (x = 0; x < 8; x++) {
2123 for (y2 =
FFMAX(y - 1, 0); y2 <
FFMIN(8, y + 2); y2++) {
2124 for (x2=
FFMAX(x - 1, 0); x2 <
FFMIN(8, x + 2); x2++) {
2125 int v = ptr[x2 + y2 *
stride];
2137 int motion_x,
int motion_y,
2138 int mb_block_height,
2147 #define INTERLACED_DCT(s) ((chroma_format == CHROMA_420 || chroma_format == CHROMA_422) && \
2148 (s)->avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT)
2150 int16_t orig[12][64];
2151 const int mb_x =
s->mb_x;
2152 const int mb_y =
s->mb_y;
2156 int uv_dct_offset =
s->uvlinesize * 8;
2157 const uint8_t *ptr_y, *ptr_cb, *ptr_cr;
2158 ptrdiff_t wrap_y, wrap_c;
2160 for (
i = 0;
i < mb_block_count;
i++)
2161 skip_dct[
i] =
s->skipdct;
2163 if (
s->adaptive_quant) {
2164 const int last_qp =
s->qscale;
2165 const int mb_xy =
mb_x +
mb_y *
s->mb_stride;
2167 s->lambda =
s->lambda_table[mb_xy];
2172 s->dquant =
s->cur_pic.qscale_table[mb_xy] - last_qp;
2193 wrap_y =
s->linesize;
2194 wrap_c =
s->uvlinesize;
2195 ptr_y =
s->new_pic->data[0] +
2197 ptr_cb =
s->new_pic->data[1] +
2198 (
mb_y * mb_block_height * wrap_c) +
mb_x * mb_block_width;
2199 ptr_cr =
s->new_pic->data[2] +
2200 (
mb_y * mb_block_height * wrap_c) +
mb_x * mb_block_width;
2203 uint8_t *ebuf =
s->sc.edge_emu_buffer + 38 * wrap_y;
2206 s->vdsp.emulated_edge_mc(ebuf, ptr_y,
2209 s->width,
s->height);
2211 s->vdsp.emulated_edge_mc(ebuf + 16 * wrap_y, ptr_cb,
2213 mb_block_width, mb_block_height,
2214 mb_x * mb_block_width,
mb_y * mb_block_height,
2216 ptr_cb = ebuf + 16 * wrap_y;
2217 s->vdsp.emulated_edge_mc(ebuf + 16 * wrap_y + 16, ptr_cr,
2219 mb_block_width, mb_block_height,
2220 mb_x * mb_block_width,
mb_y * mb_block_height,
2222 ptr_cr = ebuf + 16 * wrap_y + 16;
2227 int progressive_score, interlaced_score;
2229 s->interlaced_dct = 0;
2230 progressive_score =
s->ildct_cmp[1](
s, ptr_y,
NULL, wrap_y, 8) +
2231 s->ildct_cmp[1](
s, ptr_y + wrap_y * 8,
2232 NULL, wrap_y, 8) - 400;
2234 if (progressive_score > 0) {
2235 interlaced_score =
s->ildct_cmp[1](
s, ptr_y,
2236 NULL, wrap_y * 2, 8) +
2237 s->ildct_cmp[1](
s, ptr_y + wrap_y,
2238 NULL, wrap_y * 2, 8);
2239 if (progressive_score > interlaced_score) {
2240 s->interlaced_dct = 1;
2243 uv_dct_offset = wrap_c;
2252 s->pdsp.get_pixels(
s->block[0], ptr_y, wrap_y);
2253 s->pdsp.get_pixels(
s->block[1], ptr_y + 8, wrap_y);
2254 s->pdsp.get_pixels(
s->block[2], ptr_y +
dct_offset, wrap_y);
2255 s->pdsp.get_pixels(
s->block[3], ptr_y +
dct_offset + 8, wrap_y);
2261 s->pdsp.get_pixels(
s->block[4], ptr_cb, wrap_c);
2262 s->pdsp.get_pixels(
s->block[5], ptr_cr, wrap_c);
2264 s->pdsp.get_pixels(
s->block[6], ptr_cb + uv_dct_offset, wrap_c);
2265 s->pdsp.get_pixels(
s->block[7], ptr_cr + uv_dct_offset, wrap_c);
2267 s->pdsp.get_pixels(
s->block[ 6], ptr_cb + 8, wrap_c);
2268 s->pdsp.get_pixels(
s->block[ 7], ptr_cr + 8, wrap_c);
2269 s->pdsp.get_pixels(
s->block[ 8], ptr_cb + uv_dct_offset, wrap_c);
2270 s->pdsp.get_pixels(
s->block[ 9], ptr_cr + uv_dct_offset, wrap_c);
2271 s->pdsp.get_pixels(
s->block[10], ptr_cb + uv_dct_offset + 8, wrap_c);
2272 s->pdsp.get_pixels(
s->block[11], ptr_cr + uv_dct_offset + 8, wrap_c);
2278 uint8_t *dest_y, *dest_cb, *dest_cr;
2280 dest_y =
s->dest[0];
2281 dest_cb =
s->dest[1];
2282 dest_cr =
s->dest[2];
2285 op_pix =
s->hdsp.put_pixels_tab;
2286 op_qpix =
s->qdsp.put_qpel_pixels_tab;
2288 op_pix =
s->hdsp.put_no_rnd_pixels_tab;
2289 op_qpix =
s->qdsp.put_no_rnd_qpel_pixels_tab;
2296 op_pix =
s->hdsp.avg_pixels_tab;
2297 op_qpix =
s->qdsp.avg_qpel_pixels_tab;
2306 int progressive_score, interlaced_score;
2308 s->interlaced_dct = 0;
2309 progressive_score =
s->ildct_cmp[0](
s, dest_y, ptr_y, wrap_y, 8) +
2310 s->ildct_cmp[0](
s, dest_y + wrap_y * 8,
2315 progressive_score -= 400;
2317 if (progressive_score > 0) {
2318 interlaced_score =
s->ildct_cmp[0](
s, dest_y, ptr_y,
2320 s->ildct_cmp[0](
s, dest_y + wrap_y,
2324 if (progressive_score > interlaced_score) {
2325 s->interlaced_dct = 1;
2328 uv_dct_offset = wrap_c;
2336 s->pdsp.diff_pixels(
s->block[0], ptr_y, dest_y, wrap_y);
2337 s->pdsp.diff_pixels(
s->block[1], ptr_y + 8, dest_y + 8, wrap_y);
2340 s->pdsp.diff_pixels(
s->block[3], ptr_y +
dct_offset + 8,
2347 s->pdsp.diff_pixels(
s->block[4], ptr_cb, dest_cb, wrap_c);
2348 s->pdsp.diff_pixels(
s->block[5], ptr_cr, dest_cr, wrap_c);
2350 s->pdsp.diff_pixels(
s->block[6], ptr_cb + uv_dct_offset,
2351 dest_cb + uv_dct_offset, wrap_c);
2352 s->pdsp.diff_pixels(
s->block[7], ptr_cr + uv_dct_offset,
2353 dest_cr + uv_dct_offset, wrap_c);
2357 if (
s->mc_mb_var[
s->mb_stride *
mb_y +
mb_x] < 2 *
s->qscale *
s->qscale) {
2359 if (
s->sad_cmp[1](
NULL, ptr_y, dest_y, wrap_y, 8) < 20 *
s->qscale)
2361 if (
s->sad_cmp[1](
NULL, ptr_y + 8, dest_y + 8, wrap_y, 8) < 20 *
s->qscale)
2364 wrap_y, 8) < 20 *
s->qscale)
2367 wrap_y, 8) < 20 *
s->qscale)
2369 if (
s->sad_cmp[1](
NULL, ptr_cb, dest_cb, wrap_c, 8) < 20 *
s->qscale)
2371 if (
s->sad_cmp[1](
NULL, ptr_cr, dest_cr, wrap_c, 8) < 20 *
s->qscale)
2374 if (
s->sad_cmp[1](
NULL, ptr_cb + uv_dct_offset,
2375 dest_cb + uv_dct_offset,
2376 wrap_c, 8) < 20 *
s->qscale)
2378 if (
s->sad_cmp[1](
NULL, ptr_cr + uv_dct_offset,
2379 dest_cr + uv_dct_offset,
2380 wrap_c, 8) < 20 *
s->qscale)
2386 if (
s->quantizer_noise_shaping) {
2407 memcpy(orig[0],
s->block[0],
sizeof(int16_t) * 64 * mb_block_count);
2413 for (
i = 0;
i < mb_block_count;
i++) {
2416 s->block_last_index[
i] =
s->dct_quantize(
s,
s->block[
i],
i,
s->qscale, &
overflow);
2425 s->block_last_index[
i] = -1;
2427 if (
s->quantizer_noise_shaping) {
2428 for (
i = 0;
i < mb_block_count;
i++) {
2430 s->block_last_index[
i] =
2432 orig[
i],
i,
s->qscale);
2437 if (
s->luma_elim_threshold && !
s->mb_intra)
2438 for (
i = 0;
i < 4;
i++)
2440 if (
s->chroma_elim_threshold && !
s->mb_intra)
2441 for (
i = 4;
i < mb_block_count;
i++)
2445 for (
i = 0;
i < mb_block_count;
i++) {
2446 if (
s->block_last_index[
i] == -1)
2447 s->coded_score[
i] = INT_MAX / 256;
2453 s->block_last_index[4] =
2454 s->block_last_index[5] = 0;
2456 s->block[5][0] = (1024 +
s->c_dc_scale / 2) /
s->c_dc_scale;
2458 for (
i=6;
i<12;
i++) {
2459 s->block_last_index[
i] = 0;
2460 s->block[
i][0] =
s->block[4][0];
2467 for (
i = 0;
i < mb_block_count;
i++) {
2469 if (
s->block_last_index[
i] > 0) {
2470 for (j = 63; j > 0; j--) {
2471 if (
s->block[
i][
s->intra_scantable.permutated[j]])
2474 s->block_last_index[
i] = j;
2480 switch(
s->codec_id){
2483 if (CONFIG_MPEG1VIDEO_ENCODER || CONFIG_MPEG2VIDEO_ENCODER)
2487 if (CONFIG_MPEG4_ENCODER)
2493 if (CONFIG_MSMPEG4ENC)
2497 if (CONFIG_WMV2_ENCODER)
2501 if (CONFIG_H261_ENCODER)
2509 if (CONFIG_H263_ENCODER)
2512 #if CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER
2519 if (CONFIG_SPEEDHQ_ENCODER)
2542 memcpy(d->
last_mv,
s->last_mv, 2*2*2*
sizeof(
int));
2569 memcpy(d->
mv,
s->mv, 2*4*2*
sizeof(
int));
2570 memcpy(d->
last_mv,
s->last_mv, 2*2*2*
sizeof(
int));
2589 if(
s->data_partitioning){
2604 int *dmin,
int *next_block,
int motion_x,
int motion_y)
2607 uint8_t *dest_backup[3];
2611 s->block=
s->blocks[*next_block];
2612 s->pb=
pb[*next_block];
2613 if(
s->data_partitioning){
2614 s->pb2 =
pb2 [*next_block];
2615 s->tex_pb=
tex_pb[*next_block];
2619 memcpy(dest_backup,
s->dest,
sizeof(
s->dest));
2620 s->dest[0] =
s->sc.rd_scratchpad;
2621 s->dest[1] =
s->sc.rd_scratchpad + 16*
s->linesize;
2622 s->dest[2] =
s->sc.rd_scratchpad + 16*
s->linesize + 8;
2629 if(
s->data_partitioning){
2637 score *=
s->lambda2;
2642 memcpy(
s->dest, dest_backup,
sizeof(
s->dest));
2660 else if(
w==8 &&
h==8)
2677 int chroma_mb_w =
w >>
s->chroma_x_shift;
2678 int chroma_mb_h =
h >>
s->chroma_y_shift;
2680 if(
s->mb_x*16 + 16 >
s->width )
w=
s->width -
s->mb_x*16;
2681 if(
s->mb_y*16 + 16 >
s->height)
h=
s->height-
s->mb_y*16;
2684 return s->n_sse_cmp[0](
s,
s->new_pic->data[0] +
s->mb_x * 16 +
s->mb_y *
s->linesize * 16,
2685 s->dest[0],
s->linesize, 16) +
2686 s->n_sse_cmp[1](
s,
s->new_pic->data[1] +
s->mb_x * chroma_mb_w +
s->mb_y *
s->uvlinesize * chroma_mb_h,
2687 s->dest[1],
s->uvlinesize, chroma_mb_h) +
2688 s->n_sse_cmp[1](
s,
s->new_pic->data[2] +
s->mb_x * chroma_mb_w +
s->mb_y *
s->uvlinesize * chroma_mb_h,
2689 s->dest[2],
s->uvlinesize, chroma_mb_h);
2691 return sse(
s,
s->new_pic->data[0] +
s->mb_x * 16 +
s->mb_y *
s->linesize * 16,
2692 s->dest[0],
w,
h,
s->linesize) +
2693 sse(
s,
s->new_pic->data[1] +
s->mb_x * chroma_mb_w +
s->mb_y *
s->uvlinesize * chroma_mb_h,
2694 s->dest[1],
w >>
s->chroma_x_shift,
h >>
s->chroma_y_shift,
s->uvlinesize) +
2695 sse(
s,
s->new_pic->data[2] +
s->mb_x * chroma_mb_w +
s->mb_y *
s->uvlinesize * chroma_mb_h,
2696 s->dest[2],
w >>
s->chroma_x_shift,
h >>
s->chroma_y_shift,
s->uvlinesize);
2704 s->me.dia_size=
s->avctx->pre_dia_size;
2705 s->first_slice_line=1;
2706 for(
s->mb_y=
s->end_mb_y-1;
s->mb_y >=
s->start_mb_y;
s->mb_y--) {
2707 for(
s->mb_x=
s->mb_width-1;
s->mb_x >=0 ;
s->mb_x--) {
2710 s->first_slice_line=0;
2721 s->me.dia_size=
s->avctx->dia_size;
2722 s->first_slice_line=1;
2723 for(
s->mb_y=
s->start_mb_y;
s->mb_y <
s->end_mb_y;
s->mb_y++) {
2726 for(
s->mb_x=0;
s->mb_x <
s->mb_width;
s->mb_x++) {
2727 s->block_index[0]+=2;
2728 s->block_index[1]+=2;
2729 s->block_index[2]+=2;
2730 s->block_index[3]+=2;
2738 s->first_slice_line=0;
2751 const uint8_t *pix =
s->new_pic->data[0] + (yy *
s->linesize) + xx;
2753 int sum =
s->mpvencdsp.pix_sum(pix,
s->linesize);
2755 varc = (
s->mpvencdsp.pix_norm1(pix,
s->linesize) -
2756 (((unsigned) sum * sum) >> 8) + 500 + 128) >> 8;
2758 s->mb_var [
s->mb_stride *
mb_y +
mb_x] = varc;
2759 s->mb_mean[
s->mb_stride *
mb_y +
mb_x] = (sum+128)>>8;
2760 s->me.mb_var_sum_temp += varc;
2768 if(
s->partitioned_frame){
2773 }
else if ((CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER) &&
2776 }
else if (CONFIG_SPEEDHQ_ENCODER &&
s->out_format ==
FMT_SPEEDHQ) {
2788 uint8_t *ptr =
s->mb_info_ptr +
s->mb_info_size - 12;
2790 int mba =
s->mb_x +
s->mb_width * (
s->mb_y %
s->gob_index);
2791 int gobn =
s->mb_y /
s->gob_index;
2793 if (CONFIG_H263_ENCODER)
2795 bytestream_put_le32(&ptr,
offset);
2796 bytestream_put_byte(&ptr,
s->qscale);
2797 bytestream_put_byte(&ptr, gobn);
2798 bytestream_put_le16(&ptr, mba);
2799 bytestream_put_byte(&ptr, pred_x);
2800 bytestream_put_byte(&ptr, pred_y);
2802 bytestream_put_byte(&ptr, 0);
2803 bytestream_put_byte(&ptr, 0);
2811 s->mb_info_size += 12;
2812 s->prev_mb_info =
s->last_mb_info;
2824 if (!
s->mb_info_size)
2825 s->mb_info_size += 12;
2832 &&
s->slice_context_count == 1
2833 &&
s->pb.buf ==
s->avctx->internal->byte_buffer) {
2834 int lastgob_pos =
s->ptr_lastgob -
s->pb.buf;
2836 uint8_t *new_buffer =
NULL;
2837 int new_buffer_size = 0;
2839 if ((
s->avctx->internal->byte_buffer_size + size_increase) >= INT_MAX/8) {
2847 s->avctx->internal->byte_buffer_size + size_increase);
2851 memcpy(new_buffer,
s->avctx->internal->byte_buffer,
s->avctx->internal->byte_buffer_size);
2852 av_free(
s->avctx->internal->byte_buffer);
2853 s->avctx->internal->byte_buffer = new_buffer;
2854 s->avctx->internal->byte_buffer_size = new_buffer_size;
2856 s->ptr_lastgob =
s->pb.buf + lastgob_pos;
2866 int chr_h= 16>>
s->chroma_y_shift;
2890 s->last_dc[
i] = 128 <<
s->intra_dc_precision;
2892 s->encoding_error[
i] = 0;
2895 s->last_dc[0] = 128*8/13;
2896 s->last_dc[1] = 128*8/14;
2897 s->last_dc[2] = 128*8/14;
2900 memset(
s->last_mv, 0,
sizeof(
s->last_mv));
2904 switch(
s->codec_id){
2908 if (CONFIG_H263_ENCODER)
2912 if(CONFIG_MPEG4_ENCODER &&
s->partitioned_frame)
2919 s->first_slice_line = 1;
2920 s->ptr_lastgob =
s->pb.buf;
2921 for (mb_y_order =
s->start_mb_y; mb_y_order < s->
end_mb_y; mb_y_order++) {
2925 if (first_in_slice && mb_y_order !=
s->start_mb_y)
2927 s->last_dc[0] =
s->last_dc[1] =
s->last_dc[2] = 1024 <<
s->intra_dc_precision;
2943 int size_increase =
s->avctx->internal->byte_buffer_size/4
2951 if(
s->data_partitioning){
2965 xy=
s->mb_y*
s->mb_stride +
s->mb_x;
2971 int current_packet_size, is_gob_start;
2974 - (
s->ptr_lastgob -
s->pb.buf);
2976 is_gob_start =
s->rtp_payload_size &&
2977 current_packet_size >=
s->rtp_payload_size &&
2980 if(
s->start_mb_y ==
mb_y &&
mb_y > 0 &&
mb_x==0) is_gob_start=1;
2982 switch(
s->codec_id){
2985 if(!
s->h263_slice_structured)
2986 if(
s->mb_x ||
s->mb_y%
s->gob_index) is_gob_start=0;
2989 if(
s->mb_x==0 &&
s->mb_y!=0) is_gob_start=1;
2991 if(
s->mb_skip_run) is_gob_start=0;
2994 if(
s->mb_x==0 &&
s->mb_y!=0) is_gob_start=1;
3010 if (
s->error_rate &&
s->resync_mb_x +
s->resync_mb_y > 0) {
3012 int d = 100 /
s->error_rate;
3014 current_packet_size=0;
3015 s->pb.buf_ptr=
s->ptr_lastgob;
3020 switch(
s->codec_id){
3022 if (CONFIG_MPEG4_ENCODER) {
3029 if (CONFIG_MPEG1VIDEO_ENCODER || CONFIG_MPEG2VIDEO_ENCODER) {
3036 if (CONFIG_H263_ENCODER) {
3045 s->misc_bits+=
bits -
s->last_bits;
3049 s->ptr_lastgob += current_packet_size;
3050 s->first_slice_line=1;
3051 s->resync_mb_x=
mb_x;
3052 s->resync_mb_y=
mb_y;
3056 if( (
s->resync_mb_x ==
s->mb_x)
3057 &&
s->resync_mb_y+1 ==
s->mb_y){
3058 s->first_slice_line=0;
3068 int pb_bits_count, pb2_bits_count, tex_pb_bits_count;
3074 if(
s->data_partitioning){
3075 backup_s.pb2=
s->pb2;
3076 backup_s.tex_pb=
s->tex_pb;
3083 s->mv[0][0][0] =
s->p_mv_table[xy][0];
3084 s->mv[0][0][1] =
s->p_mv_table[xy][1];
3086 &dmin, &next_block,
s->mv[0][0][0],
s->mv[0][0][1]);
3093 j=
s->field_select[0][
i] =
s->p_field_select_table[
i][xy];
3094 s->mv[0][
i][0] =
s->p_field_mv_table[
i][j][xy][0];
3095 s->mv[0][
i][1] =
s->p_field_mv_table[
i][j][xy][1];
3098 &dmin, &next_block, 0, 0);
3107 &dmin, &next_block,
s->mv[0][0][0],
s->mv[0][0][1]);
3114 s->mv[0][
i][0] =
s->cur_pic.motion_val[0][
s->block_index[
i]][0];
3115 s->mv[0][
i][1] =
s->cur_pic.motion_val[0][
s->block_index[
i]][1];
3118 &dmin, &next_block, 0, 0);
3124 s->mv[0][0][0] =
s->b_forw_mv_table[xy][0];
3125 s->mv[0][0][1] =
s->b_forw_mv_table[xy][1];
3127 &dmin, &next_block,
s->mv[0][0][0],
s->mv[0][0][1]);
3133 s->mv[1][0][0] =
s->b_back_mv_table[xy][0];
3134 s->mv[1][0][1] =
s->b_back_mv_table[xy][1];
3136 &dmin, &next_block,
s->mv[1][0][0],
s->mv[1][0][1]);
3142 s->mv[0][0][0] =
s->b_bidir_forw_mv_table[xy][0];
3143 s->mv[0][0][1] =
s->b_bidir_forw_mv_table[xy][1];
3144 s->mv[1][0][0] =
s->b_bidir_back_mv_table[xy][0];
3145 s->mv[1][0][1] =
s->b_bidir_back_mv_table[xy][1];
3147 &dmin, &next_block, 0, 0);
3154 j=
s->field_select[0][
i] =
s->b_field_select_table[0][
i][xy];
3155 s->mv[0][
i][0] =
s->b_field_mv_table[0][
i][j][xy][0];
3156 s->mv[0][
i][1] =
s->b_field_mv_table[0][
i][j][xy][1];
3159 &dmin, &next_block, 0, 0);
3166 j=
s->field_select[1][
i] =
s->b_field_select_table[1][
i][xy];
3167 s->mv[1][
i][0] =
s->b_field_mv_table[1][
i][j][xy][0];
3168 s->mv[1][
i][1] =
s->b_field_mv_table[1][
i][j][xy][1];
3171 &dmin, &next_block, 0, 0);
3177 for(dir=0; dir<2; dir++){
3179 j=
s->field_select[dir][
i] =
s->b_field_select_table[dir][
i][xy];
3180 s->mv[dir][
i][0] =
s->b_field_mv_table[dir][
i][j][xy][0];
3181 s->mv[dir][
i][1] =
s->b_field_mv_table[dir][
i][j][xy][1];
3185 &dmin, &next_block, 0, 0);
3194 &dmin, &next_block, 0, 0);
3195 if(
s->h263_pred ||
s->h263_aic){
3197 s->mbintra_table[
mb_x +
mb_y*
s->mb_stride]=1;
3205 const int last_qp= backup_s.qscale;
3209 static const int dquant_tab[4]={-1,1,-2,2};
3210 int storecoefs =
s->mb_intra &&
s->dc_val[0];
3218 s->mv[0][0][0] = best_s.
mv[0][0][0];
3219 s->mv[0][0][1] = best_s.
mv[0][0][1];
3220 s->mv[1][0][0] = best_s.
mv[1][0][0];
3221 s->mv[1][0][1] = best_s.
mv[1][0][1];
3224 for(; qpi<4; qpi++){
3225 int dquant= dquant_tab[qpi];
3227 if(qp < s->
avctx->
qmin || qp >
s->avctx->qmax)
3232 dc[
i]=
s->dc_val[0][
s->block_index[
i] ];
3233 memcpy(ac[
i],
s->ac_val[0][
s->block_index[
i]],
sizeof(int16_t)*16);
3238 &dmin, &next_block,
s->mv[mvdir][0][0],
s->mv[mvdir][0][1]);
3242 s->dc_val[0][
s->block_index[
i] ]=
dc[
i];
3243 memcpy(
s->ac_val[0][
s->block_index[
i]], ac[
i],
sizeof(int16_t)*16);
3251 int mx=
s->b_direct_mv_table[xy][0];
3252 int my=
s->b_direct_mv_table[xy][1];
3254 backup_s.dquant = 0;
3259 &dmin, &next_block,
mx,
my);
3262 backup_s.dquant = 0;
3267 &dmin, &next_block, 0, 0);
3272 coded |=
s->block_last_index[
i];
3275 memcpy(
s->mv, best_s.
mv,
sizeof(
s->mv));
3297 &dmin, &next_block,
mx,
my);
3302 s->cur_pic.qscale_table[xy] = best_s.
qscale;
3308 ff_copy_bits(&backup_s.pb, bit_buf[next_block^1], pb_bits_count);
3311 if(
s->data_partitioning){
3314 ff_copy_bits(&backup_s.pb2, bit_buf2[next_block^1], pb2_bits_count);
3315 s->pb2= backup_s.pb2;
3319 ff_copy_bits(&backup_s.tex_pb, bit_buf_tex[next_block^1], tex_pb_bits_count);
3320 s->tex_pb= backup_s.tex_pb;
3324 if (CONFIG_H263_ENCODER &&
3329 s->hdsp.put_pixels_tab[0][0](
s->dest[0],
s->sc.rd_scratchpad ,
s->linesize ,16);
3330 s->hdsp.put_pixels_tab[1][0](
s->dest[1],
s->sc.rd_scratchpad + 16*
s->linesize ,
s->uvlinesize, 8);
3331 s->hdsp.put_pixels_tab[1][0](
s->dest[2],
s->sc.rd_scratchpad + 16*
s->linesize + 8,
s->uvlinesize, 8);
3337 int motion_x = 0, motion_y = 0;
3345 motion_x=
s->mv[0][0][0] = 0;
3346 motion_y=
s->mv[0][0][1] = 0;
3351 motion_x=
s->mv[0][0][0] =
s->p_mv_table[xy][0];
3352 motion_y=
s->mv[0][0][1] =
s->p_mv_table[xy][1];
3359 j=
s->field_select[0][
i] =
s->p_field_select_table[
i][xy];
3360 s->mv[0][
i][0] =
s->p_field_mv_table[
i][j][xy][0];
3361 s->mv[0][
i][1] =
s->p_field_mv_table[
i][j][xy][1];
3369 s->mv[0][
i][0] =
s->cur_pic.motion_val[0][
s->block_index[
i]][0];
3370 s->mv[0][
i][1] =
s->cur_pic.motion_val[0][
s->block_index[
i]][1];
3374 if (CONFIG_MPEG4_ENCODER) {
3377 motion_x=
s->b_direct_mv_table[xy][0];
3378 motion_y=
s->b_direct_mv_table[xy][1];
3383 if (CONFIG_MPEG4_ENCODER) {
3392 s->mv[0][0][0] =
s->b_bidir_forw_mv_table[xy][0];
3393 s->mv[0][0][1] =
s->b_bidir_forw_mv_table[xy][1];
3394 s->mv[1][0][0] =
s->b_bidir_back_mv_table[xy][0];
3395 s->mv[1][0][1] =
s->b_bidir_back_mv_table[xy][1];
3400 motion_x=
s->mv[1][0][0] =
s->b_back_mv_table[xy][0];
3401 motion_y=
s->mv[1][0][1] =
s->b_back_mv_table[xy][1];
3406 motion_x=
s->mv[0][0][0] =
s->b_forw_mv_table[xy][0];
3407 motion_y=
s->mv[0][0][1] =
s->b_forw_mv_table[xy][1];
3414 j=
s->field_select[0][
i] =
s->b_field_select_table[0][
i][xy];
3415 s->mv[0][
i][0] =
s->b_field_mv_table[0][
i][j][xy][0];
3416 s->mv[0][
i][1] =
s->b_field_mv_table[0][
i][j][xy][1];
3424 j=
s->field_select[1][
i] =
s->b_field_select_table[1][
i][xy];
3425 s->mv[1][
i][0] =
s->b_field_mv_table[1][
i][j][xy][0];
3426 s->mv[1][
i][1] =
s->b_field_mv_table[1][
i][j][xy][1];
3433 for(dir=0; dir<2; dir++){
3435 j=
s->field_select[dir][
i] =
s->b_field_select_table[dir][
i][xy];
3436 s->mv[dir][
i][0] =
s->b_field_mv_table[dir][
i][j][xy][0];
3437 s->mv[dir][
i][1] =
s->b_field_mv_table[dir][
i][j][xy][1];
3448 s->last_mv_dir =
s->mv_dir;
3450 if (CONFIG_H263_ENCODER &&
3459 s->p_mv_table[xy][0]=0;
3460 s->p_mv_table[xy][1]=0;
3467 if(
s->mb_x*16 + 16 >
s->width )
w=
s->width -
s->mb_x*16;
3468 if(
s->mb_y*16 + 16 >
s->height)
h=
s->height-
s->mb_y*16;
3470 s->encoding_error[0] +=
sse(
3471 s,
s->new_pic->data[0] +
s->mb_x*16 +
s->mb_y*
s->linesize*16,
3472 s->dest[0],
w,
h,
s->linesize);
3473 s->encoding_error[1] +=
sse(
3474 s,
s->new_pic->data[1] +
s->mb_x*8 +
s->mb_y*
s->uvlinesize*chr_h,
3475 s->dest[1],
w>>1,
h>>
s->chroma_y_shift,
s->uvlinesize);
3476 s->encoding_error[2] +=
sse(
3477 s,
s->new_pic->data[2] +
s->mb_x*8 +
s->mb_y*
s->uvlinesize*chr_h,
3478 s->dest[2],
w>>1,
h>>
s->chroma_y_shift,
s->uvlinesize);
3481 if(CONFIG_H263_ENCODER &&
s->out_format ==
FMT_H263)
3484 ff_dlog(
s->avctx,
"MB %d %d bits\n",
3489 #if CONFIG_MSMPEG4ENC
3501 #define MERGE(field) dst->field += src->field; src->field=0
3522 if (
dst->noise_reduction){
3523 for(
i=0;
i<64;
i++){
3536 if (
s->next_lambda){
3537 s->cur_pic.ptr->f->quality =
s->next_lambda;
3538 if(!dry_run)
s->next_lambda= 0;
3539 }
else if (!
s->fixed_qscale) {
3541 s->cur_pic.ptr->f->quality =
quality;
3542 if (
s->cur_pic.ptr->f->quality < 0)
3546 if(
s->adaptive_quant){
3549 switch(
s->codec_id){
3551 if (CONFIG_MPEG4_ENCODER)
3557 if (CONFIG_H263_ENCODER)
3562 s->lambda=
s->lambda_table[0];
3565 s->lambda =
s->cur_pic.ptr->f->quality;
3573 s->time =
s->cur_pic.ptr->f->pts *
s->avctx->time_base.num;
3576 s->pb_time=
s->pp_time - (
s->last_non_b_time -
s->time);
3579 s->pp_time=
s->time -
s->last_non_b_time;
3580 s->last_non_b_time=
s->time;
3589 int context_count =
s->slice_context_count;
3592 s->me.mb_var_sum_temp =
3593 s->me.mc_mb_var_sum_temp = 0;
3602 s->me.scene_change_score=0;
3607 s->no_rounding =
s->msmpeg4_version >=
MSMP4_V3;
3609 s->no_rounding ^=
s->flipflop_rounding;
3618 s->lambda=
s->last_lambda_for[
s->pict_type];
3620 s->lambda=
s->last_lambda_for[
s->last_non_b_pict_type];
3625 if(
s->q_chroma_intra_matrix !=
s->q_intra_matrix )
av_freep(&
s->q_chroma_intra_matrix);
3626 if(
s->q_chroma_intra_matrix16 !=
s->q_intra_matrix16)
av_freep(&
s->q_chroma_intra_matrix16);
3627 s->q_chroma_intra_matrix =
s->q_intra_matrix;
3628 s->q_chroma_intra_matrix16 =
s->q_intra_matrix16;
3634 for (
int i = 0;
i < context_count;
i++) {
3636 uint8_t *start, *end;
3655 s->lambda = (
s->lambda *
s->me_penalty_compensation + 128) >> 8;
3656 s->lambda2 = (
s->lambda2 * (
int64_t)
s->me_penalty_compensation + 128) >> 8;
3667 for(
i=0;
i<
s->mb_stride*
s->mb_height;
i++)
3670 if(!
s->fixed_qscale){
3672 s->avctx->execute(
s->avctx,
mb_var_thread, &
s->thread_context[0],
NULL, context_count,
sizeof(
void*));
3675 for(
i=1;
i<context_count;
i++){
3678 s->mc_mb_var_sum =
s->me.mc_mb_var_sum_temp;
3679 s->mb_var_sum =
s->me. mb_var_sum_temp;
3682 if (
s->me.scene_change_score >
s->scenechange_threshold &&
3685 for(
i=0;
i<
s->mb_stride*
s->mb_height;
i++)
3689 ff_dlog(
s,
"Scene change detected, encoding as I Frame %"PRId64
" %"PRId64
"\n",
3690 s->mb_var_sum,
s->mc_mb_var_sum);
3731 for(dir=0; dir<2; dir++){
3737 s->b_field_mv_table[dir][
i][j], dir ?
s->b_code :
s->f_code,
type, 1);
3748 if (
s->qscale < 3 &&
s->max_qcoeff <= 128 &&
3757 if (
s->avctx->intra_matrix) {
3759 luma_matrix =
s->avctx->intra_matrix;
3761 if (
s->avctx->chroma_intra_matrix)
3762 chroma_matrix =
s->avctx->chroma_intra_matrix;
3766 int j =
s->idsp.idct_permutation[
i];
3768 s->chroma_intra_matrix[j] =
av_clip_uint8((chroma_matrix[
i] *
s->qscale) >> 3);
3771 s->y_dc_scale_table=
3773 s->chroma_intra_matrix[0] =
3776 s->intra_matrix,
s->intra_quant_bias, 8, 8, 1);
3778 s->chroma_intra_matrix,
s->intra_quant_bias, 8, 8, 1);
3782 static const uint8_t y[32] = {13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13};
3783 static const uint8_t
c[32] = {14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14};
3784 for (
int i = 1;
i < 64;
i++) {
3790 s->y_dc_scale_table = y;
3791 s->c_dc_scale_table =
c;
3792 s->intra_matrix[0] = 13;
3793 s->chroma_intra_matrix[0] = 14;
3795 s->intra_matrix,
s->intra_quant_bias, 8, 8, 1);
3797 s->chroma_intra_matrix,
s->intra_quant_bias, 8, 8, 1);
3807 s->cur_pic.ptr->f->pict_type =
s->pict_type;
3810 s->picture_in_gop_number=0;
3812 s->mb_x =
s->mb_y = 0;
3814 switch(
s->out_format) {
3815 #if CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER
3821 if (CONFIG_SPEEDHQ_ENCODER)
3825 if (CONFIG_H261_ENCODER)
3831 #if CONFIG_MSMPEG4ENC
3835 else if (CONFIG_MPEG4_ENCODER &&
s->h263_pred) {
3848 else if (CONFIG_H263_ENCODER)
3852 if (CONFIG_MPEG1VIDEO_ENCODER || CONFIG_MPEG2VIDEO_ENCODER)
3859 s->header_bits=
bits -
s->last_bits;
3861 for(
i=1;
i<context_count;
i++){
3864 s->avctx->execute(
s->avctx,
encode_thread, &
s->thread_context[0],
NULL, context_count,
sizeof(
void*));
3865 for(
i=1;
i<context_count;
i++){
3866 if (
s->pb.buf_end ==
s->thread_context[
i]->pb.buf)
3875 const int intra=
s->mb_intra;
3878 s->dct_count[intra]++;
3880 for(
i=0;
i<64;
i++){
3885 s->dct_error_sum[intra][
i] +=
level;
3886 level -=
s->dct_offset[intra][
i];
3889 s->dct_error_sum[intra][
i] -=
level;
3890 level +=
s->dct_offset[intra][
i];
3899 int16_t *
block,
int n,
3903 const uint8_t *scantable;
3904 const uint8_t *perm_scantable;
3906 unsigned int threshold1, threshold2;
3918 int coeff_count[64];
3919 int qmul, qadd, start_i, last_non_zero,
i,
dc;
3920 const int esc_length=
s->ac_esc_length;
3921 const uint8_t *length, *last_length;
3927 if(
s->dct_error_sum)
3933 else mpeg2_qscale =
qscale << 1;
3937 scantable=
s->intra_scantable.scantable;
3938 perm_scantable=
s->intra_scantable.permutated;
3955 qmat = n < 4 ?
s->q_intra_matrix[
qscale] :
s->q_chroma_intra_matrix[
qscale];
3956 matrix = n < 4 ?
s->intra_matrix :
s->chroma_intra_matrix;
3960 if (n > 3 &&
s->intra_chroma_ac_vlc_length) {
3961 length =
s->intra_chroma_ac_vlc_length;
3962 last_length=
s->intra_chroma_ac_vlc_last_length;
3964 length =
s->intra_ac_vlc_length;
3965 last_length=
s->intra_ac_vlc_last_length;
3968 scantable=
s->inter_scantable.scantable;
3969 perm_scantable=
s->inter_scantable.permutated;
3972 qmat =
s->q_inter_matrix[
qscale];
3974 length =
s->inter_ac_vlc_length;
3975 last_length=
s->inter_ac_vlc_last_length;
3980 threshold2= (threshold1<<1);
3982 for(
i=63;
i>=start_i;
i--) {
3983 const int j = scantable[
i];
3986 if(((
unsigned)(
level+threshold1))>threshold2){
3992 for(
i=start_i;
i<=last_non_zero;
i++) {
3993 const int j = scantable[
i];
3998 if(((
unsigned)(
level+threshold1))>threshold2){
4021 if(last_non_zero < start_i){
4022 memset(
block + start_i, 0, (64-start_i)*
sizeof(int16_t));
4023 return last_non_zero;
4026 score_tab[start_i]= 0;
4027 survivor[0]= start_i;
4030 for(
i=start_i;
i<=last_non_zero;
i++){
4031 int level_index, j, zero_distortion;
4033 int best_score=256*256*256*120;
4037 zero_distortion= dct_coeff*dct_coeff;
4039 for(level_index=0; level_index < coeff_count[
i]; level_index++){
4048 unquant_coeff= alevel*qmul + qadd;
4050 j =
s->idsp.idct_permutation[scantable[
i]];
4051 unquant_coeff = alevel *
matrix[j] * 8;
4053 j =
s->idsp.idct_permutation[scantable[
i]];
4055 unquant_coeff = (int)( alevel * mpeg2_qscale *
matrix[j]) >> 4;
4056 unquant_coeff = (unquant_coeff - 1) | 1;
4058 unquant_coeff = ((( alevel << 1) + 1) * mpeg2_qscale * ((int)
matrix[j])) >> 5;
4059 unquant_coeff = (unquant_coeff - 1) | 1;
4064 distortion= (unquant_coeff - dct_coeff) * (unquant_coeff - dct_coeff) - zero_distortion;
4066 if((
level&(~127)) == 0){
4067 for(j=survivor_count-1; j>=0; j--){
4068 int run=
i - survivor[j];
4070 score += score_tab[
i-
run];
4072 if(score < best_score){
4075 level_tab[
i+1]=
level-64;
4080 for(j=survivor_count-1; j>=0; j--){
4081 int run=
i - survivor[j];
4083 score += score_tab[
i-
run];
4084 if(score < last_score){
4087 last_level=
level-64;
4093 distortion += esc_length*
lambda;
4094 for(j=survivor_count-1; j>=0; j--){
4095 int run=
i - survivor[j];
4096 int score= distortion + score_tab[
i-
run];
4098 if(score < best_score){
4101 level_tab[
i+1]=
level-64;
4106 for(j=survivor_count-1; j>=0; j--){
4107 int run=
i - survivor[j];
4108 int score= distortion + score_tab[
i-
run];
4109 if(score < last_score){
4112 last_level=
level-64;
4120 score_tab[
i+1]= best_score;
4123 if(last_non_zero <= 27){
4124 for(; survivor_count; survivor_count--){
4125 if(score_tab[ survivor[survivor_count-1] ] <= best_score)
4129 for(; survivor_count; survivor_count--){
4130 if(score_tab[ survivor[survivor_count-1] ] <= best_score +
lambda)
4135 survivor[ survivor_count++ ]=
i+1;
4139 last_score= 256*256*256*120;
4140 for(
i= survivor[0];
i<=last_non_zero + 1;
i++){
4141 int score= score_tab[
i];
4145 if(score < last_score){
4148 last_level= level_tab[
i];
4149 last_run= run_tab[
i];
4154 s->coded_score[n] = last_score;
4157 last_non_zero= last_i - 1;
4158 memset(
block + start_i, 0, (64-start_i)*
sizeof(int16_t));
4160 if(last_non_zero < start_i)
4161 return last_non_zero;
4163 if(last_non_zero == 0 && start_i == 0){
4165 int best_score=
dc *
dc;
4167 for(
i=0;
i<coeff_count[0];
i++){
4170 int unquant_coeff, score, distortion;
4173 unquant_coeff= (alevel*qmul + qadd)>>3;
4175 unquant_coeff = ((( alevel << 1) + 1) * mpeg2_qscale * ((int)
matrix[0])) >> 5;
4176 unquant_coeff = (unquant_coeff - 1) | 1;
4178 unquant_coeff = (unquant_coeff + 4) >> 3;
4179 unquant_coeff<<= 3 + 3;
4181 distortion= (unquant_coeff -
dc) * (unquant_coeff -
dc);
4184 else score= distortion + esc_length*
lambda;
4186 if(score < best_score){
4188 best_level=
level - 64;
4191 block[0]= best_level;
4192 s->coded_score[n] = best_score -
dc*
dc;
4193 if(best_level == 0)
return -1;
4194 else return last_non_zero;
4200 block[ perm_scantable[last_non_zero] ]= last_level;
4203 for(;
i>start_i;
i -= run_tab[
i] + 1){
4204 block[ perm_scantable[
i-1] ]= level_tab[
i];
4207 return last_non_zero;
4222 if(
i==0)
s*= sqrt(0.5);
4223 if(j==0)
s*= sqrt(0.5);
4236 const uint8_t *scantable;
4237 const uint8_t *perm_scantable;
4243 int qmul, qadd, start_i, last_non_zero,
i,
dc;
4244 const uint8_t *length;
4245 const uint8_t *last_length;
4247 int rle_index,
run, q = 1, sum;
4249 if(
basis[0][0] == 0)
4255 scantable=
s->intra_scantable.scantable;
4256 perm_scantable=
s->intra_scantable.permutated;
4274 if (n > 3 &&
s->intra_chroma_ac_vlc_length) {
4275 length =
s->intra_chroma_ac_vlc_length;
4276 last_length=
s->intra_chroma_ac_vlc_last_length;
4278 length =
s->intra_ac_vlc_length;
4279 last_length=
s->intra_ac_vlc_last_length;
4282 scantable=
s->inter_scantable.scantable;
4283 perm_scantable=
s->inter_scantable.permutated;
4286 length =
s->inter_ac_vlc_length;
4287 last_length=
s->inter_ac_vlc_last_length;
4289 last_non_zero =
s->block_last_index[n];
4292 for(
i=0;
i<64;
i++){
4297 for(
i=0;
i<64;
i++){
4303 w= 15 + (48*qns*one +
w/2)/
w;
4316 for(
i=start_i;
i<=last_non_zero;
i++){
4317 int j= perm_scantable[
i];
4324 run_tab[rle_index++]=
run;
4334 int best_score =
s->mpvencdsp.try_8x8basis(rem,
weight,
basis[0], 0);
4337 int run2, best_unquant_change=0, analyze_gradient;
4338 analyze_gradient = last_non_zero > 2 ||
s->quantizer_noise_shaping >= 3;
4340 if(analyze_gradient){
4341 for(
i=0;
i<64;
i++){
4351 int change, old_coeff;
4357 for(change=-1; change<=1; change+=2){
4358 int new_level=
level + change;
4359 int score, new_coeff;
4361 new_coeff= q*new_level;
4362 if(new_coeff >= 2048 || new_coeff < 0)
4365 score =
s->mpvencdsp.try_8x8basis(rem,
weight,
basis[0],
4366 new_coeff - old_coeff);
4367 if(score<best_score){
4370 best_change= change;
4371 best_unquant_change= new_coeff - old_coeff;
4378 run2= run_tab[rle_index++];
4382 for(
i=start_i;
i<64;
i++){
4383 int j= perm_scantable[
i];
4385 int change, old_coeff;
4387 if(
s->quantizer_noise_shaping < 3 &&
i > last_non_zero + 1)
4392 else old_coeff= qmul*
level + qadd;
4393 run2= run_tab[rle_index++];
4400 for(change=-1; change<=1; change+=2){
4401 int new_level=
level + change;
4402 int score, new_coeff, unquant_change;
4409 if(new_level<0) new_coeff= qmul*new_level - qadd;
4410 else new_coeff= qmul*new_level + qadd;
4411 if(new_coeff >= 2048 || new_coeff <= -2048)
4416 if(level < 63 && level > -63){
4417 if(
i < last_non_zero)
4427 if(analyze_gradient){
4428 int g= d1[ scantable[
i] ];
4429 if(
g && (
g^new_level) >= 0)
4433 if(
i < last_non_zero){
4434 int next_i=
i + run2 + 1;
4435 int next_level=
block[ perm_scantable[next_i] ] + 64;
4437 if(next_level&(~127))
4440 if(next_i < last_non_zero)
4460 if(
i < last_non_zero){
4461 int next_i=
i + run2 + 1;
4462 int next_level=
block[ perm_scantable[next_i] ] + 64;
4464 if(next_level&(~127))
4467 if(next_i < last_non_zero)
4486 unquant_change= new_coeff - old_coeff;
4489 score +=
s->mpvencdsp.try_8x8basis(rem,
weight,
basis[j],
4491 if(score<best_score){
4494 best_change= change;
4495 best_unquant_change= unquant_change;
4499 prev_level=
level + 64;
4500 if(prev_level&(~127))
4510 int j= perm_scantable[ best_coeff ];
4512 block[j] += best_change;
4514 if(best_coeff > last_non_zero){
4515 last_non_zero= best_coeff;
4518 for(; last_non_zero>=start_i; last_non_zero--){
4519 if(
block[perm_scantable[last_non_zero]])
4526 for(
i=start_i;
i<=last_non_zero;
i++){
4527 int j= perm_scantable[
i];
4531 run_tab[rle_index++]=
run;
4538 s->mpvencdsp.add_8x8basis(rem,
basis[j], best_unquant_change);
4544 return last_non_zero;
4559 const uint8_t *scantable,
int last)
4570 for (
i = 0;
i <= last;
i++) {
4571 const int j = scantable[
i];
4576 for (
i = 0;
i <= last;
i++) {
4577 const int j = scantable[
i];
4578 const int perm_j = permutation[j];
4584 int16_t *
block,
int n,
4587 int i, j,
level, last_non_zero, q, start_i;
4589 const uint8_t *scantable;
4592 unsigned int threshold1, threshold2;
4596 if(
s->dct_error_sum)
4600 scantable=
s->intra_scantable.scantable;
4615 qmat = n < 4 ?
s->q_intra_matrix[
qscale] :
s->q_chroma_intra_matrix[
qscale];
4618 scantable=
s->inter_scantable.scantable;
4621 qmat =
s->q_inter_matrix[
qscale];
4625 threshold2= (threshold1<<1);
4626 for(
i=63;
i>=start_i;
i--) {
4630 if(((
unsigned)(
level+threshold1))>threshold2){
4637 for(
i=start_i;
i<=last_non_zero;
i++) {
4643 if(((
unsigned)(
level+threshold1))>threshold2){
4661 scantable, last_non_zero);
4663 return last_non_zero;
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
static int encode_frame(AVCodecContext *c, const AVFrame *frame, AVPacket *pkt)
av_cold int ff_mpv_common_init(MpegEncContext *s)
init common structure for both encoder and decoder.
void ff_speedhq_end_slice(MpegEncContext *s)
int ff_encode_reordered_opaque(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame)
Propagate user opaque values from the frame to avctx/pkt as needed.
int mb_skipped
MUST BE SET only during DECODING.
void av_packet_unref(AVPacket *pkt)
Wipe the packet.
static int encode_picture(MpegEncContext *s, const AVPacket *pkt)
uint16_t * mb_type
Table for candidate MB types for encoding (defines in mpegvideoenc.h)
#define CANDIDATE_MB_TYPE_BIDIR
#define MV_TYPE_16X16
1 vector for the whole mb
#define AV_LOG_WARNING
Something somehow does not look correct.
av_cold int ff_speedhq_encode_init(MpegEncContext *s)
const AVClass ff_mpv_enc_class
int data_partitioning
data partitioning flag from header
static void set_frame_distances(MpegEncContext *s)
static int get_bits_diff(MpegEncContext *s)
int avcodec_receive_packet(AVCodecContext *avctx, AVPacket *avpkt)
Read encoded data from the encoder.
unsigned int lambda
Lagrange multiplier used in rate distortion.
#define H263_GOB_HEIGHT(h)
av_cold int ff_h261_encode_init(MpegEncContext *s)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
void ff_mpv_motion(MpegEncContext *s, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int dir, uint8_t *const *ref_picture, const op_pixels_func(*pix_op)[4], const qpel_mc_func(*qpix_op)[16])
void ff_clean_mpeg4_qscales(MpegEncContext *s)
modify mb_type & qscale so that encoding is actually possible in MPEG-4
void ff_mpeg1_encode_mb(MpegEncContext *s, int16_t block[8][64], int motion_x, int motion_y)
int b_code
backward MV resolution for B-frames (MPEG-4)
av_cold int ff_me_init(MotionEstContext *c, AVCodecContext *avctx, const MECmpContext *mecc, int mpvenc)
void ff_mpv_common_defaults(MpegEncContext *s)
Set the given MpegEncContext to common defaults (same for encoding and decoding).
int av_frame_get_buffer(AVFrame *frame, int align)
Allocate new buffer(s) for audio or video data.
int64_t rc_min_rate
minimum bitrate
void ff_fix_long_p_mvs(MpegEncContext *s, int type)
void ff_speedhq_encode_picture_header(MpegEncContext *s)
int ff_wmv2_encode_picture_header(MpegEncContext *s)
#define AVERROR_EOF
End of file.
void ff_h261_encode_picture_header(MpegEncContext *s)
#define AV_CODEC_FLAG_QSCALE
Use fixed qscale.
static int sse_mb(MpegEncContext *s)
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
static int16_t basis[64][64]
uint16_t * intra_matrix
custom intra quantization matrix Must be allocated with the av_malloc() family of functions,...
static const uint8_t mv_bits[2][16][10]
static int estimate_motion_thread(AVCodecContext *c, void *arg)
float lumi_masking
luminance masking (0-> disabled)
static void update_noise_reduction(MpegEncContext *s)
#define MV_DIRECT
bidirectional mode where the difference equals the MV of the last P/S/I-Frame (MPEG-4)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
int partitioned_frame
is current frame partitioned
#define CANDIDATE_MB_TYPE_INTER
uint16_t(* dct_offset)[64]
int ff_update_duplicate_context(MpegEncContext *dst, const MpegEncContext *src)
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
#define INTERLACED_DCT(s)
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
int capabilities
Codec capabilities.
static const int32_t qmat16[MAT_SIZE]
static const int BUF_BITS
void ff_h261_encode_mb(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y)
int av_packet_shrink_side_data(AVPacket *pkt, enum AVPacketSideDataType type, size_t size)
Shrink the already allocated side data buffer.
static int put_bytes_count(const PutBitContext *s, int round_up)
int last_dc[3]
last DC values for MPEG-1
const uint8_t ff_mpeg2_non_linear_qscale[32]
static int prepare_picture(MpegEncContext *s, AVFrame *f, const AVFrame *props_frame)
Allocates new buffers for an AVFrame and copies the properties from another AVFrame.
av_cold int ff_mjpeg_encode_init(MpegEncContext *s)
void ff_clean_intra_table_entries(MpegEncContext *s)
Clean dc, ac for the current non-intra MB.
#define AV_LOG_VERBOSE
Detailed information.
av_cold void ff_pixblockdsp_init(PixblockDSPContext *c, AVCodecContext *avctx)
void ff_init_block_index(MpegEncContext *s)
void ff_msmpeg4_encode_mb(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y)
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
#define FF_MPV_FLAG_SKIP_RD
const uint8_t ff_mpeg12_dc_scale_table[4][32]
struct AVCodecContext * avctx
#define FF_COMPLIANCE_EXPERIMENTAL
Allow nonstandardized experimental things.
av_cold int ff_rate_control_init(MpegEncContext *s)
static double sqr(double in)
#define AV_CODEC_FLAG_PSNR
error[?] variables will be set during encoding.
static int pre_estimate_motion_thread(AVCodecContext *c, void *arg)
static void get_visual_weight(int16_t *weight, const uint8_t *ptr, int stride)
PutBitContext pb
bit output
int mb_decision
macroblock decision mode
int qmax
maximum quantizer
#define AV_CODEC_FLAG_INTERLACED_ME
interlaced motion estimation
void ff_flv_encode_picture_header(MpegEncContext *s)
#define AV_CODEC_FLAG_4MV
4 MV per MB allowed / advanced prediction for H.263.
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
int mb_cmp
macroblock comparison function (not supported yet)
void av_packet_free(AVPacket **pkt)
Free the packet, if the packet is reference counted, it will be unreferenced first.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about quality
int mv[2][4][2]
motion vectors for a macroblock first coordinate : 0 = forward 1 = backward second " : depend...
#define CANDIDATE_MB_TYPE_BACKWARD_I
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int(* sum_abs_dctelem)(const int16_t *block)
int64_t av_gcd(int64_t a, int64_t b)
Compute the greatest common divisor of two integer operands.
#define FF_MPV_COMMON_MOTION_EST_OPTS
uint64_t encoding_error[MPV_MAX_PLANES]
int ff_mpv_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pic_arg, int *got_packet)
static int skip_check(MpegEncContext *s, const MPVPicture *p, const MPVPicture *ref)
#define FF_MPV_COMMON_OPTS
void ff_copy_bits(PutBitContext *pb, const uint8_t *src, int length)
Copy the content of src to the bitstream.
static int estimate_qp(MpegEncContext *s, int dry_run)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t mx
int pict_type
AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ...
int av_packet_add_side_data(AVPacket *pkt, enum AVPacketSideDataType type, uint8_t *data, size_t size)
Wrap an existing array as a packet side data.
int ff_match_2uint16(const uint16_t(*tab)[2], int size, int a, int b)
Return the index into tab at which {a,b} match elements {[0],[1]} of tab.
const struct AVCodec * codec
static void merge_context_after_me(MpegEncContext *dst, MpegEncContext *src)
int16_t * ff_h263_pred_motion(MpegEncContext *s, int block, int dir, int *px, int *py)
static void frame_start(MpegEncContext *s)
av_cold void ff_msmpeg4_encode_init(MpegEncContext *s)
static void ff_refstruct_pool_uninit(FFRefStructPool **poolp)
Mark the pool as being available for freeing.
static const struct twinvq_data tab
av_cold void ff_me_cmp_init(MECmpContext *c, AVCodecContext *avctx)
int flags
AV_CODEC_FLAG_*.
#define CANDIDATE_MB_TYPE_SKIPPED
const h264_weight_func weight
int bit_rate_tolerance
number of bits the bitstream is allowed to diverge from the reference.
#define FF_ALLOC_TYPED_ARRAY(p, nelem)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_CODEC_FLAG_LOW_DELAY
Force low delay.
#define FF_MPV_FLAG_CBP_RD
#define AV_CODEC_FLAG_LOOP_FILTER
loop filter.
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
static void mpv_encode_init_static(void)
static int put_bytes_left(const PutBitContext *s, int round_up)
#define AV_CODEC_FLAG_INTERLACED_DCT
Use interlaced DCT.
#define CANDIDATE_MB_TYPE_DIRECT
int ff_mpv_reallocate_putbitbuffer(MpegEncContext *s, size_t threshold, size_t size_increase)
#define CANDIDATE_MB_TYPE_INTER_I
void ff_mjpeg_encode_mb(MpegEncContext *s, int16_t block[12][64])
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
void ff_mpv_common_end(MpegEncContext *s)
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static void update_mb_info(MpegEncContext *s, int startcode)
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
static uint8_t default_fcode_tab[MAX_MV *2+1]
int ff_mpeg4_set_direct_mv(MpegEncContext *s, int mx, int my)
static void mpv_reconstruct_mb(MpegEncContext *s, int16_t block[12][64])
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
static void build_basis(uint8_t *perm)
int has_b_frames
Size of the frame reordering buffer in the decoder.
AVCodecContext * avcodec_alloc_context3(const AVCodec *codec)
Allocate an AVCodecContext and set its fields to default values.
const uint8_t ff_h263_chroma_qscale_table[32]
static int get_sae(const uint8_t *src, int ref, int stride)
static void rebase_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Rebase the bit writer onto a reallocated buffer.
#define AV_CEIL_RSHIFT(a, b)
void ff_mpeg4_stuffing(PutBitContext *pbc)
add MPEG-4 stuffing bits (01...1)
static double av_q2d(AVRational a)
Convert an AVRational to a double.
void ff_estimate_b_frame_motion(MpegEncContext *s, int mb_x, int mb_y)
#define LOCAL_ALIGNED_16(t, v,...)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
void ff_write_quant_matrix(PutBitContext *pb, uint16_t *matrix)
static void init_qscale_tab(MpegEncContext *s)
init s->cur_pic.qscale_table from s->lambda_table
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
int64_t rc_max_rate
maximum bitrate
void ff_block_permute(int16_t *block, const uint8_t *permutation, const uint8_t *scantable, int last)
Permute an 8x8 block according to permutation.
uint64_t error[AV_NUM_DATA_POINTERS]
error
This structure describes the bitrate properties of an encoded bitstream.
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
#define CANDIDATE_MB_TYPE_FORWARD
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t my
float p_masking
p block masking (0-> disabled)
static int mb_var_thread(AVCodecContext *c, void *arg)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
void ff_mpv_unref_picture(MPVWorkPicture *pic)
static av_cold int me_cmp_init(MpegEncContext *s, AVCodecContext *avctx)
av_cold FFRefStructPool * ff_mpv_alloc_pic_pool(int init_progress)
Allocate a pool of MPVPictures.
int rc_buffer_size
decoder bitstream buffer size
PutBitContext pb2
used for data partitioned VOPs
#define LIBAVUTIL_VERSION_INT
void ff_write_pass1_stats(MpegEncContext *s)
#define CANDIDATE_MB_TYPE_FORWARD_I
void ff_mpeg4_encode_mb(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y)
Describe the class of an AVClass context structure.
#define PTRDIFF_SPECIFIER
static av_always_inline void mpv_reconstruct_mb_internal(MpegEncContext *s, int16_t block[12][64], int lowres_flag, int is_mpeg12)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
static void write_mb_info(MpegEncContext *s)
int f_code
forward MV resolution
static int bias(int x, int c)
av_cold void ff_mpv_idct_init(MpegEncContext *s)
void avcodec_free_context(AVCodecContext **avctx)
Free the codec context and everything associated with it and write NULL to the provided pointer.
#define CANDIDATE_MB_TYPE_BACKWARD
struct AVCodecInternal * internal
Private context used for internal data.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
int64_t bit_rate
the average bitrate
int display_picture_number
#define ROUNDED_DIV(a, b)
void ff_faandct(int16_t *data)
const char * av_default_item_name(void *ptr)
Return the context name.
@ AV_PICTURE_TYPE_I
Intra.
static void update_duplicate_context_after_me(MpegEncContext *dst, const MpegEncContext *src)
void ff_set_qscale(MpegEncContext *s, int qscale)
set qscale and update qscale dependent variables.
av_cold void ff_dct_encode_init(MpegEncContext *s)
static int dct_quantize_c(MpegEncContext *s, int16_t *block, int n, int qscale, int *overflow)
#define AV_CODEC_FLAG_AC_PRED
H.263 advanced intra coding / MPEG-4 AC prediction.
int ildct_cmp
interlaced DCT comparison function
int ff_vbv_update(MpegEncContext *s, int frame_size)
av_cold int ff_mpv_encode_end(AVCodecContext *avctx)
#define FF_MB_DECISION_SIMPLE
uses mb_cmp
int attribute_align_arg avcodec_open2(AVCodecContext *avctx, const AVCodec *codec, AVDictionary **options)
Initialize the AVCodecContext to use the given AVCodec.
int trellis
trellis RD quantization
#define MAY_BE_MPEG12_H261
void ff_mpeg4_init_partitions(MpegEncContext *s)
void ff_mjpeg_amv_encode_picture_header(MpegEncContext *s)
void(* op_pixels_func)(uint8_t *block, const uint8_t *pixels, ptrdiff_t line_size, int h)
int ff_mpeg4_encode_picture_header(MpegEncContext *s)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
void ff_mpeg1_encode_init(MpegEncContext *s)
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
void ff_clean_h263_qscales(MpegEncContext *s)
modify qscale so that encoding is actually possible in H.263 (limit difference to -2....
#define MV_TYPE_8X8
4 vectors (H.263, MPEG-4 4MV)
float temporal_cplx_masking
temporary complexity masking (0-> disabled)
static void mpv_encode_defaults(MpegEncContext *s)
Set the given MpegEncContext to defaults for encoding.
static void denoise_dct_c(MpegEncContext *s, int16_t *block)
static void set_put_bits_buffer_size(PutBitContext *s, int size)
Change the end of the buffer.
void ff_mpeg4_merge_partitions(MpegEncContext *s)
AVRational time_base
This is the fundamental unit of time (in seconds) in terms of which frame timestamps are represented.
int ff_encode_alloc_frame(AVCodecContext *avctx, AVFrame *frame)
Allocate buffers for a frame.
#define FF_DEBUG_DCT_COEFF
void ff_dct_encode_init_x86(MpegEncContext *s)
char * stats_out
pass1 encoding statistics output buffer
static av_always_inline void encode_mb_internal(MpegEncContext *s, int motion_x, int motion_y, int mb_block_height, int mb_block_width, int mb_block_count, int chroma_x_shift, int chroma_y_shift, int chroma_format)
#define AV_CODEC_FLAG_QPEL
Use qpel MC.
static void merge_context_after_encode(MpegEncContext *dst, MpegEncContext *src)
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
int gop_size
the number of pictures in a group of pictures, or 0 for intra_only
static int load_input_picture(MpegEncContext *s, const AVFrame *pic_arg)
void ff_mpeg4_clean_buffers(MpegEncContext *s)
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
static void dct_single_coeff_elimination(MpegEncContext *s, int n, int threshold)
static int shift(int a, int b)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
uint16_t intra_matrix[64]
matrix transmitted in the bitstream
static void ff_update_block_index(MpegEncContext *s, int bits_per_raw_sample, int lowres, int chroma_x_shift)
int ff_pre_estimate_p_frame_motion(MpegEncContext *s, int mb_x, int mb_y)
void ff_mpeg1_clean_buffers(MpegEncContext *s)
unsigned int lambda2
(lambda*lambda) >> FF_LAMBDA_SHIFT
#define CANDIDATE_MB_TYPE_DIRECT0
const int16_t ff_mpeg4_default_intra_matrix[64]
void ff_msmpeg4_encode_ext_header(MpegEncContext *s)
#define CANDIDATE_MB_TYPE_INTRA
#define AV_NOPTS_VALUE
Undefined timestamp value.
static const AVOption mpv_generic_options[]
uint8_t * byte_buffer
temporary buffer used for encoders to store their bitstream
#define FF_MPV_FLAG_QP_RD
int64_t min_bitrate
Minimum bitrate of the stream, in bits per second.
const uint16_t ff_mpeg1_default_intra_matrix[256]
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
av_cold int ff_set_cmp(const MECmpContext *c, me_cmp_func *cmp, int type, int mpvenc)
Fill the function pointer array cmp[6] with me_cmp_funcs from c based upon type.
int64_t dts
Decompression timestamp in AVStream->time_base units; the time at which the packet is decompressed.
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
#define FF_COMPLIANCE_NORMAL
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
const int16_t ff_mpeg4_default_non_intra_matrix[64]
#define ALLOCZ_ARRAYS(p, mult, numb)
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
void ff_me_init_pic(MpegEncContext *s)
#define MV_TYPE_FIELD
2 vectors, one per field
void ff_h263_encode_mb(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y)
int flags
A combination of AV_PKT_FLAG values.
AVPacket * av_packet_alloc(void)
Allocate an AVPacket and set its fields to default values.
int64_t avg_bitrate
Average bitrate of the stream, in bits per second.
unsigned int byte_buffer_size
uint8_t * scratchpad_buf
the other *_scratchpad point into this buffer
#define UNI_AC_ENC_INDEX(run, level)
#define CANDIDATE_MB_TYPE_BIDIR_I
#define AV_LOG_INFO
Standard information.
av_cold void ff_mpvenc_dct_init_mips(MpegEncContext *s)
#define CANDIDATE_MB_TYPE_INTER4V
static void update_qscale(MpegEncContext *s)
int ff_mjpeg_add_icc_profile_size(AVCodecContext *avctx, const AVFrame *frame, size_t *max_pkt_size)
void ff_msmpeg4_encode_picture_header(MpegEncContext *s)
uint64_t vbv_delay
The delay between the time the packet this structure is associated with is received and the time when...
int block_last_index[12]
last non zero coefficient in block
void ff_speedhq_encode_mb(MpegEncContext *s, int16_t block[12][64])
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
int last_mv[2][2][2]
last MV, used for MV prediction in MPEG-1 & B-frame MPEG-4
@ AV_PKT_DATA_CPB_PROPERTIES
This side data corresponds to the AVCPBProperties struct.
@ AV_PKT_DATA_H263_MB_INFO
An AV_PKT_DATA_H263_MB_INFO side data packet contains a number of structures with info about macroblo...
#define i(width, name, range_min, range_max)
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
static int put_bits_count(PutBitContext *s)
static int dct_quantize_trellis_c(MpegEncContext *s, int16_t *block, int n, int qscale, int *overflow)
static int get_intra_count(MpegEncContext *s, const uint8_t *src, const uint8_t *ref, int stride)
static int encode_thread(AVCodecContext *c, void *arg)
void ff_jpeg_fdct_islow_8(int16_t *data)
av_cold void ff_fdctdsp_init(FDCTDSPContext *c, AVCodecContext *avctx)
const uint32_t ff_square_tab[512]
static int estimate_best_b_count(MpegEncContext *s)
int intra_dc_precision
precision of the intra DC coefficient - 8
PutBitContext tex_pb
used for data partitioned VOPs
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
int64_t max_bitrate
Maximum bitrate of the stream, in bits per second.
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
void ff_h261_reorder_mb_index(MpegEncContext *s)
void ff_jpeg_fdct_islow_10(int16_t *data)
void ff_h263_encode_init(MpegEncContext *s)
void av_frame_move_ref(AVFrame *dst, AVFrame *src)
Move everything contained in src to dst and reset src.
const uint16_t ff_h263_format[8][2]
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
static void copy_context_before_encode(MpegEncContext *d, const MpegEncContext *s)
void ff_h263_encode_gob_header(MpegEncContext *s, int mb_line)
Encode a group of blocks header.
int avcodec_send_frame(AVCodecContext *avctx, const AVFrame *frame)
Supply a raw video or audio frame to the encoder.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
double buffer_index
amount of bits in the video/audio buffer
const uint8_t ff_zigzag_direct[64]
#define AV_CODEC_FLAG_CLOSED_GOP
int(* me_cmp_func)(struct MpegEncContext *c, const uint8_t *blk1, const uint8_t *blk2, ptrdiff_t stride, int h)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
const uint16_t ff_mpeg1_default_non_intra_matrix[64]
int64_t buffer_size
The size of the buffer to which the ratecontrol is applied, in bits.
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
void ff_fdct_ifast(int16_t *data)
const uint16_t ff_inv_aanscales[64]
static void encode_mb_hq(MpegEncContext *s, MpegEncContext *backup, MpegEncContext *best, PutBitContext pb[2], PutBitContext pb2[2], PutBitContext tex_pb[2], int *dmin, int *next_block, int motion_x, int motion_y)
void ff_h263_loop_filter(MpegEncContext *s)
void ff_mpeg1_encode_picture_header(MpegEncContext *s)
#define AV_INPUT_BUFFER_PADDING_SIZE
uint8_t * scratchpad
data area for the ME algo, so that the ME does not need to malloc/free.
void ff_set_mpeg4_time(MpegEncContext *s)
void ff_fix_long_mvs(MpegEncContext *s, uint8_t *field_select_table, int field_select, int16_t(*mv_table)[2], int f_code, int type, int truncate)
int16_t(* block)[64]
points to one of the following blocks
int dquant
qscale difference to prev qscale
float dark_masking
darkness masking (0-> disabled)
main external API structure.
static uint8_t default_mv_penalty[MAX_FCODE+1][MAX_DMV *2+1]
void ff_estimate_p_frame_motion(MpegEncContext *s, int mb_x, int mb_y)
void ff_mpeg4_encode_video_packet_header(MpegEncContext *s)
static uint8_t * put_bits_ptr(PutBitContext *s)
Return the pointer to the byte where the bitstream writer will put the next bit.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
uint8_t * av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type, size_t size)
Allocate new information of a packet.
int last_bits
temp var used for calculating the above vars
int qmin
minimum quantizer
static void encode_mb(MpegEncContext *s, int motion_x, int motion_y)
static int select_input_picture(MpegEncContext *s)
static int set_bframe_chain_length(MpegEncContext *s)
Determines whether an input picture is discarded or not and if not determines the length of the next ...
float spatial_cplx_masking
spatial complexity masking (0-> disabled)
static void frame_end(MpegEncContext *s)
static int ref[MAX_W *MAX_W]
int ff_mpv_pic_check_linesize(void *logctx, const AVFrame *f, ptrdiff_t *linesizep, ptrdiff_t *uvlinesizep)
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static float mean(const float *input, int size)
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
#define FF_MB_DECISION_RD
rate distortion
void ff_mpv_replace_picture(MPVWorkPicture *dst, const MPVWorkPicture *src)
void ff_h263_encode_picture_header(MpegEncContext *s)
@ AV_PICTURE_TYPE_P
Predicted.
#define AVERROR_ENCODER_NOT_FOUND
Encoder not found.
int ff_speedhq_mb_y_order_to_mb(int mb_y_order, int mb_height, int *first_in_slice)
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
int max_b_frames
maximum number of B-frames between non-B-frames Note: The output will be delayed by max_b_frames+1 re...
void ff_convert_matrix(MpegEncContext *s, int(*qmat)[64], uint16_t(*qmat16)[2][64], const uint16_t *quant_matrix, int bias, int qmin, int qmax, int intra)
Undefined Behavior In the C some operations are like signed integer overflow
void(* fdct)(int16_t *block)
av_cold int ff_mpv_encode_init(AVCodecContext *avctx)
float rc_max_available_vbv_use
Ratecontrol attempt to use, at maximum, of what can be used without an underflow.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
static int dct_quantize_refine(MpegEncContext *s, int16_t *block, int16_t *weight, int16_t *orig, int n, int qscale)
int ff_rv10_encode_picture_header(MpegEncContext *s)
static void scale(int *out, const int *in, const int w, const int h, const int shift)
static void copy_context_after_encode(MpegEncContext *d, const MpegEncContext *s)
int slices
Number of slices.
void ff_h263_update_mb(MpegEncContext *s)
#define FF_MB_DECISION_BITS
chooses the one which needs the fewest bits
This structure stores compressed data.
static void clip_coeffs(MpegEncContext *s, int16_t *block, int last_index)
uint16_t * inter_matrix
custom inter quantization matrix Must be allocated with the av_malloc() family of functions,...
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
int width
picture width / height.
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
static const double coeff[2][5]
The exact code depends on how similar the blocks are and how related they are to the block
static int sse(MpegEncContext *s, const uint8_t *src1, const uint8_t *src2, int w, int h, int stride)
int misc_bits
cbp, mb_type
void ff_mjpeg_encode_picture_trailer(PutBitContext *pb, int header_bits)
int ff_side_data_set_encoder_stats(AVPacket *pkt, int quality, int64_t *error, int error_count, int pict_type)
void ff_get_2pass_fcode(MpegEncContext *s)
AVCPBProperties * ff_encode_add_cpb_side_data(AVCodecContext *avctx)
Add a CPB properties side data to an encoding context.
int end_mb_y
end mb_y of this thread (so current thread should process start_mb_y <= row < end_mb_y)
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
#define FF_MPV_FLAG_STRICT_GOP
int start_mb_y
start mb_y of this thread (so current thread should process start_mb_y <= row < end_mb_y)
static const uint8_t sp5x_qscale_five_quant_table[][64]
@ AV_PICTURE_TYPE_S
S(GMC)-VOP MPEG-4.
@ AV_CODEC_ID_MPEG2VIDEO
preferred ID for MPEG-1/2 video decoding
int ff_mpv_alloc_pic_accessories(AVCodecContext *avctx, MPVWorkPicture *wpic, ScratchpadContext *sc, BufferPoolContext *pools, int mb_height)
Allocate an MPVPicture's accessories (but not the AVFrame's buffer itself) and set the MPVWorkPicture...
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
void ff_mpeg1_encode_slice_header(MpegEncContext *s)
void ff_refstruct_unref(void *objp)
Decrement the reference count of the underlying object and automatically free the object if there are...
int ff_mjpeg_encode_stuffing(MpegEncContext *s)
Writes the complete JPEG frame when optimal huffman tables are enabled, otherwise writes the stuffing...
void ff_wmv2_encode_mb(MpegEncContext *s, int16_t block[6][64], int motion_x, int motion_y)
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel.
void ff_rv20_encode_picture_header(MpegEncContext *s)
void * ff_refstruct_pool_get(FFRefStructPool *pool)
Get an object from the pool, reusing an old one from the pool when available.
int ff_get_best_fcode(MpegEncContext *s, const int16_t(*mv_table)[2], int type)
const uint16_t ff_aanscales[64]
AVCPBProperties * av_cpb_properties_alloc(size_t *size)
Allocate a CPB properties structure and initialize its fields to default values.
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
static void write_slice_end(MpegEncContext *s)
av_cold void ff_rate_control_uninit(RateControlContext *rcc)