31 #define FILTER_ORDER 4 75 #define OFFSET(x) offsetof(AudioNEqualizerContext, x) 76 #define A AV_OPT_FLAG_AUDIO_PARAM 77 #define V AV_OPT_FLAG_VIDEO_PARAM 78 #define F AV_OPT_FLAG_FILTERING_PARAM 88 {
"colors",
"set channels curves colors",
OFFSET(colors),
AV_OPT_TYPE_STRING, {.str =
"red|green|blue|yellow|orange|lime|pink|magenta|brown" }, 0, 0,
V|
F },
106 for (ch = 0; ch < inlink->
channels; ch++) {
107 uint8_t fg[4] = { 0xff, 0xff, 0xff, 0xff };
115 for (f = 0; f < s->
w; f++) {
116 double zr, zi, zr2, zi2;
122 w =
M_PI * (s->
fscale ? pow(s->
w - 1, f / s->
w) :
f) / (s->
w - 1);
139 Hr = S->
b4*(1-8*zr2*zi2) + S->
b2*(zr2-zi2) + zr*(S->
b1+S->
b3*(zr2-3*zi2))+ S->
b0;
140 Hi = zi*(S->
b3*(3*zr2-zi2) + S->
b1 + 2*zr*(2*S->
b4*(zr2-zi2) + S->
b2));
141 Hmag *=
hypot(Hr, Hi);
142 Hr = S->
a4*(1-8*zr2*zi2) + S->
a2*(zr2-zi2) + zr*(S->
a1+S->
a3*(zr2-3*zi2))+ S->
a0;
143 Hi = zi*(S->
a3*(3*zr2-zi2) + S->
a1 + 2*zr*(2*S->
a4*(zr2-zi2) + S->
a2));
144 Hmag /=
hypot(Hr, Hi);
148 v = av_clip((1. + -20 * log10(Hmag) / s->
mag) * s->
h / 2, 0, s->
h - 1);
153 for (y = v; y <= prev_v; y++)
156 for (y = prev_v; y <= v; y++)
267 double si,
double g,
double g0,
270 if (c0 == 1 || c0 == -1) {
271 S->
b0 = (g*g*beta*beta + 2*g*g0*si*beta + g0*g0)/D;
272 S->
b1 = 2*c0*(g*g*beta*beta - g0*g0)/D;
273 S->
b2 = (g*g*beta*beta - 2*g0*g*beta*si + g0*g0)/D;
278 S->
a1 = 2*c0*(beta*beta - 1)/D;
279 S->
a2 = (beta*beta - 2*beta*si + 1)/D;
283 S->
b0 = (g*g*beta*beta + 2*g*g0*si*beta + g0*g0)/D;
284 S->
b1 = -4*c0*(g0*g0 + g*g0*si*beta)/D;
285 S->
b2 = 2*(g0*g0*(1 + 2*c0*c0) - g*g*beta*beta)/
D;
286 S->
b3 = -4*c0*(g0*g0 - g*g0*si*beta)/D;
287 S->
b4 = (g*g*beta*beta - 2*g*g0*si*beta + g0*g0)/D;
290 S->
a1 = -4*c0*(1 + si*beta)/D;
291 S->
a2 = 2*(1 + 2*c0*c0 - beta*beta)/D;
292 S->
a3 = -4*c0*(1 - si*beta)/D;
293 S->
a4 = (beta*beta - 2*si*beta + 1)/D;
298 int N,
double w0,
double wb,
299 double G,
double Gb,
double G0)
301 double g, c0, g0, beta;
307 if (G == 0 && G0 == 0) {
319 epsilon = sqrt((G * G - Gb * Gb) / (Gb * Gb - G0 * G0));
321 g0 = pow(G0, 1.0 / N);
322 beta = pow(epsilon, -1.0 / N) * tan(wb/2);
325 for (i = 1; i <=
L; i++) {
326 double ui = (2.0 * i - 1) / N;
327 double si = sin(
M_PI * ui / 2.0);
328 double Di = beta * beta + 2 * si * beta + 1;
335 double c,
double tetta_b,
336 double g0,
double si,
double b,
339 if (c0 == 1 || c0 == -1) {
340 S->
b0 = (tetta_b*tetta_b*(b*b+g0*g0*c*
c) + 2*g0*b*si*tetta_b*tetta_b + g0*g0)/
D;
341 S->
b1 = 2*c0*(tetta_b*tetta_b*(b*b+g0*g0*c*
c) - g0*g0)/
D;
342 S->
b2 = (tetta_b*tetta_b*(b*b+g0*g0*c*
c) - 2*g0*b*si*tetta_b + g0*g0)/
D;
347 S->
a1 = 2*c0*(tetta_b*tetta_b*(a*a+c*
c) - 1)/
D;
348 S->
a2 = (tetta_b*tetta_b*(a*a+c*
c) - 2*a*si*tetta_b + 1)/
D;
352 S->
b0 = ((b*b + g0*g0*c*
c)*tetta_b*tetta_b + 2*g0*b*si*tetta_b + g0*g0)/
D;
353 S->
b1 = -4*c0*(g0*g0 + g0*b*si*tetta_b)/D;
354 S->
b2 = 2*(g0*g0*(1 + 2*c0*c0) - (b*b + g0*g0*c*c)*tetta_b*tetta_b)/D;
355 S->
b3 = -4*c0*(g0*g0 - g0*b*si*tetta_b)/D;
356 S->
b4 = ((b*b + g0*g0*c*
c)*tetta_b*tetta_b - 2*g0*b*si*tetta_b + g0*g0)/
D;
359 S->
a1 = -4*c0*(1 + a*si*tetta_b)/D;
360 S->
a2 = 2*(1 + 2*c0*c0 - (a*a + c*
c)*tetta_b*tetta_b)/
D;
361 S->
a3 = -4*c0*(1 - a*si*tetta_b)/D;
362 S->
a4 = ((a*a + c*
c)*tetta_b*tetta_b - 2*a*si*tetta_b + 1)/
D;
367 int N,
double w0,
double wb,
368 double G,
double Gb,
double G0)
370 double a,
b, c0, g0, alfa, beta, tetta_b;
376 if (G == 0 && G0 == 0) {
388 epsilon = sqrt((G*G - Gb*Gb) / (Gb*Gb - G0*G0));
390 alfa = pow(1.0/epsilon + sqrt(1 + 1/(epsilon*epsilon)), 1.0/N);
391 beta = pow(G/epsilon + Gb * sqrt(1 + 1/(epsilon*epsilon)), 1.0/N);
392 a = 0.5 * (alfa - 1.0/alfa);
393 b = 0.5 * (beta - g0*g0*(1/beta));
397 for (i = 1; i <=
L; i++) {
398 double ui = (2.0*i-1.0)/
N;
399 double ci = cos(
M_PI*ui/2.0);
400 double si = sin(
M_PI*ui/2.0);
401 double Di = (a*a + ci*ci)*tetta_b*tetta_b + 2.0*a*si*tetta_b + 1;
408 double c,
double tetta_b,
409 double g,
double si,
double b,
412 if (c0 == 1 || c0 == -1) {
413 S->
b0 = (g*g*tetta_b*tetta_b + 2*tetta_b*g*b*si + b*b + g*g*c*
c)/D;
414 S->
b1 = 2*c0*(g*g*tetta_b*tetta_b - b*b - g*g*c*
c)/D;
415 S->
b2 = (g*g*tetta_b*tetta_b - 2*tetta_b*g*b*si + b*b + g*g*c*
c)/D;
420 S->
a1 = 2*c0*(tetta_b*tetta_b - a*a - c*
c)/D;
421 S->
a2 = (tetta_b*tetta_b - 2*tetta_b*a*si + a*a + c*
c)/D;
425 S->
b0 = (g*g*tetta_b*tetta_b + 2*g*b*si*tetta_b + b*b + g*g*c*
c)/D;
426 S->
b1 = -4*c0*(b*b + g*g*c*c + g*b*si*tetta_b)/D;
427 S->
b2 = 2*((b*b + g*g*c*
c)*(1 + 2*c0*c0) - g*g*tetta_b*tetta_b)/D;
428 S->
b3 = -4*c0*(b*b + g*g*c*c - g*b*si*tetta_b)/D;
429 S->
b4 = (g*g*tetta_b*tetta_b - 2*g*b*si*tetta_b + b*b + g*g*c*
c)/D;
432 S->
a1 = -4*c0*(a*a + c*c + a*si*tetta_b)/D;
433 S->
a2 = 2*((a*a + c*
c)*(1 + 2*c0*c0) - tetta_b*tetta_b)/D;
434 S->
a3 = -4*c0*(a*a + c*c - a*si*tetta_b)/D;
435 S->
a4 = (tetta_b*tetta_b - 2*a*si*tetta_b + a*a + c*
c)/D;
440 int N,
double w0,
double wb,
441 double G,
double Gb,
double G0)
443 double a,
b, c0, tetta_b;
444 double epsilon,
g, eu, ew;
449 if (G == 0 && G0 == 0) {
461 epsilon = sqrt((G*G - Gb*Gb) / (Gb*Gb - G0*G0));
463 eu = pow(epsilon + sqrt(1 + epsilon*epsilon), 1.0/N);
464 ew = pow(G0*epsilon + Gb*sqrt(1 + epsilon*epsilon), 1.0/N);
465 a = (eu - 1.0/eu)/2.0;
466 b = (ew - g*g/ew)/2.0;
470 for (i = 1; i <=
L; i++) {
471 double ui = (2.0 * i - 1.0)/
N;
472 double ci = cos(
M_PI * ui / 2.0);
473 double si = sin(
M_PI * ui / 2.0);
474 double Di = tetta_b*tetta_b + 2*a*si*tetta_b + a*a + ci*ci;
486 else if(gain > -6 && gain < 6)
487 bw_gain = gain * 0.5;
500 else if(gain > -6 && gain < 6)
501 bw_gain = gain * 0.9;
514 else if(gain > -6 && gain < 6)
515 bw_gain = gain * 0.3;
574 char *saveptr =
NULL;
628 char *res,
int res_len,
int flags)
634 if (!strcmp(cmd,
"change")) {
635 double freq,
width, gain;
638 if (sscanf(args,
"%d|f=%lf|w=%lf|g=%lf", &filter, &freq, &width, &gain) != 4)
697 int jobnr,
int nb_jobs)
701 const int start = (buf->
channels * jobnr) / nb_jobs;
702 const int end = (buf->
channels * (jobnr+1)) / nb_jobs;
739 const int64_t
pts = buf->
pts +
768 .
name =
"anequalizer",
771 .priv_class = &anequalizer_class,
static int filter_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static void chebyshev2_fo_section(FoSection *S, double a, double c, double tetta_b, double g, double si, double b, double D, double c0)
This structure describes decoded (raw) audio or video data.
static void chebyshev1_bp_filter(EqualizatorFilter *f, int N, double w0, double wb, double G, double Gb, double G0)
Main libavfilter public API header.
int h
agreed upon image height
static double butterworth_compute_bw_gain_db(double gain)
static int config_video(AVFilterLink *outlink)
static void butterworth_bp_filter(EqualizatorFilter *f, int N, double w0, double wb, double G, double Gb, double G0)
static void butterworth_fo_section(FoSection *S, double beta, double si, double g, double g0, double D, double c0)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
AVFilterFormatsConfig outcfg
Lists of supported formats / etc.
AVFILTER_DEFINE_CLASS(anequalizer)
int is_disabled
the enabled state from the last expression evaluation
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
const char * name
Pad name.
AVFilterLink ** inputs
array of pointers to input links
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
#define fs(width, name, subs,...)
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
static av_cold int end(AVCodecContext *avctx)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
static const AVOption anequalizer_options[]
static void chebyshev2_bp_filter(EqualizatorFilter *f, int N, double w0, double wb, double G, double Gb, double G0)
static void chebyshev1_fo_section(FoSection *S, double a, double c, double tetta_b, double g0, double si, double b, double D, double c0)
static double hz_2_rad(double x, double fs)
static av_cold void uninit(AVFilterContext *ctx)
#define AVFILTER_FLAG_DYNAMIC_OUTPUTS
The number of the filter outputs is not determined just by AVFilter.outputs.
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
int av_parse_color(uint8_t *rgba_color, const char *color_string, int slen, void *log_ctx)
Put the RGBA values that correspond to color_string in rgba_color.
A filter pad used for either input or output.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
A link between two filters.
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
static int config_input(AVFilterLink *inlink)
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
int sample_rate
samples per second
static void equalizer(EqualizatorFilter *f, double sample_rate)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
void * priv
private data for use by the filter
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link...
static void draw_curves(AVFilterContext *ctx, AVFilterLink *inlink, AVFrame *out)
static int query_formats(AVFilterContext *ctx)
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
int w
agreed upon image width
static av_const double hypot(double x, double y)
int channels
number of audio channels, only used for audio.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
static const AVFilterPad inputs[]
AVFilterContext * src
source filter
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
static const AVFilterPad outputs[]
static double process_sample(FoSection *s1, double in)
A list of supported channel layouts.
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
char * av_strdup(const char *s)
Duplicate a string.
AVSampleFormat
Audio sample formats.
static double chebyshev2_compute_bw_gain_db(double gain)
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
AVFilter ff_af_anequalizer
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31))))#define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac){}void ff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map){AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);return NULL;}return ac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;}int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){int use_generic=1;int len=in->nb_samples;int p;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
Rational number (pair of numerator and denominator).
const char * name
Filter name.
static int add_filter(AudioNEqualizerContext *s, AVFilterLink *inlink)
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
offset must point to two consecutive integers
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
AVFilterLink ** outputs
array of pointers to output links
enum MovChannelLayoutTag * layouts
static enum AVPixelFormat pix_fmts[]
#define flags(name, subs,...)
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok()...
static double section_process(FoSection *S, double in)
internal math functions header
static double chebyshev1_compute_bw_gain_db(double gain)
static av_cold int init(AVFilterContext *ctx)
int channels
Number of channels.
AVFilterFormatsConfig incfg
Lists of supported formats / etc.
avfilter_execute_func * execute
AVFilterContext * dst
dest filter
static const struct PPFilter filters[]
static enum AVSampleFormat sample_fmts[]
EqualizatorFilter * filters
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
uint8_t ** extended_data
pointers to the data planes/channels.
static int ff_insert_outpad(AVFilterContext *f, unsigned index, AVFilterPad *p)
Insert a new output pad for the filter.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
AVPixelFormat
Pixel format.
int nb_samples
number of audio samples (per channel) described by this frame